Jean Pierre JOLY

Page 1

JP Joly 11/09

1


Institut National de l’Energie Solaire

270 270 scientists scientists 15000 15000 m2 m2 40 40 patents/ patents/year year 100 100 industrial industrial partner partner 30 30 M M€€ of of contracts contracts/y /y

JP Joly 11/09

2


Photovoltaics activities Solar Mobility (EV) Rewables and Smart Grids Photovoltaics and systems

Modules and System Certification

Modules encasulation Solar cells Silicon feedstock and wafers

JP Joly 11/09

3


Solar thermal and Building

Experimentation and simulation

LYNX II LYNX

CSP

Building components (enveloppe and Comfort)

Solar Thermal testing

JP Joly 11/09

4


What materials and technologies for several hundred GWp PV capacities 1. 2. 3.

The context of PV development KWh cost is not linked only to the Wp cost Capacity of existing technologies to reach the target a)

Thin films i. Chalcogenides ii. a-Si and multijunctions iii. Organic

b) c)

4. 5.

Wafer based Silicon CPV and III-Vs

Possible breakthrough: current materials but going to 3D What perspectives?

JP Joly 11/09

5


1.

JP Joly 11/09

The context of PV development

6


A strong market growth expected and pushed by incentives in the short term Present Market still very small compared to what it will be

EPIA scenarii JP Joly 11/09

7


A key enabler: the cost reduction speed

sourceEPIA 2009

?

?

How to continue and up to where? JP Joly 11/09

8


A reference to an other market: Flat Panel displays

Here: Just incremental innovation and manufacturing knowledge

JP Joly 11/09

9


PV will use a large quantity of materials soon (2020 projection )

JP Joly 11/09

10


2.

JP Joly 11/09

KWh cost is not linked only to the module Wp cost

11


A large cost share devoted to installation and BOS 3,50 3,00

€/ W

~3,5 €/W

From Dominique Sarti (INES) Si-a (1.1 €/W)

2,50 2,00

~3€/W Si-c (1.3 €/W) Roof BIPV (3 kW)

1,50 1,00

PV farm ( 1MW)

0,50 0,00 80

90 100 110 120 130 140 150 160 170 180 190 200 210

W/m² Module

PV BOS versus Power density delivered per each module Estimated Thin film Si module cost (€/W) in 2020 (efficiency 12%) Estimated c-Si module cost (€/W) in 2020 (efficiency 18 %)

Increase of module Conversion efficiency is essential Importance of BOS cost reduction too JP Joly 11/09

12


x

1.0

Average differene between module and ambient temperature 30 as a function of irradiance level

2.5

0.8

2.0

0.6

1.5

c-Si CdTe CIS

0.4 0.2

m-Si a-Si 2j a-Si 3j

1.0 0.5 0.0

0.0 0.0

0.5 1.0 Isc/IscSTC (number of Suns S)

Climate+ Module integration

Distribution function of irradiation multi-crystalline module at Cadarache (Provence)

3.0

D is trib u tio n fu n c tio n o f irra d ia tio n

Irradiance coefficient@25°C

x

Illumination

0.0

Technological performance

0.2

0.4 0.6 0.8 Irradiance in Suns

1.0

1.2

Module temperature (°C)

Technology

versus irradiance for six technologies

25 20 15 10 5 0 -50.0

0.2

0.4

0.6

0.8

1.0

1.2

Irradiance in Suns

Probability density site illumination

Module Integration

Productivity of PV systems Lab1

Lab2

Lab3

….Does not only depend on module nominal power

INES

5 Error %

0 -5 -10 -15 -20

JP Joly 11/09

CIS 6

CIS 16

CIS 17

CIS 20

13


Standard roofs

Flaat roofs

Solar farms

Buildin Integration

Stand alone systems

Market segments: some technologies more adapted to a given one

Facades

Parkings

JP Joly 11/09

14


3.

JP Joly 11/09

Capacity of existing technologies to reach the target

15


Available Technologies

Key material requirements: Eg: bandgap matched with Solar spectrum short absorption length (Îą) and carrier diffusion (L) larger than Îą JP Joly 11/09

16


Very long maturing

c-Si

Cu2S a-Si

III-Vs

Dye

Organic

CdTe CIGS

JP Joly 11/09

17


3a. Thin films

JP Joly 11/09

18


Much less fabrication steps than Silicon

CIS 300 x 1200 mm 13 steps 1 plant

JP Joly 11/09

c-Si 156 x 156 mm 25 steps 3 plants

19


The chalcogenide route Best commercial modules/ best lab results (%)

12/ 20.5

11/ 16.5

JP Joly 11/09

20


CIGS : the most promising Advantages : – Very good efficiency proven at lab scale – Not sensitive to native defects and GB

Residual difficulties: – Potential In resource availibility and sensitivity to supply – Toxic matérial CdS ( remplacement by ZnS) – Having both low cost deposition technique and High efficiency still not proven – 4 deposition techniques used by the manufacturers

JP Joly 11/09

21


CIGS deposition technique still not fixed

JP Joly 11/09

22


An alternative CZTS (kesterite) appearing

With no material availability concerns and which can be deposited using ÂŤ printing or dipping Âť technologies JP Joly 11/09

23


Amorphous Silicon and related multijunctions Light Trappings between Layers ZnO Glass

aSi:H

µcSi:H

SiO (PhosphorusDoped Interlayer)

-Thickness and quality of µc layer ZnO)/Ag

-Optical confinement and structures TCOs

Best single junction in production: 7% Best tandem: 10% JP Joly 11/09

24


Âľ-c Silicon quality and dep rate still an issue

From IMT Neuchatel

JP Joly 11/09

25


Material abundance and extraction cost

JP Joly 11/09

26


OPV progressing rapidly Organiques Pure Organic Nanocristaux Hybrid Organic/ Nanocristals TiO2 sensibilisĂŠ (solide)

+ 0.5%/year

Annonce Siemens P3HT/PCBM

Cellule tandem Heeger

P3HT/PCBM

Konarka/M. Leclerc Plextronics

+ LiF

Toray Konarka

MDMO-PPV/PCBM

CEA

CdTe/CdSe

P3HT/Nanorods CdSe

JP Joly 11/09

P3HT/Tetrapodes CdSe

27


3b. Wafer based Si: the workhorse of PV

JP Joly 11/09

28


PV c-Si Cost structure Silicium charge

Module

30%

28%

Cellule

Lingot

14%

Wafer

18%

10%

What margins left for cost reduction?

JP Joly 11/09

29


c-Si

Decrease of Silicon cost and consumption is essential while maintaining the quality

JP Joly 11/09

30


Use new routes for Silicon purification whith much less energy and lower cost

PHOTOSIL

Melting (Furnace 1) + segrĂŠgation Si UMG-2 Plasma Purification (Furnace 2) Si SoG

Segregation

Direct Ingot Casting

SoG Si (Feedstock)

Si PV Ingots

JP Joly 11/09

31


Very good efficiency with Photosil approach and with large B et P content - LID reduced from 5% to 1,5% absolute - [B] = 1ppmw Much reduced cost of purification

It is possible to use a not so pure Silicon for PV JP Joly 11/09

32


Reduced cost for casting Electromagnetic Casting: French Company EMIX approach

Cells with efficiency approaching 16%

JP Joly 11/09

33


Get read of sawing ? (1)

JP Joly 11/09

34


Get read of sawing ? (2)

rendement de conversion (%)

Rendement de conversion (% ) Si cristallin en fonction de l'épaisseur (µm) : Application aux couches minces recristallisées

15,0

150

100

50

20 10 5

10,0 2

5,0

0,0

0

0

20

40

60

80

100

120

140

160

épaisseur (µm)

From Henley (SiGen) JP Joly 11/09

35


Increase the efficiency while keeping low cost Cell

Optical Surface loss

Metal optical loss

Surface recomb

Volume recomb

Resistive losses

Record η = 24.7%

3%

3%

10%

0%

2%

Std: Si mono η = 17.6%

5%

11%

20%

0%

5%

Std: mc-Si η = 16.1%

8%

11%

16%

6%

6%

Std: UMG η = 13.5%

8%

11%

12%

20%

6%

Loss/η η = 29.8%

17,5 17

efficiency (%)

16,5 16 15,5 15 14,5

mc-Si

Mono-Si

14 13,5 13

1

JP Joly 11/09

10

100

Carrier lifetime (µs)

1000

36


Approaches appearing at the Industrial scale • Example of results for two kinds of advanced cells and modules:

2/ RCC

1/HET Structure

η Lab. (%)

η Prod. (%)

Cell

Module

Cell

Module

HET (Sanyo)

23.0

20.6

19.5

17.1

RCC (SunPower)

23.4

20.1

22.4

18.1

Standard (Sharp, SolarWorld…)

_

_

_

15

INES working on HET: 19,3 % on large wafers JP Joly 11/09

37


Increase of Conversion efficiency while using very thin wafers

JP Joly 11/09

38


High efficiency PV cells : heterojunction cells (HET)

Evolution efficiency of heterojunction Evolutionof du rendement des cellules PV hétérojonction PV cells 22

Evolution du rendement des cellules PV hétérojonction 22

20.5%

20

20 18

14

12

Juillet

Mai

Juin

Avril

Mars

Février

Janvier

Décembre

Novembre

Août

Octobre

Septembre

Mai

Juin

Juillet

Avril

Mars

Fevrier

10

16

Janvier

Rendement max (ù)

16

18

14

12

Juillet

Juin

Mai

Avril

Mars

Février

Janvier

Décembre

Novembre

Octobre

Septembre

2009

Août

Juillet

Juin

Mai

Avril

Mars

Fevrier

Janvier

10

2010 18.5 %

RECORD, July 2010: CZ, 300µm

JP Joly 11/09

37

713

77,7

20,5 Fraunhofer certification

39


Example of low thickness high efficiency cell: SANYO HIT

Very low cell efficiency degradation: efficiancy in the 21% at the research lavel on 70 Âľm thick wafers

JP Joly 11/09

40


Wafer based Si versus thin films: Market share and evolution ?

Share of thin film progressing but more slowly Strong growth for both anyhow

JP Joly 11/09

41


A key for any technology implementation: highly productive machines

AMAT AMAT PECVD PECVD cluster cluster

Casting Casting furnace furnace ECM ECM for for 800 800 kg kg ingots ingots

Towards fabrication line of about GW capacities JP Joly 11/09

42


4.

JP Joly 11/09

CPV and III-Vs

43


III-V cells: State of the art

Effiencies at labscale: 42,3% at 600 sun (US) 35,8% at 1 sun (Sharp)

JP Joly 11/09

44


Towards Quadruple junctions and use of molecular bonding

JP Joly 11/09

45


Eventually quantum wells or dots

JP Joly 11/09

46


5.

JP Joly 11/09

Possible Breakthrough: Current materials but going to 3D

47


Going to 3D structures with a mix of optical trapping and advanced material structuring

JP Joly 11/09

48


Use of Silicon rods 67 Âľm long Si rods with 4.2% packing density Equivalent to 2,8 Âľm thick silicon (material quantity)

Can get good efficiencies comparable with thick wafer

JP Joly 11/09

49


Experimental implementation of 3D concepts with CdS/CdTe SNOP Solar NanO Pilar

JP Joly 11/09

50


Use of quantum confinement and nanodots to adapt the spectral response

JP Joly 11/09

51


What perspectives in Conclusion • Still a lot of room with existing technologies and in particular Wafer Based silicon to reduce its cost • Chalcogenides have big chance to take the leads of thin films and to progress in terms of market share but precise technology still unclear • A key point will be to reduce the materials consumption keeping the 2D approach first and then going to 3D

JP Joly 11/09

52


Thank you for your attention

JP Joly 11/09

53


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.