CHAPTER1
INTRODUCTION
Microwavephotonicsisamultidisciplinaryfieldthatencompasses optical,microwave,andelectricalengineering.Themicrowavephotonicsfieldmustthereforespanfrequenciesofbelow1kHzinthe radio-frequency(RF)domaintofrequenciesofhundredsofterahertz associatedwiththeopticaldomain.Thefieldoriginatedfromthe needtosolveincreasinglycomplexengineeringproblemswhenradio engineersventuredoutsidetheirdisciplinetotheopticaldomainin searchofnewcapabilities.Generally,thefieldisappliedinnature stemmingfromitsrootsanddrivenbypresent-daysystemneeds. However,manybasicresearchareasareassociatedwiththeunderlying componenttechnologies.
Althoughthefieldofmicrowavephotonicswasnotformalized internationallyuntilthelate1980sandtheearly1990s(Berceliand Herczfeld,2010),itshistoryspansmorethanafewdecades.Theuse ofRFfortelegraphcommunicationsintheearlytomid-1800sgave birthtotheneedforradioengineers.However,itwasnotuntilthe expandeddevelopmentofradarduringWorldWarII(Page1962)to searchforaircraftelectronicallydidtheneedforthosewithanalog orradioengineeringskillsincreasedramatically.Nearlyasquicklyas
FundamentalsofMicrowavePhotonics,FirstEdition. VincentJ.UrickJr,JasonD.McKinney,andKeithJ.Williams. ©2015JohnWiley&Sons,Inc.Published2015byJohnWiley&Sons,Inc.
radarwasestablishedasausefultooltoaidindetection,radarcountermeasuresweredevelopedtoconfuseanddenytheradaroperators effectiveuseoftheirnewtools.Countermeasuresnecessitateradar redesigninordertorendercountermeasuresineffective.Thisiterative countermeasure/counter-countermeasurebattlecontinuestodayand willsolongintothefutureastheradardesignerisconstantlytrying to“seeandnotbeseen”(Fuller1990).Theuseofhigherfrequencies andthedesiretodelaythosefrequenciescreatedaneedforlowloss delaylines.Theearlypromiseofmicrowavephotonicstechnologiesfor lowlosslongdelaylinesiscloselylinkedtothisradarandelectronic countermeasurebattle.
Today’ssocietymakesabundantuseoftheelectromagneticspectrum forcommunication.Radioandtelevisionbroadcasts,cellphones,satellitecommunications,push-to-talkradios,andmanyothertechniques havebeendevelopedtofacilitatecommunicationbetweentwoor moreparties.ThesesystemsmakeuseofRFsignaltransmissionand processingwithinthedevices.Duetotheexpansionofmicroelectronic circuitsandtheirsize/power/speedadvantages,manyofthesesystems havemovedfromstrictlyanalogsystemstomixed-signalimplementations.Inthesesystems,analogsignalsaredigitized,processed,and/or transportedindigitalformbeforebeingconvertedbacktocontinuous waveformsforuseintheanalogworld.AlthoughmodernRFsystems increasinglyusedigitalsignalprocessing(DSP),analogfiberopticlinks offertheradioengineersignificantandusefultoolsinthedesignof thesesystems.Theabilitytoprocessasignalintheanalogdomaincan simplifyoverallsystemdesign,especiallyinwidebandwidthsystems, wherebandwidthdemandsaredifficulttoachievewithDSP.However, theanalogsystemengineershouldusethebestanalogtoolsalong withthefeaturesthatDSPcanprovidetomakethemostefficientand powerfulsystempossible.
Initsmostbasicform,ananalogphotoniclinkisadelayline containinganelectrical-to-optical(E/O)convertertotransformtheRF signalintotheopticaldomain,anopticaltransmissionmedium,andan optical-to-electrical(O/E)converter.Figure1.1illustratesafunctional blockdiagramforamultichannelfiberopticlink.OneormoreRF inputsareconvertedintotheopticaldomainbyE/Oconverters.Once theRFsignalhasbeentransformedintotheopticaldomain,itcan bedelayedintimewithopticalfiber,processed,anddeliveredtoone ormoreO/Econverterswheretheopticalsignalsaredemodulated backintoelectricalRFsignals.Theprocessingelementscantakemany forms,includingswitching,routing,filtering,frequencytranslation,and
Figure1.1. Basicblockdiagramofanarrayoffiberopticlinks.
Townline includes fiber optic link
Figure1.2. AdepictionofanRFtoweddecoyfromanF/A18. amplification,tonameafew.Theperformanceofvariousformsofsuch analogphotoniclinkswillbetreatedthroughoutthemiddlechapters.
Fiberopticlinkshaveprovedtobeadvantageousovertheirelectronic (coaxialcable)counterpartsforanumberofapplications.Oneofthe earlymilitaryapplicationswastheuseofafiberopticlinkinanairborne toweddecoyasshowninFigure1.2,theALE-55.Theconceptofatowed RFtransmitterfromanaircrafttodistractanRF-guidedmissileaway fromitsintendedtargethasexistedsince,atleast,the1960s(Norman andMeullen,1964),withfiberopticversionsappearinglater(Toman 1989).Inearlydesigns,areceivingantennaonthedecoydetecteda threat,amplified,andthenre-transmittedahigherpowerreturnsignal. However,duetothesizelimitationsnecessitatedbyaerodynamicsof thedecoy,onlyalimitedamountofsignalprocessingcanbeperformed onthedecoyitself.Theuseofafiberopticcabletoconnecttheairplane andthedecoymakesitpossibletousesophisticatedsignalprocessors onboardtheaircraft,remotingprocessedsignalstothedecoywhere amplificationandtransmissionoccur.Thisallowsthedecoytobeused inamultiphaseapproachfordefeatingathreatmissileincludingsuppressingtheradar’sabilitytotracktheaircraft,deceivingtheradarwith jammingtechniques,andseducingthemissileawayfromtheaircraftby presentingamoreattractivetarget.Fiberopticsminimizesthesizeof
thedecoyandreducesthetensiononthedecoytowline,allowingitto beusefulonawidervarietyofaircraft.
Oneofthefirstwidespreadcommercialusesofanalogfiberoptic linkswasinhybridfiber-coaxial(HFC)systemsforcabletelevision signaldistribution(Chiddixetal.1990).HFCsolutionsofferedcable systemoperatorstheabilitytoincreasethenumberandqualityofvideo signalsdeliveredtothehomeandtoprovideupstreambroadbanddata servicesatlowcostwithhighreliability.HFCsystemstransformedthe roleofthecableindustryfrombeingstrictlyaproviderofvideotoa viablecompetitorinthelocalaccessmarket,traditionallyservedby thetelephonesystem.CombinedwiththeexpansionoftheInternet, thishashelpedtoshapethecompetitivebroadbandinformation infrastructureasitexiststoday.Bythemid-1990s,HFCsystemswere capableofdeliveringover100channelsofamplitude-modulated vestigial-sideband(AM-VSB)videodistancesofover20kmwith avarietyofopticallinkdesigns.Thekeytothissuccesswasthe abilitytodelivervideosignalsopticallyhavinghighcarrier-to-noise ratios(CNR)andlowcompositesecond-order(CSO)andcomposite triple-beat(CTB)distortionlevels.Significantearlyworkonimproving thelinearityofanalogopticallinkswasperformedforthisapplication, includingworkonlinearizingexternalmodulation(Nazarathyetal. 1993)andstudyofcrosstalkduetoopticalfibernonlinearities(Phillips andOtt1999).Asignificantportionofthisbookisdevotedtosources ofnonlinearityinanalogopticallinks.AlmostasquicklyasHFC changedthecableandtelephoneindustry,conversionfromAM-VSB videodistributiontocompresseddigitalvideo(CDV)began.Although theconversionwasslowduetothecostofreplacinganentrenched andexpensiveinfrastructure,CDVhasnowdisplacedmuchofthe AM-VSBvideodistributiontechnologies.AswiththelegacyAM-VSB signals,fiberopticlinksremainthetransmissionmediumofchoicefor suchmoderntelecommunicationsystems.
Inradioastronomy,largeantennasareusedtodetectRFemissions fromspace.Microwaveengineeringplaysacrucialroleinradio astronomy,withanalogfiberopticlinksbeingusedinmodernsystems (WebberandPospieszalski2002).TheGreenbankTelescope(GBT), locatedinWestVirginiaandoperatingfrom0.1to115GHz,isthe world’slargestfullysteerablesingleantenna(Lockman1998,Prestage etal.2009).The100-m-diameterparabolicantennaisusedtoenhance scientificunderstandinginareassuchasthedetectionofgravitational waves(throughprecisionpulsartiming);theformationofstars,galaxies, andgalaxyclusters;andthecompositionofplanets.Theantennaisused
forthedetectionofatomicandmolecularemissionlinesspanningfrom highred-shiftsituations(emissionsnearblackholes)tothosewhere themeasurementofweak,spatiallyextendedspectrallinescanbeused todetectneworganicmoleculesinspace.TheGBTusesananalog fiberopticlinkforremotingsignalstoaprocessinglaboratory(White 2000).Forhigherspatialresolution,smallerdishantennascanbeused inaphased-arrayconfigurationtotakeadvantageoflongbaselinesto measuresmallphasechanges.Suchanarraywasinauguratedin2013 inthemountainsofChile(TestiandWalsh2013),aportionofwhich isshowninFigure1.3.Fiberopticlinkstoremotethemillimeterwave signalshaveshownpotentialutilityinlargeradioastronomyantenna arrays(PayneandShillue2002).BecausetheRFsignalsoriginateat astronomicaldistancesandarethusverylowpower,largeantenna systemswithverylownoisefiguresareassembledandoperatedaslarge phasedarrays.Suchsystemstakeadvantageofthearraygainfroma largeeffectiveapertureandthephasesensitivityofalongbaseline. Insomesystems,asmanyas6412-mdishantennasoperatingovera 16-kmbaselinemusthavetheirRFsignalscoherentlysummedata centrallocation.Sincethefrequenciesofinterestmayreachhundreds ofgigahertz,relativepathdifferencesmustbepreciselyaccountedfor. Thisisverychallenging,evenforfiberoptics(ThackerandShillue 2011),astemperaturevariations,polarizationdrift,andchromatic dispersionallleadtolengtherrorsrequiringactivecompensation. AdditionaldetailsonthefiberlinksfortheGBTandALMAare providedinChapter10.

Figure1.3. TheAtacamalargemillimeter/sub-millimeterarray(ALMA)interferometerinChile.(Credit: ALMA(ESO-NAOJ-NRAO),J.Guarda.)
Theaforementionedapplicationsarejustafewofthemanywithin RF,microwave,ormillimeter-wavesystemswherefiberopticlinkshave provenuseful.Microwavephotonicsprovidesutilityinareasspanning themilitary,industrial,andacademicsectors.Otherapplicationsinclude radio-over-fiberforwirelesscommunications,deliveringpowertoand fromantennafeedsforantennaandarraycalibration,signalrouting andtruetimedelaybeamforminginarrays,opticalsignalprocessing, filtering,waveformsynthesis,optoelectronicoscillatorsfortheprecisiongenerationofRFsignals,opticalclocksforprecisiontiming,and RFdownconvertersandupconverters.Theunderlyingtechnologyand componentscontainedwithinanalogopticallinksarethesubjectsof thisbook,includingmoredetailonapplicationsofthetechnologyin Chapter10.
1.1ENABLINGTECHNOLOGICALADVANCESANDBENEFITS OFFIBEROPTICLINKS
ThefrequencyrangeofinteresttothefieldofmicrowavephotonicsdependstoalargedegreeonMotherNature.Figure1.4(Liebe 1983)showstheatmosphericattenuationofRFradiationatsealevel underdifferentatmosphericconditions.Ascanbeseen,thereare
Figure1.4. Specificatmosphericattenuationatsealevelforvariouslevelsofrelative humidity(RH),includingfogandrain.TransmissionwindowsaredesignatedW1–W4 (Liebe1983).
strongabsorptionbandsnear23,60,119,and182GHz.Between thesefrequenciesaretransmission“windows”withcomparativelyless loss.Systemsusingfrequenciesbelow20GHzhaveproliferatedfor ground-basedorsea-levelapplications,withafewsystemsoperating inthesecondandthirdwindows,centeredaround35and94GHz, respectively.InspectionofFigure1.4impliesthatthesesystemsare functioningwithanatmosphericattenuationof0.3dB/kmorlessat sealevel.Ataltitudesabove9.2km,theattenuationdecreasesinthese atmospherictransmissionwindowstobelow0.05dB/kmatfrequencies upto300GHz(Wiltse1997).Giventhat0.3dB/kmisanacceptable levelofattenuationatsealevel,itthenbecomesplausibletoconsider theuseoffrequenciesupto300GHzathighaltitudessuchasin air-to-airapplications.Intermsoffractionalbandwidth,300GHzis only0.16%ofthebandwidthofanopticalcarrierat1550nm(193THz). Thissmallfractionalbandwidthallowsmanyapplicationstoberealized inphotonics,includingRFsignalmultiplexing.Inaddition,many photonicdevicetechnologieshavebeenshowntobefeasibleinthe 100–300GHzrange,makingthetechnologysuitablethroughoutthis entirefrequencyrange(seeSection10.5).Thefieldofmicrowavephotonicsevolvedlargelyduetosuchapplicationneeds.However,before thetechnologycouldprosper,severalsignificantbreakthroughswere needed,includinglowlossopticalfibersandefficienthighbandwidth transducers(E/OandO/E).
Figure1.5showsatypicalcross-sectionandindexprofileforastep indexopticalfiber.Ahighindexglasscorehavingindexofrefraction n1 anddiameter d1 issurroundedbyaslightlylowerindexglasscladding
Figure1.5. (a)Depictionofsinglemodefibercoreandcladdingregionswithindexprofile(b)forastepindexwaveguidedesign.
havingindex n2 anddiameter d2 .Thecladdingissufficientlythicksuch thattheevanescentelectricfieldofthepropagatingmode(s)exponentiallydecaysinthisregion.Thecladdingglassisusuallycoatedwith alowerindexpolymerforenvironmentalprotection.Typicalcoreand claddingdiametersarefrom8to50 μmandfrom60to125 μm,respectively.Thecore–claddingindexdifferenceandthediameterofthecore determinehowmanypropagatingmodesthefiberwaveguidecansupportforaparticularwavelength.
Maxwell’sequationsdescribethepropagationofwaveswithinthe dielectricwaveguideofanopticalfiber.Fromasolutiontothewave equations,anormalizedfrequencyor V-numberforthefibercanbe definedas
where �� isthewavelength.Fortypicalopticalfibers,thenormalized indexdifference, Δ=(n1 n2 )∕n1 ,isusually ≪ 1,andEquation(1.1) reducesto
whereNAisthenumericalapertureofthefiber.Inrayoptics,NA = n0 sin(�� ),where �� istheacceptancehalf-angle,and n0 istheindexofthe materialinfrontofthefiberinterface(n0 = 1forair).TheNAisameasureofthelight-gatheringcapacityofafiberwherebylightimpingingon thefiberatananglegreaterthan �� relativetothepropagationaxisdoes notexciteaguidedmode.Onecanshowthatforallvaluesof V upto thefirstzerooftheBesselfunction J0 suchthat J0 (V )= 0(seeAppendix VI)thatthewaveguidecanonlysupportthelowestorderhybridmode, HE11(Ramoetal.1994).Thus,for V < 2.405,thewaveguideissinglemode.When V exceeds2.405,thewaveguidesupportshigherorder modes,andforlarge V,thenumberofsupportedmodescanbeestimatedtobe V 2 ∕2.Atypicalsinglemodefiberat1550nmhasacore diameterof10 μm,allowingforanindexdifferenceof0.006orlessto remainsinglemode.Suchsmallindexdifferencesarepossiblebyadding dopantmaterialssuchasGeO2 ,P2 O5 ,orB2 O3 topurefusedsilicaglass (SiO2 ).
Multimodefiberswithlargercoreswerefabricatedearlierthan single-modefiberandtypicallyachievedlowerlossduetothehigher tolerancestowaveguidedimensionalimperfections.However,RF photoniclinksathighfrequenciesusesingle-modefibersalmostexclusivelytoavoidpowerfadingexperiencedinmultimodefibersdueto
(Kapron, 1970, SM 0.632 μm)
(Kaiser, 1973, MM 1.12 μm)
(French, 1974, MM 1.02 μm)
(Horiguchi, 1976, MM 1.2 μm)
(Kawachi, 1977, SM 1.3 μm)
(Murata, 1981, SM 1.55 μm) (Min.
Figure1.6. Reportedlossesinopticalfiberovertimeforsingle-mode(SM)andmultimode(MM)fibersatvariouswavelengths(Frenchetal.,1974;Horiguchi,1976;Kaiser, 1973;Kapron,1970;Kawachi,1977;andMurataandInagaki,1981).
modaldispersion.Figure1.6showstheprogressovertimeoftheoptical lossesofmultimodeandsingle-modefibersintermsofpropagation loss.Fundamentally,thelossislimitedbyRayleighscatteringinthe fiber,whichamountstoalossof0.175dB/kmat1550nm.Ascanbe seenfromFigure1.6,fiberlossdecreasedtobelow1dB/kmby1974 andwaswithin10%oftheRayleighscatteringlimitby1981.Itwillbe demonstratedinlaterchaptersthatformanylinkmodulationformats, theRFlossinamicrowavephotoniclinkistwicethat(indecibels) oftheopticalloss.Therefore,by1981,RFdelaylinepropagationloss wouldhavebeenaslowas0.4dB/kmat1550-nmwavelength.Sincethe wavelengthdependenceofthelossisminimaloverafewnanometers bandwidth(hundredsofgigahertzbandwidthat1550nm),theRF propagationlossispracticallyfrequencyindependent.
Lowopticalfiberlossofferedthepromiseofsubstantialperformance advantagesinRFdelaylinesifthesubsequenttransducersfromE/O andO/Ecouldbedevelopedinthefrequencyrangesofinterest. Initially,themostimportantfrequencyrangeofinterestwastheregion belowthefirstatmosphericabsorptionfeatureincludingfrequencies upto20GHz(Figure1.4)whereasubstantialnumberofdeployedRF systemsexisted.OntheE/Oside,thesemiconductorlaserwasanearly choiceduetothesub-nsphotonlifetimesinGaAs(wavelengthsupto 860nm)andInGaAsP(wavelengthsupto1600nm).Directmodulation ofthepumpcurrentfortheselasersprovidesastraightforwardE/O
mechanism.Demonstrationsupto10GHzmodulationbandwidthwere prevalentbythemid-1980s(SuandLanzisera1986).Thefirstdemonstrationofasemiconductorlasertosurpass20GHzbandwidthwasat 1.3 μm,usingaburiedheterostructureinabulkmaterial(Olshansky etal.1987).Researchcontinuedinthisareatoimprovedifferential efficiency(leadingtohigherE/Oconversionefficiency)andtoincrease bandwidth.Itwaswidelyexpectedthatmultiplequantumwelllaser designswouldhelptoimprovedifferentialefficiencybecauseoftheir carrierconfinementpropertiesandlowcarrierdensitiesrequiredfor inversion(Okamoto1987).However,itwasnotuntilthehighspeed carriertransportintoandoutofthequantumwellswasstudiedand understood(Nagarajanetal.1992)thatthebandwidthsofquantum welllasersexceededthosemadewithoutquantumconfinement. Distributedfeedback(DFB)laserdesignsquicklyfollowed,allowing forsingle-longitudinal-modeoperation.While20GHzbandwidth laserssatisfyalargenumberofRFsystemapplications,semiconductor laserintensitynoisenearthemodulationbandwidthlimitpeaks, leadingtolowersignal-to-noiseratios(SNR).Thisintensitynoise(or relativeintensitynoise—RIN)peakcanbemitigatedbyincreasingthe modulationbandwidth;DFBlasersachieving25GHzbandwidthat 1550nm(Mortonetal.1992)andover40GHzbandwidth(Weisser etal.1996)havebeenreported.
Onthebackendofthelink,anO/Econverterisrequiredto convertRFmodulationimpressedontheopticalcarrierbackinto anRFsignal.Themostsignificantdeviceforthisisthep–njunction photodiodeincorporatingadepletedintrinsicregiontoreducecapacitance,referredtoasap–i–nphotodiode.Earlyworkonhighspeed photodiodesyieldedsubstantiallyhigherbandwidthsthantheirhigh speedlasercounterparts(Bowersetal.1985),andphotodiodeswere generallynotthebandwidth-limitingdevicewithinthefirstlinks.There aredesigntradesforthesephotodiodeswhenimplementedinbulk surface-illuminatedstructures(BowersandBurrus1987);increasing thedepletionregionthicknesslowerscapacitance(increasesbandwidth)andimprovesabsorptionefficiencybutcausescarriertransit timestoincrease(decreasingbandwidth).Thistradeoffcanbeavoided byusingwaveguideordistributedtravelingwavedesignsthatimprove bothefficiencyandbandwidthattheexpenseofdeviceandpackaging complexity.
Inadditiontolowpropagationloss,theinformationbandwidthavailableandthefrequencyindependenceofthelossinfiberarejustas
Figure1.7. Lossasafunctionof(a)frequencyincludingonlypropagationlossinthe cableforRG-401,RG-405andsilicafiberand(b)propagationdistanceforRG-401at threefrequencies.In(b),thefiberopticlossincludesa30dBfixedlossduetoE/Oand O/Econversion.
importantforRFfiberopticlinks.ThisisinstarkcontrasttopropagationlossinanRFcoaxialcablethattendstohaveasquarerootdependencywithfrequency.Asanexample,considerFigure1.7(a)wherethe propagationlossesintwocoaxialcables,RG-401andRG-405,areplottedversusfrequencyalongwiththepropagationlossesofopticalfiber. Ingeneral,largerdiametercablessuchasRG-401tendtohavelower lossbutalsohavealowercutofffrequencyforthewaveguidetoremain singlemode.Notehowthecoaxialcablelossincreasesbyonedecade foreverytwodecadesinfrequency,characteristicoflossesthathave asquarerootdependencywithfrequency.Notealsothatthepropagationlossesincoaxialcablearetwoorthreeordersofmagnitudehigher thanthoseofopticalfiber.Thisreasonbyitselfhasledthepushforthe furtherdevelopmentofmicrowavephotonicstechnologythroughthe presentday.
WhenE/OandO/Etransducerlossesareincludedwiththepropagationlossinthecomparisonbetweencoaxialcableandfiber,the differencesarenotquiteaspronouncedasFigure1.7(a)mightsuggest.Thetotallossinafiberopticlinkandthepropagationlossin RG-401atthreedifferentfrequenciesareplottedinFigure1.7(b) asafunctionofdistance.Includedinthefiberopticlinklossisa 30-dBtransducerlossduetotheE/OandO/Econversionlosses. Becauseoftheexceptionallylowpropagationloss,therewillalways
Silica fiber
bealengthforwhichthefiberopticlinkwilloutperformcoaxial cablefromalossperspective.Thiscrossoverdistancetendstobe higheratlowerfrequencies,butdistancesbetweentensofmetersto afewhundredmetersaretypical.Iflossweretheonlyfactor,long distancelinkswouldalwaysusefiber;however,factorsotherthan lossalsocontributetothedecisionmatrix.Cost,noiseperformance, phasestability,size,immunitytoelectromagneticinterference(EMI), andotherfactorscanallplayarole.Theseadditionalconsiderations cantipthescalestowardfiberopticsevenforveryshortlinks.For example,therelativephasechangeafterpropagatinganopticalfiberis comparedtothatforacoaxialcableusingnormalizedunitsofpartsper million(ppm)inFigure1.8.Coaxialcablecomprisesmanydifferent materialsincludingsolidandstrandedmetals,differentmetaltypes, andvariousdielectricmaterials,allhavingtheirowncoefficientsof thermalexpansion.Thiscausesthegroupvelocityofcoaxialcableto beacomplicatedfunctionoftemperature.Incontrast,opticalfiberis primarilymadefromfusedsilica.Changesinthepropagationdelays withtemperatureareduetothetemperaturedependenciesinboth thephysicalwaveguidelengthandintheindexofrefraction(alsosee Section5.3).Uncoatedfiber,ifitisnotmechanicallyattachedto anothermaterialwithalargethermalexpansioncoefficient,hasan 8ppmchangeindelayperunitlengthperdegreeoftemperature (Hartogetal.1979).Thisincludesboththematerialandwaveguide dimensionaltemperaturedependencies.Thelengthfluctuationisboth verylowandverypredictableoverawidetemperaturerange,solongas thetemperaturedependenciesassociatedwithfibercoatingorcabling

Figure1.8. Relativephasechangeversustemperatureforacoaxialcableandforoptical
COAX cable (Example)
techniquesareminimized.Thispropertycanbeveryadvantageousin systemswherephasestabilityorphasepredictabilityinthelinkisa requirement.
Otheroften-citedadvantagesassociatedwithfiberopticlinksinclude (i)theavailablebandwidthofover10,000GHz,(ii)thereducedsize ofcable,wheresub-millimeterdiametersofopticalfiberscompare to3–10mmorlargerdiametercoaxialcables,(iii)theassociated reductioninweightifonecanminimizetheprotectivematerials neededforcabling,(iv)nonconductiveornonmetallicelements, makingthefiberusefulincaseswhereelectricalisolationbetween transmitterandreceiverisneeded,(v)environmentaladvantagessuch asbeingsubmersibleinfluids,liquidnitrogen,andsoon,and(vi)being impervioustocorrosion.Analogfiberopticlinksaffordadditional less-obviousadvantagesthataredifficultorimpossibletoachieve electrically.Thesefeaturesincludetheabilitytoachievevariabletrue timedelayorRFsignalmultiplexing.Forthelatter,theadvantagesof bundlingsmallfibersintocloseproximitywithinasinglecableallows forareductioninthetemperaturedependencebetweenfiberlinks (Romanetal.1998a).Thisallowsforbetterphasetrackingamong multiplefiberlinks,whichmaybeusedinphasedarrayapplications. Asanalternativetomultiplefibers,theexceptionallywidebandwidth inthefibercanbeusedtomultiplexnumerousRFsignalsontoone fiberlinkusingdifferentopticalcarriers.Suchmultiplexedlinksand theassociatednonlinearitieswerefirststudiedasameanstodistribute cabletelevisionchannels(PhillipsandOtt1999)andlaterforhigher frequencymicrowavesignalsfromantennaarrays(Campilloetal. 2003).Manyoftheseadvantagesandtheirimpactonlinkperformance arediscussedthroughoutthistext.
1.2ANALOGVERSUSDIGITALFIBEROPTICLINKS
TheRFphotonicstechnologythatexiststodaywouldnotbepossibleif itwerenotfortheuseoffiberopticsindigitalcommunicationsystems. Theuseofopticalfibertotransportdigitalbitsofinformationacross theglobehasfundamentallychangedthewaytheworldcommunicates. TheInternetandanassociatedthirstforbandwidthhavenecessitated therapiddevelopmentanddeploymentofmultichannelfiberopticdata linkstosqueezeeverylastbitofinformationcapacityfromasingle strandoffiber.Anadditionalbenefitofthewidespreaduseofopticalfiberfortelecommunicationsistheavailabilityofavastarrayof components,manyofwhichcanbeleveragedformicrowavephotonics.
Economiesofscaleandthecommoditizationofmanyofthesedevices havereducedthecostofanaloglinks,exceptinthosecaseswherespecializedcomponentsareneededthathavenodualuseindigitalsystems. Thedifferencesbetweenanaloganddigitalopticalcommunication linkscanbesubstantial.Inthedigitaldomain,onesandzeroescan beencodedintoopticallinksasgroupsofphotons(anopticalpulse) ortheabsenceofphotons.Whethertheoneorthezeroisassociated totheactualpulseisnotrelevant.Noiseandtiminguncertaintycan corruptthesignalduringmodulation,propagation,and/ordetection. Solongasthenoiseandtiminguncertaintyaresmall,anintegrator canaccuratelydistinguishapulsefromtheabsenceofapulseusing athreshold-likedecisioninagiventimewindow.Inearlyoptical communicationlinks,electricalregeneratorsperiodicallyremovedthe noiseandtiminguncertaintyandregeneratedtheinformation,thus allowingforpropagationoververylongdistances.Incontrast,analog systemsmustaccountforthepresenceoforminimizetheeffects ofthisnoiseandtiminguncertainty.Inmanydigitalsystemstoday, electronicregeneratorsareminimizedoravoidedaltogetherdueto costimplications.Therefore,manylong-hauldigitalcommunication linksareessentiallyanalog,inthesensethatthequantizationoccursat thelinkoutputaftertransmission.
Toexpandonthispoint,Figure1.9showsablockdiagramofatypical long-hauldigitalcommunicationslink.Adigitalsignal(sequenceof onesandzeroes)isinputtoanE/Oconverter.Sincetheattenuation overtheentirelengthofpropagationwouldnotallowfordetection withalowerrorrate,thesignalmustbeamplifiedperiodicallyby severalopticalamplifiers,typicallyerbium-dopedfiberamplifiers (EDFAs).Attheendofthelink,O/Econversionreturnsthewaveform totheelectricaldomainforprocessingwithelectronics.Theinput digitalwaveform(shownonthemiddleleft)isaseriesofonesand zeroesdenotedbytwovoltagestates.ThisissimplyabasebandRF waveformandcanberepresentedbyitsFouriertransformorequivalentlyitsspectralcontentasshowninthelowerleftplot.Aperiodic pseudorandomnon-return-to-zero(NRZ)waveformhasaspectral contentofindividuallineshavinganamplitudeenvelopeofasinc2 (f ) functionwithfrequencyspacingthatistheinverseofthepatternlength (ReddandLyon2004).AlsoshowninFigure1.9arenoiselevels.Atthe outputofthelink,noiseisaddedduetotheamplificationstages.Inthis illustration,thefundamentalclockfrequencyassociatedwiththebit ratehasbeenenhancedasmightoccurwhenasmalllevelofchromatic dispersioninthelinkcausespulsebroadening.Sucha“digital”link
Another random document with no related content on Scribd:
Muistuu moni nuori toivo, kylmä nyt kuin kyinen kaivo.
Herää moni haave heljä, summa nyt kuin suossa möljä.
Lankee ilta ikkunalle, tyhjyys tyhjän akkunalle.
Liekkuu vielä viime loimu: yksinäisen rinnan riemu.
Autuaampi yössä yksin kuin on auringossa kaksin
2. Pahat peijaat.
Haudatahan haaveet sairaat, saapuvat jo juhlavieraat.
Uhoo uksen alta routa, elo, raaka niinkuin rauta.
Astuu rumuus alle orren, pimeys päähän päreenkarren.
Ilma täyttyy inhuudesta, rinta varhaisvanhuudesta.
Painuu pää jo polven varaan, sortuu kaikki kaunis soraan.
Sydän kuolee kultahinen, runo kiurun kaltahinen.
3. Sulkanuoli.
Kiiltää kärki noidan kiron, suihkaa sulkanuoli neron.
Iskee päähän ihmisvaleen, syttää kylät suuret tuleen.
Tarpoo taivaiset ummet, tempaa juuriltansa tammet.
Murhaa monet päivän mietteet, tappaa monet taivaan luotteet.
Kulkee kautta vuosisatain, jäljen öiden, hengen sotain.
Sielut siittää, muodot muuttaa: ampujansa surmaan saattaa.
4. Tähti.
Tuikkii räppänästä tähti niinkuin outo otsalehti.
Paistaa pirttiin himmentyvään, miehen mieleen hämmentyvään.
Kiiluu kautta mustan murheen, eteen keski-öisen erheen.
Lienet tähti Luojan luoma, anna kärsimyksen voima!
Lienet mahti maasta Lemmon, anna armo kuolon kammon!
Että ikävöisin eloon, pyhään pyrkisin ma valoon.
Lapin lasten tanterilta, Turjan tuiman tunturilta.
5. Päätös.
Tahdon nousta taakan alta, ennenkuin on kuolon ilta.
Heittää kuormat tietämisen, kiviriipat taitamisen.
Tahdon alle taivonkannen, asuntoihin ihmis-onnen.
Alle ihalaisen ilman luota kylmän, luota Kalman.
Tahdon tietää, kuka olen. Sitten Tuonen maille tulen.
6. Outo oppi.
Nousi päivä nostamattaan, noidan mieli täyteen mittaan.
Meni puhki taivonkansi, rikki ihmis-onni onsi.
Seinät siirtyi, katto kaatui, velho itse puuksi puutui.
Tuost' on tullut outo oppi Turhaan nousi Turjan Lappi.
Ken on luotu tietäjäksi, jääköön yksin-jäytäjäksi.
Ihmisille ihmistavat, jumalille tuulentuvat.
7. Näky.
Hehkui hälle Hiiden lempi, nousi yöstä noidan impi.
Luja niinkuin luonnon luote, armas niinkuin aamunkoite.
Tahtoi kaksin kanssa noidan käydä kautta sillan kaidan.
Kautta elontuskan tuiman, poikki valheen, puhki soiman.
Halki katinkullan, korun, keskitietä ihmisturun.
Suihkiessa suuren vihan, pistäessä pienen pahan.
8. Haamu.
Kinoksella kylmä liesi: tupa yöllä palaa taisi.
Haamu pankon päässä istuu, huulet liikkuu, silmä kastuu.
Tuikkii päällä aamutähti niinkuin outo otsalehti.
Paistaa poveen hyhmettyvään, vereen velhon jähmettyvään.
Niinkuin ukonnuoli iskee, käymään talvitietä käskee.
Miss' on vaikein vastamahti: totisinta totta kohti.
Pihan poikki pilvilinnan, taakse tavan, yhteiskunnan.
Kavetessa leipäkakun, levetessä töiden tukun.
Töiden tekemättömien, äärtä näkemättömien.
"Se kuitenkin liikkuu!"
En enää pelkää. Yö on haihtunut, ei mua enää hullun houreet vaivaa, on murhe mulla työksi vaihtunut, nään kukat, kummut sekä sinitaivaan kuin ennen kuultavina, kirkkahina; ja veren aallot hyrskyy valtavina, ma tunnen voimaa vaikka vuoret siirtää, taas aatos kantaa, pilvilöitä piirtää, ja käsi sydämellä maailmalle ma lausun, voitetulle voittajalle: se kuitenkin liikkuu!
Kun vieno joutuu keskeen karkean, niin useasti karkeampi voittaa. Ken kuulee ärjyessä ulapan, jos lapsi vaikee. Min' en vaiennut, näin monta sortuvan, en sortunut, ma opin sotalaulut lainehilta ja tarmon julman taivaan jumalilta, voin käyttää kalpaani kuin kanneltain, löin monta iskua ja itse sain: se kuitenkin liikkuu!
Se liikkuu sentään, sydän ylväs tuo, min luulin murtuneen jo hautaan mustaan, se päältään rautapantsarinsa luo, se itkee, nauraa, hehkuu innostustaan. Taas tohdin toivoa, taas tohdin luottaa, taas eespäin nähdä, uutta aikaa uottaa, nään tuhat silmissäni tulikerää, maailmat syntyy, sydänhaaveet herää, ja vaikka pettäis kaikkein muiden usko, maa pimeneisi, haihtuis huomenrusko, se kuitenkin liikkuu!
Te tuokaa tänne Lapin tunturi ja sydän tää sen alle haudatkaatte, se senkin alla vielä liikkuvi, maanjäristykset tuntea te saatte; se polkekaa, se pistää kantapäähän, se jäätäkää, niin kukat kasvaa jäähän, se pankaa pihteihin, se katkoo pihdit, se vangitkaa, niin vaikee vankinihdit, ja voittolauluin kivikaaret kaikaa, kun irti, ihannoiden uutta aikaa, se kuitenkin liikkuu!
Ma tiedän kyllä: tulee kuolema
ja elonlangan armaan poikki leikkaa, voi olla kylmä, valju huomenna se mies, mi tänään vereväisnä veikkaa, maan alla maata, päällä multaa syli; mut yli haudan, kuolemankin yli käy Vapaus, jolle sykki sydänkulta, se elää, henkii, vaikka painaa multa, se palaa liekin lailla syksy-öissä, tyrannit pelkää, mutta kansain töissä se kuitenkin liikkuu!
Ah, isänmaani, armas aatoksein, suruni, riemuni ja itku illan, ma sulle veisaan virttä Galilein, kun tuuli leikkivi yön suortuvilla, maa, metsä huokaa, nurmen kaste lankee. Sua herättääkö edes hetki ankee?
En usko. Yössä myrkky-yrtit itää, maan ohjaksia henget pienet pitää. Mut alla tuskan, alla tuhmuudenki ja sorron, pimeyden, tään kansan henki se kuitenkin liikkuu!
1908.
Ikävöi, ihminen!
Ikävöi, ihminen, kaipaa kauneinta muiston ja toiveen, päiviä lapsuuden, aikoja armaita hempeän hoiveen, isää ja äitiä, veljiä, siskoja vierailla mailla, untesi neitiä, häntä, mi pois meni hämärien lailla!
Muistatko aikaa, milloin sun aamusi nous elon kultaan, lempesi taikaa, riemuja, ammoin jo menneitä multaan, retkiä marjassa, laineita soiluvan salmen ja lahden, käyntejä karjassa, kesä-yön ääniä yksin ja kahden?
Kaipaatko milloin pois ajan, paikan ja kuolonkin taaksi, istuen illoin, tuntien hiljaa maatuvas maaksi,
kun kaikki haipuu kaunis niin kauas, ja päämäärä pyhä
vitkahan vaipuu, vaikka sa korkeelle kurkotat yhä?
Nauratko koskaan silloin sa naurua ivan ilkamoivan?
Säikytkö, joskaan kuule et muuta kuin oman äänes soivan?
Painatko pääsi silloin sa peljäten, kulmilta harmaan?
Särkyykö jääsi muistosta, toiveesta mennehen, armaan?
Itketkö, ihminen, silloin sa kauneinta tiedon ja tunnon, hienointa sydämen, herkintä pyrkivän pyyteen ja kunnon?
Kuuletko hukkaan juoksevan hetkiä mittaavan hiekan?
Päivies kukkaan näätkö jo tähtäävän kuuraisen miekan?
Kyynelten armo syntymälahjoista laupein on meille, surun suuren tarmo kylvetty siunaten sydämien teille:
kärsien kestät, silloin kun nauttien sortuisit ammoin, itkien estät itsesi vallasta tyhjyyden kammoin.
Ikävöi, ihminen, taa ajan, paikan ja Tuonenkin laineen!
Rannalta tuskien nää pyhä tähtesi yli yön ja aineen!
Kultainen helää ihmisen ikävöivän sielussa kieli.
Etsimys elää, maaksi kun maatuu jo tyytyvän mieli. 1908.
Luonnon luotteita (1908).
Maan virsi. Kehto ja hauta, harmaja valta muhkean mullan, sateen ja paahtavan päivyen kullan, nouseva norosta, turpehen alta, antaja elon, kantaja ikuisen kuoleman pelon.
Maa! olet mahtaja sykkivän suonen, kukkivan kedon, vierivän villan ja juoksevan pedon, peri-isä pellon ja tuttava Tuonen, jumaluus jyvän, kaitsija kasvun huonon ja hyvän.
Maa! sulle kiitosta kantele soikoon, suvilaulu Suomen, tuoksussa juhannuskoivun ja tuomen, rikkaana riemuita virtemme voikoon, elonhuolet voittaa, kauneuden korkean sydänkieltä soittaa:
"Maa iki-heilivä, Maa hius-häilyvä, kesäpäivän-päilyvä, tuulessa kultaisten laihojen lainehet, emo syli-lempeä, emo sydän-hempeä, luo meihin lämpöä, suo meissä kypsyä ajan alku-ainehet!