Issuu on Google+

French-Israeli Workshop on Renewable Energies – Tel Aviv, Nov. 10-11th

SOLID HYDROGEN : THE UNIQUE SOLUTION FOR INTERMEDIATE AND MASS ENERGY STORAGE Daniel FRUCHART IEA Expert – IAEA Observer

Directeur de Recherche Emérite CNRS Institut Néel – BP 166, 38042 Grenoble Cedex 9, France daniel.fruchart@grenoble.cnrs.fr

Research Manager McPhy Energy - 26190 La Motte Fanjas, France - www.mcphy.com


Fuel = Hydrogen

ICE

PEMFC SOFC

Thermal engine

Low temperature FC

High temperature FC

Hydrogen storage Reforming

Gasoline Gasoil/gas High pressure gas Cryogenic liquid Solid hydrides 30 to 70 MPa !! CO2 emission

20 K !!

Risks & Energy consuming

eg : MgH2 7.6 w%


Mass and Volume Densities


Reversible Metal Hydrides – Safe storage

H2

Metal

kg H2 / m3

weight %

H2 gas (700 b)

62

100

H2 liq. (20 K)

70

100

LaNi5H6

123

1.4

Ti-V-Cr

205

3.7

AlNaH4

96

7.5

MgH2

106

7.6

Low pressure + endothermal desorption

– High volume density – High purity hydrogen

Hydride


BCC type alloys

Relative stability : Experimental & Theoretical Approaches

BCC

Hystory 100

AB2

P (bar)

10

1

T i066 0,1

T i07 T i09

Cr1.8Ti

Cr2 Ti

T i0833

-1954.72 -0,8

-0,6 Wt% loss

-0,4

-0,2

-1945.66

0

PCT (H/M vs pressure)

-1954.76

-1945.68

Etot (Ry)

-1

Etot (Ry)

0,01 -1,2

bcc-so -1954.80

BCC alloys form FCC hydrides !

bcc

-1954.84 10

11

12

AB2 13

-1945.70

bcc

-1945.72 10

14

11

AB2 12

13

14

a (a.u.)

a (a.u.)

FLAPW & KKR-CPA band structure calculations Martensitic transformation

Cr1.97V0.03Ti -1934.5

-1948.72

Ti0.7V0.9Cr1.4H3x -1935.0

bcc -1948.76

Etot (Ry)

BCC

Etot (Ry)

FCC

-1948.80

AB2

-1935.5

-1936.0

fcc

bcc 11

12

a (a.u.)

Martensitic transformation

13

-1936.5 0.0

0.5

1.0

x = H/M

1.5


BCC based alloys : TixVyCr1-x-y Composé à base Ti0.33V1.27Cr1.4 à 18°C (291 K) Composé à base TiV0.8Cr1.2 à 15°C (288 K) Composé à base Ti0.5V1.9Cr0.6 à 18°C (291 K)

0.1

2

PH (MPa)

1

Effective reversible capacity > 2 w%

0.01 0.0

0.5

1.0

1.5

2.0

2.5

3.0

H (% massique)

3.5

4.0


Fast reactivity of TixVyCr1-x-y alloys to hydrogen when composite with few % Zr-Ni additives Reactive bulk microstructure

Decrepited powders ~ 50 µm

TiV0.8Cr1.2 + 4 wt% Zr7Ni10

10

volume (%)

8 6 4 2 0 1

10 100 particule size (µm)

100µm

Specific process : Patent W0 2007096527 Pseudo-cellular microstructure for a fast intergranular hydrogen diffusion and homogeneous powder size decrepitation


Targets : nomade and mobile applications HyCan (CNRS – McPHy – PaxiTech – Boxal - AdVAnta) Development of small cans to H-supply micro fuel cells

FUI

(Peq < 13 bars at 50°C)

MODERNHy’T (CNRS - CEA-Liten - G-INP – SNCF - PSA) Hybride storage for automotive applications (Peq > 100 bars : gas + metal hydride)


Mg vs MgH2 tetragonal

Mg is the best ?

So called difficulties with Mg/MgH2 H-reaction kinetic are said low, butâ&#x20AC;Ś Temperature of reaction is high, butâ&#x20AC;Ś

Mg is the 7th most abundant element on earth Mg has ~ same cost as Al Mg metallurgy is easy Mg is bio-compatible Mg is re-cyclable MgH2 is monometal hydride system: no demixtion MgH2 uptake is 7.6 w%

Tank : 5 kg H2 = 300 km

160 l 40 l

357 kg

47 l

66 kg

71 l

5 kg

350 5 kg


1 - Metal catalyst deposits on BM MgH2 particles 5

5

•1h •5h • 10 h • 20 h

4 H (%wt.)

H (%wt.)

4 3 2

3 2 1

1 0

0 0

2

4 6 temps (min)

8

0

10

5

10

15 20 25 temps (min)

30

35

40

Energetic Ball-Milling is a common method used to prepare reactive powders : homogeneous nano-crystallites, high density of defects, doping with metal type catalysts® Absorption 240 C – 1 MPa kPa

6

5

5

4

4

3

3

2

2

1

1

0

@ McPhy Energy SA France

Désorption 300°C

6

%H

%H

• 1 % at V • 3 % at V • 5 % at V

Desorption 300 C – 10

Abs 240°C

0 0

5

10

15

temps (mn)

20

25

30

0

10

20

30 t (mn)

40

50


Daniel FRUCHART