The Structure of Idempotents in Neutrosophic Rings and Neutrosophic Quadruple Rings

Page 1

TheStructureofIdempotentsinNeutrosophicRings andNeutrosophicQuadrupleRings

YingcangMa 1,*,XiaohongZhang 2,FlorentinSmarandache 3 andJuanjuanZhang 1

1 SchoolofScience,Xi’anPolytechnicUniversity,Xi’an710048,China;20080712@xpu.edu.cn

2 SchoolofArtsandSciences,ShaanxiUniversityofScience&Technology,Xi’an710021,China; zhangxiaohong@sust.edu.cn

3 DepartmentofMathematics,UniversityofNewMexico,Gallup,NM87301,USA;smarand@unm.edu

* Correspondence:mayingcang@xpu.edu.cn

Received:12September2019;Accepted:5October2019;Published:8October2019

Abstract: Thispaperaimstorevealthestructureofidempotentsinneutrosophicringsand neutrosophicquadruplerings.First,allidempotentsinneutrosophicrings R ∪ I aregiven when R is C, R, Q, Z or Zn.Secondly,theneutrosophicquadruplering R ∪ T ∪ I ∪ F is introducedandallidempotentsinneutrosophicquadruplerings C ∪ T ∪ I ∪ F , R ∪ T ∪ I ∪ F , Q ∪ T ∪ I ∪ F , Z ∪ T ∪ I ∪ F and Zn ∪ T ∪ I ∪ F arealsogiven.Furthermore,thealgorithms forsolvingtheidempotentsin Zn ∪ I and Zn ∪ T ∪ I ∪ F foreachnonnegativeinteger n are provided.Lastly,asageneralresult,ifallidempotentsinanyring R areknown,thenthestructure ofidempotentsinneutrosophicring R ∪ I andneutrosophicquadruplering R ∪ T ∪ I ∪ F can bedetermined.

Keywords: neutrosophicrings;neutrosophicquadruplerings;idempotents;neutrosophicextended tripletgroup;neutrosophicset

1.Introduction

ThenotionsofneutrosophicsetandneutrosophiclogicwereproposedbySmarandache[1]. Inneutrosophiclogic,everypropositionisconsideredbythetruthdegree T,theindeterminacy degree I,andthefalsitydegree F,where T, I and F aresubsetsofthenonstandardunitinterval ]0 ,1+ [= 0 ∪ [0,1] ∪ 1+

Usingtheideaofneutrosophicset,somerelatedalgebraicstructureshavebeenstudiedinrecent years.Amongthesealgebraicstructures,byextendingclassicalgroups,theneutrosophictripletgroup (NTG)andtheneutrosophicextendedtripletgroup(NETG)havebeenintroducedinrefs.[2–4].As anexample,paper[5]showsthat (Zp1 p2 pt , ·) isnotonlyasemigroup,butalsoaNETG,where · theclassicalmodmultiplicationand p1, p2, , pt aredistinctprimes.Afterthenotionswereput forward,NTGandNETGhavebeencarriedoutin-depthresearch.Forexample,theinclusion relationsofneutrosophicsets[6],neutrosophictripletcoset[7],neutrosophicdupletsemi-groups[8], AG-neutrosophicextendedtripletloops[9,10],theneutrosophicsettheorytopseudo-BCIalgebras[11], neutrosophictripletringandaneutrosophictripletfield[12,13],neutrosophictripletnormedspace[14], neutrosophicsoftsets[15],neutrosophicvectorspaces[16],andsoon.

Incontrasttotheneutrosophictripletring,theneutrosophicring R ∪ I ,whichisaringgenerated bythering R andtheindeterminateelement I (I2 = I),wasproposedbyVasanthaandSmarandache in[17].Theconceptofneutrosophicringwasfurtherdevelopedandstudiedin[18–20].

Asaspecialkindofelementinanalgebraicsystem,theidempotentelementplaysamajorrole indescribingthestructureandpropertiesofthealgebra.Forexample,Booleanringsrefertoringsin whichallelementsareidempotent,cleanrings[21]refertoringsinwhicheachelementisclean(an Symmetry 2019, 11,1254;doi:10.3390/sym11101254 www.mdpi.com/journal/symmetry

symmetry SS
Article

elementinaringisclean,ifitcanbewrittenasthesumofanidempotentelementandaninvertible element),andAlbelringisaringifeachelementintheringiscentral.Fromthesewecanseethatsome ringscanbecharacterizedbyidempotents.Thus,itisalsoquitemeaningfultofindallidempotentsin aring.Inthispaper,theidempotentsinneutrosophicringsandneutrosophicquadrupleringswill bestudiedindepth,andallidempotentsinthemcanbeobtainediftheidempotentsinRareknown. Inaddition,therelationshipbetweenidempotentsandneutralelementswillbegiven.Theelements ofeachNETGcanbepartitionedbyneutrals[10].Therefore,asanapplication,if R = F,where F isanyfield,wecandividetheelementsof R ∪ I (or R ∪ T ∪ I ∪ F )byidempotents.Asanother application,inpaper[22],theauthorsexploretheidempotentsandsemi-idempotentsinneutrosophic ring Zn ∪ I andsomeopenproblemsandconjecturesaregiven.Inthispaper,wewillanswerpartial openproblemsandconjecturesinpaper[22]andsomefurtherstudiesarediscussed.

Theoutlineofthispaperisorganizedasfollows.Section 2 givesthebasicconcepts.InSection 3, theidempotentsinneutrosophicring R ∪ I willbeexplored.Forneutrosophicrings Zn ∪ I , C ∪ I , R ∪ I , Q ∪ I and Z ∪ I ,allidempotentswillbegiven.Moreover,theopenproblemand conjecturesproposedinpaper[22]aboutidempotentsinneutrosophicring Zn ∪ I willbesolved. InSection 4,theneutrosophicquadruplering R ∪ T ∪ I ∪ F isintroducedandallidempotentsin neutrosophicquadruplerings C ∪ T ∪ I ∪ F , R ∪ T ∪ I ∪ F , Q ∪ T ∪ I ∪ F , Z ∪ T ∪ I ∪ F and Zn ∪ T ∪ I ∪ F willbegiven.Finally,thesummaryandfutureworkispresentedinSection 5.

2.BasicConcepts

Inthissection,therelatedbasicdefinitionsandpropertiesofneutrosophicring R ∪ I andNETG areprovided,thedetailscanbeseenin[3,4,17,18].

Definition1. ([17,18])Let (R, +, ) beanyring.Theset

R ∪ I = {a + bI : a, b ∈ R} iscalledaneutrosophicringgeneratedby R and I.Let a1 + b1 I, a2 + b2 I ∈ R ∪ I ,Theoperators ⊕ and ⊗ on R ∪ I aredefinedasfollows:

(a1 + b1 I) ⊕ (a2 + b2 I)=(a1 + a2)+(b1 + b2)I, (a1 + b1 I) ⊗ (a2 + b2 I)=(a1 a2)+(a1 b2 + b1 a2 + b1 b2)I.

Remark1. Itiseasytoverifythat ( R ∪ I , ⊕, ⊗) isaring,so R ∪ I isnamedbyaneutrosophicring isreasonable.

Remark2. Itshouldbenotedthattheoperators +, · aredefinedonring R and ⊕, ⊗ aredefinedonneutrosophic ring R ∪ I .Forsimplicityofnotation,wealsouse +, · toreplace ⊕, ⊗ onring R ∪ I .Thatis a + b also means a ⊕ b if a, b ∈ R ∪ I a · b alsomeans a ⊗ b if a, b ∈ R ∪ I .Forshort a · b denotedby ab and a · a denotedbya2

Example1. Z ∪ I , Q ∪ I , R ∪ I and C ∪ I areneutrosophicringsofinteger,rational,realandcomplex numbers,respectively. Zn ∪ I isneutrosophicringofmodulointegers.Ofcourse, Z, Q, R, C and Zn are neutrosophicringswhenb = 0.

Definition2. ([17,18])Let R ∪ I beaneutrosophicring. R ∪ I issaidtobecommutativeif ab = ba, ∀a, b ∈ R ∪ I

Inaddition,ifthereexists 1 ∈ R ∪ I suchthat 1 a = a 1 = a forall a ∈ R ∪ I thenwecall R ∪ I a commutativeneutrosophicringwithunity.

Symmetry 2019, 11,1254 2of15

Definition3. ([17,18])Anelement a inaneutrosophicring R ∪ I iscalledanidempotentelementif a2 = a.

Definition4. ([3,4])Let N beanon-emptysettogetherwithabinaryoperation ∗.Then, N iscalleda neutrosophicextendedtripletsetifforany a ∈ N,thereexistsaneutralof“a”(denoteby neut(a)),andan oppositeof“a”(denotebyanti(a)),suchthatneut(a) ∈ N,anti(a) ∈ Nand:

a ∗ neut(a)= neut(a) ∗ a = a, a ∗ anti(a)= anti(a) ∗ a = neut(a)

Thetriplet (a, neut(a), anti(a)) iscalledaneutrosophicextendedtriplet.

Definition5. ([3,4])Let (N, ∗) beaneutrosophicextendedtripletset.Then, N iscalledaneutrosophic extendedtripletgroup(NETG),ifthefollowingconditionsaresatisfied:

(1) (N, ∗) iswell-defined,i.e.,foranya, b ∈ N,onehasa ∗ b ∈ N. (2) (N, ∗) isassociative,i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) foralla, b, c ∈ N. ANETGNiscalledacommutativeNETGifforalla, b ∈ N, a ∗ b = b ∗ a.

Proposition1. ([4]) (N, ∗) beaNETG.Wehave: (1)neut(a) isuniqueforanya ∈ N. (2)neut(a) ∗ neut(a)= neut(a) foranya ∈ N. (3)neut(neut(a))= neut(a) foranya ∈ N.

Proposition2. ([10])Let (N, ∗) isaNETG,denotethesetofalldifferentneutralelementin N by E(N).For anye ∈ E(N),denoteN(e)= {x|neut(x)= e, x ∈ N}.Then: (1)N(e) isaclassicalgroup,andtheunitelementise. (2)Foranye1, e2 ∈ E(N), e1 = e2 ⇒ N(e1) ∩ N(e2)= ∅ (3)N = e∈E(N) N(e).i.e., e∈E(N) N(e) isapartitionofN.

3.TheIdempotentsinNeutrosophicRings

Inthissection,wewillexploretheidempotentsinneutrosophicrings R ∪ I .If R is Z, Q, R, C or Zn,allidempotentsinneutrosophicrings Zn ∪ I , C ∪ I , R ∪ I , Q ∪ I or Z ∪ I willbegiven. Moreover,wecanalsoobtainallidempotentsinneutrosophicring R ∪ I ifallidempotentsinany ring R areknown.Asanapplication,theopenproblemandconjecturesabouttheidempotentsof neutrosophicring Zn ∪ I inpaper[22]willbesolved.Moreover,anexampleisgiventoshowhowto usetheidempotentstogetapartitionforaneutrosophicring.Thefollowingpropositionrevealthe relationofaneutralelementandanidempotentelement.

Proposition3. Let G beanon-emptyset, ∗ isabinaryoperationon G.Foreach a ∈ G, a isidempotentiffitis aneutralelement.

Proof. Necessity:If a isidempotent,i.e., a ∗ a = a,fromDefinition 4,whichshowsthat a hasneutral element a andoppositeelement a,so a isaneutralelement.

Sufficiency:If a isaneutralelement,fromProposition 1(2),wehave a ∗ a = a,thus a isidempotent.

Theorem1. Thesetofallidempotentsinneutrosophicring C ∪ I , R ∪ I , Q ∪ I or Z ∪ I is {0,1, I,1 I}.

Proof. Wejustgivetheprooffor R ∪ I ,andthesameresultcanbeobtainedfor C ∪ I , Q ∪ I or Z ∪ I

Let a + bI ∈ R ∪ I .If a + bI isidempotent,so (a + bI)2 = a + bI,whichmeans

Symmetry 2019, 11,1254 3of15

a2 = a 2ab + b2 = b (1)

From a2 = a,wecanget a = 0 or a = 1.When a = 0,from 2ab + b2 = b,wecanget b = 0 or b = 1.Thatis 0 and I areidempotents.When a = 1,from 2ab + b2 = b,wecanget b = 0 or b = 1 Thatis 1 and 1 I areidempotents.Thus,thesetofallidempotentsofneutrosophicring R ∪ I is {0,1, I,1 I}

Theabovetheoremrevealsthatthesetofallidempotentsinneutrosophicring R ∪ I is {0,1, I,1 I} when R is C, R, Q or Z.Foranyring R,wehavethefollowingresults.

Proposition4. IfaisidempotentinanyringR,thenaIisalsoidempotentinneutrosophicring R ∪ I

Proof. If a ∈ R isidempotent,i.e., a2 = a,so (aI)2 =(0 + aI)(0 + aI)= a2 I = aI,thus, aI isalso idempotentinneutrosophicring R ∪ I

Proposition5. Inneutrosophicring R ∪ I ,thena aIisidempotentiffaisidempotent.

Proof. Necessity:If a aI isidempotent,i.e., (a aI)2 = a aI,so (a aI)2 =(a aI)(a aI)= a2 2aI + a2 I = a2 +(a2 2a)I = a aI,whichmeans a2 = a and a2 2a = a.Thus,wehave a2 = a,so a isidempotent.

Sufficiency:If a isidempotent,so (a aI)2 = a2 +(a2 2a)I = a aI,thus a aI isidempotent.

Theorem2. Inneutrosophicring R ∪ I ,let a + bI ∈ R ∪ I ,then a + bI isidempotentiff a isidempotent inRandb = c a,wherecisanyidempotentelementinR.

Proof. Necessity:If a + bI isidempotent,i.e., (a + bI)2 = a + bI,so (a + bI)2 = a2 +(2ab + b2)= a + bI,whichmeans a2 = a and 2ab + b2 = b.From a2 = a,wecanget a isidempotent.From 2ab + b2 = b and a2 = a,wecanget (b + a)2 = b2 + 2ab + a2 = b + a,so b + a isalsoidempotentin R, denotedby c,so b = c a.

Sufficiency:If a and c areanyidempotentsin R,let b = c a,so (a + bI)2 =(a +(c a)I)2 = a2 +(2a(c a)+(c a)2)I = a2 +(2ac 2a2 + c2 2ac + a2)= a +(c a)I = a + bI,thus a + bI isidempotent.

Theorem3. Ifthenumberofdifferentidempotentsinring R is t,thenthenumberofdifferentidempotentsin theneutrosophicring R ∪ I ist2

Proof. Ifthenumberofidempotentsin R is t andlet a + bI ∈ R ∪ I isidempotent,sofromTheorem 2, wecaninferthat a isidempotentin R,i.e., a has t differentselections.When a isfixed,set b = c a, where c isanyidempotentin R and c alsohas t differentselections,whichmeans b has t different selections.Thus, a + bI has t t = t2 differentselections,i.e.,thenumberofallidempotentsin R ∪ I is t2

Fromtheaboveanalysis,foranyring R,allidempotentsin R ∪ I canbedeterminedifall idempotentsin R areknown.Inthefollowing,wewillexploreallidempotentsinneutrosophicring Zn ∪ I ,i.e.,when R = Zn

Theorem4. ([5])Inthealgebrasystem (Zn, ) (seeAppendix A), istheclassicalmodmultiplication,foreach a ∈ Zn,ahasneut(a) andanti(a) iff gcd(gcd(a, n), n/gcd(a, n))= 1

Symmetry 2019, 11,1254 4of15

Theorem5. ([5])Foranalgebrasystem (Zn, ) and n = p k1 1 p k2 2 p kt t ,whereeach pi (i = 1,2, , t) isa prime,thenthenumberofdifferentneutralelementsin Zn is 2t

Remark3. FromProposition 3 andTheorem 5,wecaninferthatthenumberofallidempotentsin Z p k1 1 p k2 2 pkt t isalso 2t

Example2. For (Z36, ), n = 36 = 2232.FromTheorem 5,thenumberofdifferentneutralelementsin Z36 is 22 = 4.Theyare:

(1) [0] hastheneutralelement [0] (2) [1], [5], [7], [11], [13], [17], [19], [23], [25], [29], [31] and [35] havethesameneutralelement [1].

(3) [9] and [27] havethesameneutralelement [9] being gcd(9,36)= gcd(27,36)= 9. (4) [4] and [8] havethesameneutralelementbeing gcd(4,36)= gcd(8,36)= 4.Infact, [4], [8], [16], [20], [28] and [32] havethesameneutralelement,whichis [28].

FromRemark 3,thenumberofidempotentsin Z36 isalso 4,whichare [0], [1], [9] and [28]

FromTheorems 2 and 3 andRemark 3,itfollowseasilythat:

Corollary1. Inneutrosophicring Zn ∪ I ,let a + bI ∈ Zn ∪ I ,then a + bI isidempotentiff a2 = a and b = c a,wherecisanyidempotentelementin Zn.

Corollary2. Foranalgebrasystem (Zn, ) and n = p k1 1 p k2 2 p kt t ,whereeach p1, p2, , and pk aredistinct primes.Thenthenumberofdifferentidempotentsin Zn ∪ I is 22t .

Thesolvingprocessfor Zn ∪ I isgivenbyAlgorithm 1.Justonlyinput n,thenwecangetall idempotentsin Zn ∪ I .TheMATLABcodeisprovidedintheAppendix B

Example3. Solveallidempotentsin Z600 ∪ I

Since n = 600 = 23 3 52,fromTheorem 5,wecangetthedifferentneutralelementsin Z600 are neut(1), neut(23), neut(3), neut(52), neut(23 3), neut(23 52), neut(3 52) and neut(0),i.e.,thedifferent idempotentsin Z600 are1,376,201,25,576,400,225,0.FromCorollary 2,thenumberofdifferentidempotents inneutrosophicring Z600 ∪ I is 22 3 = 64.

FromAlgorithm 1,thesetofall 64 idempotentsin Z600 ∪ I is: {0, I,25I,201I,225I,376I,400I,576I,1 + 599I,1,1 + 24I,1 + 200I,1 + 224I,1 + 375I,1 + 399I,1 + 575I, 25 + 575I,25 + 576I,25,25 + 176I,25 + 200I,25 + 351I,25 + 375I,25 + 551I,201 + 399I,201 + 400I,201 + 424I,201,201 + 24I,201 + 175I,201 + 199I,201 + 375I,225 + 375I,225 + 376I,225 + 400I,225 + 576I,225,225 + 151I,225 + 175I,225 + 351I,376 + 224I,376 + 225I,376 + 249I,376 + 425I,376 + 449I,376,376 + 24I,376 + 200I,400 + 200I,400 + 201I,400 + 225I,400 + 401I,400 + 425I,400 + 576I,400,400 + 176I,576 + 24I,576 + 25I,576 + 49I,576 + 225I,576 + 249I,576 + 400I,576 + 424I,576}

Symmetry 2019
5of15
, 11,1254

Algorithm1: Solvingthedifferentidempotentsin Zn ∪ I

Input: n

1:Factorizationofinteger n,wecanget n = p k1 1 p k2 2 ··· p kt t

2:Computingtheneutralelementof1, p k1 1 , p k2 2 , ··· , p kt t , p k1 1 p k2 2 , ··· p k1 1 p kt t , ··· , p k2 2 p k3 3 ··· p kt t and p k1 1 p k2 2 ··· p kt t .So,wecangetallidempotentsin Zn ,denotedby a1, a2, ··· , a2t 3:LetID=[]; 4:for i = 1:2t 5: a = ai 6:for j = 1:2t 7: b = mod(aj a, n); 8: ID =[ID; [a, b]]; 9:end 10:end Output:ID:alltheidempotentsin Zn ∪ I

Inpaper[22],theauthorsstudiedtheidempotentsandsemi-idempotentsin Zn ∪ I andproposed someopenproblemsandconjectures.Welistpartialopenproblemsandconjecturesaboutidempotents in Zn ∪ I asfollowsandanswerthem.

Problem1. ([22])Let S = Zpq, +, · ,where p and q aretwodistinctprimes,betheneutrosophicring.Can S havenon-trivialidempotentsotherthantheonesmentionedin(b)oftheTheorem 6?

Conjecture1. ([22])Let S = Zn, +, · betheneutrosophicring n = pqr,where p, q and r arethree distinctprimes.

1. Zn = Zpqr hasonlysixnon-trivialidempotentsassociatedwithit.

2. If m1, m2, m3, m4, m5 and m6 aretheidempotents,then,associatedwitheachrealidempotent mi,wehave sevennon-trivialneutrosophicidempotentsassociatedwithit,i.e., {mi + nj I, j = 1,2, ,7},suchthat mi + nj ≡ t,where tj takesthesevendistinctvaluesfromtheset {0,1, mk, k = i; k = 1,2,3, ,6}.i = 1,2, ,6.

Conjecture2. ([22])Given Zn ∪ I ,wheren = p1 p2 pt; t > 2 andpisarealldistinctprimes,find:

1. thenumberofidempotentsin Zn; 2. thenumberofidempotentsin Zn ∪ I \Zn;

Conjecture3. ([22])Proveif Zn ∪ I and Zm ∪ I aretwoneutrosophicringswhere n > m and n = pt q (t > 2,andpandqtwodistinctprimes)andm = p1 p2 ps wherepisaredistinctprimes. 1 ≤ i ≤ s,then 1. prove Zn hasagreaternumberofidempotentsthan Zm;and 2. prove Zn ∪ I hasagreaternumberofidempotentsthan Zn ∪ I

Theorem6. ([22])LetS = Zpq, +, · wherepandqaretwodistinctprimes:

(a) Therearetwoidempotentsin Zpq sayrands. (b) {r, s, rI, sI, I, r + tI, s + tI|t ∈{Zpq \0}} suchthat r + t = s,1 or 0 and s + t = 0,1 or r isthepartial collectionofidempotentsofS.

ForProblem1,fromRemark 3,therearefouridempotentsin Zpq,whichare {1, neut(p), neut(q), neut(pq)= 0}.Let r = neut(p), s = neut(q),sotherearetwonon-trivial idempotents r, s in Zpq.FromCorollary 1 and 2,thenumberofallidempotentsin Zpq ∪ I is 24 = 16,theyare {0 +(0 0)I = 0,0 +(1 0)I = I,0 +(r 0)I = rI,0 +(s 0)I = sI,1 +(0 1)I = 1 +(n 1)I,1 +(1 1)I = 1,1 +(r 1)I,1 +(s 1)I, r +(0 r)I = r +(n r)I, r +(1 r)I = r +

Symmetry 2019, 11,1254 6of15

(n + 1 r)I, r +(r r)I = r, r +(s r)I, s +(0 s)I = s +(n r)s, s +(1 s)I = s +(n + 1 s)I, s + (r s)I, s +(s s)I = s}.Sothereare14non-trivialidempotentsin Zpq ∪ I ,butthereareonlyinclude 11non-trivialidempotentsin(b)oftheTheorem 6,missing {1 +(n 1)I,1 +(r 1)I,1 +(s 1)I}.

ForConjecture1,fromCorollary 1 and 2,thereareeightidempotentsin Zpqr,whichare {1 = m0, neut(p)= m1, neut(q)= m2, neut(r)= m3, neut(pq)= m4, neut(pr)= m5, neut(qr)= m6, neut(pqr)= 0 = m7}.Therearesixnon-trivialidempotentsin Zpqr.In Zn ∪ I ,allidempotents are {mi +(mj mi )I|i, j = 0,1,2, ··· ,7}

ForConjecture2,fromRemark 3,thenumberofidempotentsin Zp1 p2 pt is 2t,andthenumberof idempotentsin Zp1 p2 pt ∪ I \Zp1 p2 pt is22t 2t

ForConjecture3,fromRemark 3,thenumberofidempotentsin Zn is 22,andthenumberof idempotentsin Zm is 2s,where n = pt q, m = p1 p2 · ps.So,if s > 2, Zm ischaracterizedbyalarger numberofidempotentsthan Zn.Insimilarlyway,thenumberofidempotentsin Zn ∪ I is 24,and thenumberofidempotentsin Zm ∪ I is 22s.So,if s > 2,wecaninferthat Zm ∪ I ischaracterized byalargernumberofidempotentsthan Zn ∪ I

Asanotherapplication,wewillusetheidempotentstodividetheelementsoftheneutrosophic rings R ∪ I when R = F

ForeachNETG (N, ∗), a ∈ N,fromProposition 1,theneutralelementof a isuniquelydetermined. FromProposition 2, e∈E(N) N(e) isapartitionof N.Sincetheidempotentsandneutralelements aresame,wecanusetheidempotentstogetapartitionof N.Letusillustratethesewiththe followingexample.

Example4. Let R = Z3,whichisafield.Since n = 3,fromTheorem 5,wecangetthedifferentneutral elementsin Z3 are neut(1) and neut(0),i.e.,thedifferentidempotentsin Z3 are 1,0.FromCorollary 2,the numberofdifferentidempotentsinneutrosophicring Z3 ∪ I is 22 1 = 4

FromAlgorithm 1,thesetofall 4 idempotentsin Z3 ∪ I is: {0,1, I,1 + 2I} Wehave E(0)= {0}, E(1)= {1,2,1 + I,2 + 2I}, E(I)= {I,2I}, E(1 + 2I)= {1 + 2I,2 + I}.So Z3 ∪ I = E(0) ∪ E(1) ∪ E(I) ∪ E(1 + 2I)

4.TheIdempotentsinNeutrosophicQuadrupleRings

Intheabovesection,weexploredtheidempotentsin R ∪ I .Inneutrosophiclogic,each propositionisapproximatedtorepresentrespectivelythetruth(T),thefalsehood(F),andthe indeterminacy(I).Inthissection,accordingtheideaofneutrosophicring R ∪ I ,theneutrosophic quadruplering R ∪ T ∪ I ∪ F isproposedandtheidempotentsaregiveninthissection.

Let (R, +, ·) beanyring.Theset

Symmetry
7of15
2019, 11,1254
a ⊕ b =(a1 + a2T + a3 I + a4 F) ⊕ (b1 + b2T + b3 I + b4 F) = a1 + b1 +(a2 + b2)T +(a3 + b3)I +(a4 + b4)F (3) a ∗ b =(a1 + a2T + a3 I + a4 F) ∗ (b1, b2T, b3 I, b4 F) = a1b1 +(a1b2 + a2b1 + a2b2)T +(a1b3 + a2b3 + a3b1 + a3b2 + a3b3)I +(a1b4 + a2b4 + a3b4 + a4b1 + a4b2 + a4b3 + a4b4)F
Definition6.
R ∪ T ∪ I ∪ F = {a1 + a2T + a3 I + a4 F : a1, a2, a3, a4 ∈ R} (2) iscalledaneutrosophicquadrupleringgeneratedby R and T, I, F.Considertheorder T ≺ I ≺ F.Let a = a1 + a2T + a3 I + a4 F, b = b1 + b2T + b3 I + b4 F ∈ R ∪ T ∪ I ∪ F ,theoperators ⊕, ⊗ on R ∪ T ∪ I ∪ F aredefinedasfollows:
(4)

Remark4. Itiseasytoverifythat ( R ∪ T ∪ I ∪ F , ⊕, ∗) isaring,moreover,italsohasthesamealgebra structurewithneutrosophicquadruplenumbers(see[23–25]),sothewecall R ∪ T ∪ I ∪ F isaneutrosophic quadrupleringisreasonable.

Remark5. SimilarlywithRemark 2,forsimplicityofnotation,weuse +, · toreplace ⊕, ∗ onneutrosophic quadruplering R ∪ T ∪ I ∪ F .Thatis a + b alsomeans a ⊕ b if a, b ∈ R ∪ T ∪ I ∪ F .and a · b alsomeans a ∗ bifa, b ∈ R ∪ T ∪ I ∪ F .Forshorta · bdenotedbyabanda · adenotedbya2

Example5. Z ∪ T ∪ I ∪ F , Q ∪ T ∪ I ∪ F , R ∪ T ∪ I ∪ F and C ∪ T ∪ I ∪ F areneutrosophicquadruple ringsofinteger,rational,realandcomplexnumbers,respectively. Zn ∪ T ∪ I ∪ F isneutrosophicquadruple ringofmodulointegers.Ofcourse, Z, Q, R, C and Zn areneutrosophicquadrupleringswhencoefficientsof T, I andFequalzero.

Definition7. Let R ∪ T ∪ I ∪ F beaneutrosophicquadruplering. R ∪ T ∪ I ∪ F iscommutativeif ab = ba, ∀a, b ∈ R ∪ T ∪ I ∪ F

Inaddition,ifthereexists 1 ∈ R ∪ T ∪ I ∪ F ,suchthat 1 a = a 1 = a forall a ∈ R ∪ T ∪ I ∪ F ,then R ∪ T ∪ I ∪ F iscalledacommutativeneutrosophicquadrupleringwithunity.

Definition8. Anelement a inaneutrosophicquadruplering R ∪ T ∪ I ∪ F iscalledanidempotentelement ifa2 = a.

Theorem7. Thesetofallidempotentsofneutrosophicquadruplerings C ∪ T ∪ I ∪ F , R ∪ T ∪ I ∪ F , Q ∪ T ∪ I ∪ F and Z ∪ T ∪ I ∪ F is

{(1,0,0,0), (0,0,0, F), (0,0, I, F), (0,0, I,0), (0, T, I,0), (0, T, I, F), (0, T,0, F), (0, T,0,0), (1, T,0,0), (1, T,0, F), (1, T, I, F), (1, T, I,0), (1,0, I,0), (1,0, I, F), (1,0,0, F), (1,0,0,0)}

Proof. Weonlygivetheprooffor R ∪ T ∪ I ∪ F ,andthesameresultcanbeobtainedfor C ∪ T ∪ I ∪ F , Q ∪ T ∪ I ∪ F or Z ∪ T ∪ I ∪ F

Let a = a1 + a2T + a3 I + a4 F,if a isidempotentin R ∪ T ∪ I ∪ F ,so a2 = a,i.e., (a1 + a2T + a3 I + a4 F)2 =(a1 + a2T + a3 I + a4 F),whichmeans          a2 1 = a1, 2a1 a2 + a2 2 = a2, 2(a1 + a2)a3 + a2 3 = a3, 2(a1 + a2 + a3)a4 + a2 4 = a4

Since a1 ∈ R,sofrom a2 1 = a1,wecanget a1 = 0or a1 = 1.

CaseA:if a1 = 0,thenfrom2a1 a2 + a2 2 = a2,wecaninfer a2 2 = a2,so a2 = 0or a2 = 1.

CaseA1:if a1 = 0 and a2 = 0,sofrom 2(a1 + a2)a3 + a2 3 = a3,wecaninfer a2 3 = a3,so a3 = 0 or a3 = 1.

CaseA11:if a1 = 0, a2 = 0 and a3 = 0,sofrom 2(a1 + a2 + a3)a4 + a2 4 = a4,wecaninfer a2 4 = a4, so a4 = 0or a4 = 1.

CaseA111:if a1 = a2 = a3 = a4 = 0,i.e., (0,0,0,0) isidempotentin R ∪ T ∪ I ∪ F .

CaseA112:if a1 = a2 = a3 = 0and a4 = 1,i.e., (0,0,0, F) isidempotentin R ∪ T ∪ I ∪ F

CaseA12:if a1 = a2 = 0 and a3 = 1,sofrom 2(a1 + a2 + a3)a4 + a2 4 = a4,wecaninfer 2a4 + a2 4 = a4,so a4 = 0or a4 = 1.

8of15
Symmetry 2019, 11,1254

CaseA121:if a1 = a2 = 0, a3 = 1and a4 = 0,i.e., (0,0, I,0) isidempotentin R ∪ T ∪ I ∪ F .

CaseA122:if a1 = a2 = 0, a3 = 1and a4 = 1,i.e., (0,0, I, F) isidempotentin R ∪ T ∪ I ∪ F .

CaseA2:if a1 = 0 and a2 = 1,sofrom 2(a1 + a2)a3 + a2 3 = a3,wecaninfer 2a3 + a2 3 = a3,so a3 = 0or a3 = 1.

CaseA21:if a1 = 0, a2 = 1,and a3 = 0,sofrom 2(a1 + a2 + a3)a4 + a2 4 = a4,wecaninfer 2a4 + a2 4 = a4,so a4 = 0or a4 = 1.

CaseA121:if a1 = 0, a2 = 1, a3 = 0and a4 = 0,i.e., (0, T,0,0) isidempotentin R ∪ T ∪ I ∪ F

CaseA112:if a1 = 0, a2 = 1, a3 = 0 and a4 = 1,i.e., (0, T,0, F) isidempotentin R ∪ T ∪ I ∪ F

CaseA22:if a1 = 0, a2 = 1 and a3 = 1,sofrom 2(a1 + a2 + a3)a4 + a2 4 = a4,wecaninfer a2 4 = a4, so a4 = 0or a4 = 1.

CaseA121:if a1 = 0, a2 = 1, a3 = 1 and a4 = 0,i.e., (0, T, I,0) isidempotentin R ∪ T ∪ I ∪ F

CaseA112:if a1 = 0, a2 = 1, a3 = 1 and a4 = 1,i.e., (0, T, I, F) isidempotentin R ∪ T ∪ I ∪ F

CaseB:if a1 = 1,thenfrom2a1 a2 + a2 2 = a2,wecaninfer2a2 + a2 2 = a2,so a2 = 0or a2 = 1.

CaseB1:if a1 = 1 and a2 = 0,sofrom 2(a1 + a2)a3 + a2 3 = a3,wecaninfer 2a3 + a2 3 = a3,so a3 = 0or a3 = 1.

CaseB11:if a1 = 1, a2 = 0 and a3 = 0,sofrom 2(a1 + a2 + a3)a4 + a2 4 = a4,wecaninfer 2a4 + a2 4 = a4,so a4 = 0or a4 = 1.

CaseB111:if a1 = 1, a2 = 0, a3 = 0and a4 = 0,i.e., (1,0,0,0) isidempotentin R ∪ T ∪ I ∪ F .

CaseB112:if a1 = 1, a2 = 0, a3 = 0 and a4 = 1,i.e., (1,0,0, F) isidempotentin R ∪ T ∪ I ∪ F . CaseB12:if a1 = 1, a2 = 0 and a3 = 1,sofrom 2(a1 + a2 + a3)a4 + a2 4 = a4,wecaninfer a2 4 = a4, so a4 = 0or a4 = 1.

CaseB121:if a1 = 1, a2 = 0, a3 = 1 and a4 = 0,i.e., (1,0, I,0) isidempotentin R ∪ T ∪ I ∪ F . CaseB122:if a1 = 1, a2 = 0, a3 = 1 and a4 = 1,i.e., (1,0, I, F) isidempotentin R ∪ T ∪ I ∪ F . CaseB2:if a1 = 1 and a2 = 1,sofrom 2(a1 + a2)a3 + a2 3 = a3,wecaninfer a2 3 = a3,so a3 = 0 or a3 = 1.

CaseB21:if a1 = 1, a2 = 1,and a3 = 0,sofrom 2(a1 + a2 + a3)a4 + a2 4 = a4,wecaninfer a2 4 = a4, so a4 = 0or a4 = 1.

CaseB121:if a1 = 1, a2 = 1, a3 = 0 and a4 = 0,i.e., (1, T,0,0) isidempotentin R ∪ T ∪ I ∪ F CaseB112:if a1 = 1, a2 = 1, a3 = 0 and a4 = 1,i.e., (1, T,0, F) isidempotentin R ∪ T ∪ I ∪ F CaseB22:if a1 = 1, a2 = 1 and a3 = 1,sofrom 2(a1 + a2 + a3)a4 + a2 4 = a4,wecaninfer 2a4 + a2 4 = a4,so a4 = 0or a4 = 1.

CaseB121:if a1 = 1, a2 = 1, a3 = 1 and a4 = 0,i.e., (1, T, I,0) isidempotentin R ∪ T ∪ I ∪ F CaseB112:if a1 = 1, a2 = 1, a3 = 1 and a4 = 1,i.e., (1, T, I, F) isidempotentin R ∪ T ∪ I ∪ F

Fromtheaboveanalysis,wecangetthesetofallidempotentsinneutrosophicquadruplering R ∪ T ∪ I ∪ F are {(1,0,0,0), (0,0,0, F), (0,0, I, F), (0,0, I,0), (0, T, I,0), (0, T, I, F), (0, T,0, F), (0, T,0,0), (1, T,0,0), (1, T,0, F), (1, T, I, F), (1, T, I,0), (1,0, I,0), (1,0, I, F), (1,0,0, F), (1,0,0,0)}

Theabovetheoremrevealsthattheidempotentsinneutrosophicquadruplering R ∪ T ∪ I ∪ F isfixedwhen R is C, R, Q or Z.Foranyring R,wehavethefollowingresults. Theorem8. Forneutrosophicquadruplering R ∪ T ∪ I ∪ F , a = a1 + a2T + a3 I + a4 F isidempotentin neutrosophicquadruplering R ∪ T ∪ I ∪ F iff a1 isidempotentin R, a2 = c a1, a3 = d (a1 + a2) and a4 = e (a1 + a2 + a3),wherec, dandeareanyidempotentsinR.

Proof. Necessity:If a = a1 + a2T + a3 I + a4 F isidempotent,i.e., (a1 + a2T + a3 I + a4 F)2 = a1 + a2T + a3 I + a4 F,whichmeans

Symmetry 2019, 11,1254 9of15

a2 1 = a1, 2a1 a2 + a2 2 = a2, 2(a1 + a2)a3 + a2 3 = a3, 2(a1 + a2 + a3)a4 + a2 4 = a4

Since a1 ∈ R,from a2 1 = a1,wecanget a1 isidempotentin R.

From 2a1 a2 + a2 2 = a2 and a2 1 = a1,wecanget (a1 + a2)2 = a2 1 + 2a1 a2 + a2 2 = a1 + a2,so a1 + a2 isalsoidempotentin R,denotedby c,so a2 = c a1.

From 2(a1 + a2)a3 + a2 3 = a3,and (a1 + a2)2 = a1 + a2,wecanget (a1 + a2 + a3)2 =(a1 + a2)2 + 2(a1 + a2)a3 + a2 3 = a1 + a2 + a3,so a1 + a2 + a3 isalsoidempotentin R,denotedby d,so a3 = d a1 a2

From 2(a1 + a2 + a3)a4 + a2 4 = a4,and (a1 + a2 + a3)2 = a1 + a2 + a3,wecanget (a1 + a2 + a3 + a4)2 =(a1 + a2 + a3)2 + 2(a1 + a2 + a3)a3 + a2 4 = a1 + a2 + a3 + a4,so a1 + a2 + a3 + a4 isalso idempotentin R,denotedby e,so a4 = e a1 a2 a3

Sufficiency:If a1, c, d and e arearbitraryidempotentsin R,let a2 = c a1, a3 = d (a1 + a2) and a4 = e (a1 + a2 + a3).so (a1 + a2T + a3 I + a4 F)2 =(a1 +(c a1)T +(d a1 a2)I +(e a1 a2 a3)F)2 = a2 1 +(2(c a1)a1 +(c a1)2)T +(2c(d a1 a2)+(d a1 a2)2)I +(2d(e a1 a2 a3)+(e a1 a2 a3)2)F = a1 +(c a1)T +(d a1 a2)I +(e a1 a2 a3)F.Thus, a = a1 + a2T + a3 I + a4 F isidempotent.

Theorem9. Ifthenumberofdifferentidempotentsin R is t,thenthenumberofdifferentidempotentsin neutrosophicquadruplering R ∪ T ∪ I ∪ F ist4 .

Proof. Ifthenumberofdifferentidempotentsin R is t,let a1 + a2T + a3 I + a4 F ∈ Zn ∪ T ∪ I ∪ F is idempotent,so a1 isidempotentin R,i.e., a1 has t differentselections.When a1 isselected, a2 = c a1, where c isidempotent,whichalsohas t differentselections.When a1, a2 areselected, a3 = d a1 a2, where d isidempotent,whichalsohas t differentselections.When a1, a2, a3 isselected, a4 = e a1 a2 a3,where e isidempotent,whichalsohas t differentselections.Thus,thenumberofallselections is t · t · t · t = t4,i.e.,thenumberofdifferentidempotentsin R ∪ T ∪ I ∪ F is t4 FromTheorems 8 and 9 andRemark 3,itfollowseasilythat:

Corollary3. Inneutrosophicquadruplering Zn ∪ T ∪ I ∪ F , a = a1 + a2T + a3 I + a4 F isidempotentin neutrosophicquadruplering Zn ∪ T ∪ I ∪ F iff a1 isidempotentin Zn, a2 = c a1, a3 = d (a1 + a2) and a4 = e (a1 + a2 + a3),wherec, dandeareanyidempotentsin Zn

Symmetry 2019, 11,1254 10of15
  
 
 
Corollary4. Thenumberofdifferentidempotentsinneutrosophicquadruplering Zn ∪ T ∪ I ∪ F is 24t Thesolvingprocessforneutrosophicquadruplering Zn ∪ T ∪ I ∪ F isgivenbyAlgorithm 2 Justonlyinput n,wecangetallidempotentsin Zn ∪ T ∪ I ∪ F .TheMATLABcodeisprovidedin theAppendix C.

Algorithm2: Solvingthedifferentidempotentsin Zn ∪ T ∪ I ∪ F

Input: n

1:Factorizationofinteger n,wecanget n = p k1 1 p k2 2 ··· p kt t

2:Computingtheneutralelementof1, p k1 1 , p k2 2 , ··· , p kt t , p k1 1 p k2 2 , ··· p k1 1 p kt t , ··· , p k2 2 p k3 3 ··· p kt t and p k1 1 p k2 2 ··· p kt t .So,wecangetallidempotentsin Zn ,denotedby c1, c2, ··· , c2t

3:LetID=[];

4:for i = 1:2t 5: a1 = ci 6:for j = 1:2t

7: a2 = mod(cj a1, n);

8:for m = 1:2t

9: a3 = mod(cm a1 a2, n); 10:for q = 1:2t

11: a4 = mod(cq a1 a2 a3, n); 12: ID =[ID; [a1, a2, a3, a4]]; 13:end 14:end 15:end 16:end

Output:ID:alltheidempotentsin Zn ∪ T ∪ I ∪ F

Example6. Solveallidempotentsin Z12 ∪ T ∪ I ∪ F .

Since n = 12 = 22 3,fromTheorems 4 and 5,wecangetthedifferentneutralelementsin Z12 are neut(1), neut(22), neut(3), neut(23 3) and neut(0),i.e.,thedifferentidempotentsin Z12 are 1,4,9,0.From Corollary 4,thenumberofdifferentidempotentsinneutrosophicquadruplering Z12 ∪ T ∪ I ∪ F is 24 2 = 256.

FromAlgorithm 2,thesetofall 256 idempotentsin Z12 ∪ T ∪ I ∪ F is: {0,1F,4F,9F, I + 11F, I, I + 3F, I + 8F,4I + 8F,4I + 9F,4I,4I + 5F,9I + 3F,9I + 4F,9I + 7F,9I, T + 11I, T + 11I + F, T + 11I + 4F, T + 11I + 9F, T + 11F, T, T + 3F, T + 8F, T + 3I + 8F, T + 3I + 9F, T + 3I, T + 3I + 5F, T + 8I + 3F, T + 8I + 4F, T + 8I + 7F, T + 8,4T + 8I,4T + 8I + F,4T + 8I + 4F,4T + 8I + 9F,4T + 9I + 11F,4T + 9I,4T + 9I + 3F,4T + 9I + 8F,4T + 8F,4T + 9F,4T,4T + 5F,4T + 5I + 3F,4T + 5I + 4F,4T + 5I + 7F,4T + 5I,9T + 3I,9T + 3I + F,9T + 3I + 4F,9T + 3I + 9F,9T + 4I + 11F,9T + 4I,9T + 4I + 3F,9T + 4I + 8F,9T + 7I + 8F,9T + 7I + 9F,9T + 7I,9T + 7I + 5F,9T + 3F,9T + 4F,9T + 7F,9T,1 + 11T,1 + 11T + F,1 + 11T + 4F,1 + 11T + 9F,1 + 11T + I + 11F,1 + 11T + I,1 + 11T + I + 3F,1 + 11T + I + 8F,1 + 11T + 4I + 8F,1 + 11T + 4I + 9F,1 + 11T + 4I,1 + 11T + 4I + 5F,1 + 11T + 9I + 3F,1 + 11T + 9I + 4F,1 + 11T + 9I + 7F,1 + 11T + 9I,1 + 11I,1 + 11I + F,1 + 11I + 4F,1 + 11I + 9F,1 + 11F,1,1 + 3F,1 + 8F,1 + 3I + 8F,1 + 3I + 9F,1 + 3I,1 + 3I + 5F,1 + 8I + 3F,1 + 8I + 4F,1 + 8I + 7F,1 + 8I,1 + 3T + 8I,1 + 3T + 8I + F,1 + 3T + 8I + 4F,1 + 3T + 8I + 9F,1 + 3T + 9I + 11F,1 + 3T + 9I,1 + 3T + 9I + 3F,1 + 3T + 9I + 8F,1 + 3T + 8F,1 + 3T + 9F,1 + 3T,1 + 3T + 5F,1 + 3T + 5I + 3F,1 + 3T + 5I + 4F,1 + 3T + 5I + 7F,1 + 3T + 5I,1 + 8T + 3I,1 + 8T + 3I + F,1 + 8T + 3I + 4F,1 + 8T + 3I + 9F,1 + 8T + 4I + 11F,1 + 8T + 4I,1 + 8T + 4I + 3F,1 + 8T + 4I + 8F,1 + 8T + 7I + 8F,1 + 8T + 7I + 9F,1 + 8T + 7I,1 + 8T + 7I + 5F,1 + 8T + 3F,1 + 8T + 4F,1 + 8T + 7F,1 + 8T,4 + 8T,4 + 8T + F,4 + 8T + 4F,4 + 8T + 9F,4 + 8T + I + 11F,4 + 8T + I,4 + 8T + I + 3F,4 + 8T + I + 8F,4 + 8T + 4I + 8F,4 + 8T + 4I + 9F,4 + 8T + 4I,4 + 8T + 4I + 5F,4 + 8T + 9I + 3F,4 + 8T + 9I + 4F,4 + 8T + 9I + 7F,4 + 8T + 9I,4 + 9T + 11I,4 + 9T + 11I + F,4 + 9T + 11I + 4F,4 + 9T + 11I + 9F,4 + 9T + 11F,4 + 9T,4 + 9T + 3F,4 + 9T + 8F,4 + 9T + 3I + 8F,4 + 9T + 3I + 9F,4 + 9T + 3I,4 + 9T + 3I + 5F,4 + 9T + 8I + 3F,4 + 9T + 8I + 4F,4 + 9T + 8I + 7F,4 + 9T + 8I,4 + 8I,4 + 8I + F,4 + 8I + 4F,4 + 8I + 9F,4 + 9I + 11F,4 + 9I,4 + 9I + 3F,4 + 9I + 8F,4 + 8F,4 + 9F,4,4 + 5F,4 + 5I + 3F,4 + 5I + 4F,4 + 5I + 7F,4 + 5I,4 + 5T + 3I,4 + 5T + 3I + F,4 + 5T + 3I + 4F,4 + 5T + 3I + 9F,4 + 5T + 4I + 11F,4 + 5T + 4I,4 + 5T + 4I + 3F,4 + 5T + 4I + 8F,4 + 5T + 7I + 8F,4 + 5T + 7I + 9F,4 + 5T + 7I,4 + 5T + 7I + 5F,4 + 5T + 3F,4 +

Symmetry 2019,
11of15
11,1254

5T + 4F,4 + 5T + 7F,4 + 5T,9 + 3T,9 + 3T + F,9 + 3T + 4F,9 + 3T + 9F,9 + 3T + I + 11F,9 + 3T + I,9 + 3T + I + 3F,9 + 3T + I + 8F,9 + 3T + 4I + 8F,9 + 3T + 4I + 9F,9 + 3T + 4I,9 + 3T + 4I + 5F,9 + 3T + 9I + 3F,9 + 3T + 9I + 4F,9 + 3T + 9I + 7F,9 + 3T + 9I,9 + 4T + 11I,9 + 4T + 11I + F,9 + 4T + 11I + 4F,9 + 4T + 11I + 9F,9 + 4T + 11F,9 + 4T,9 + 4T + 3F,9 + 4T + 8F,9 + 4T + 3I + 8F,9 + 4T + 3I + 9F,9 + 4T + 3I,9 + 4T + 3I + 5F,9 + 4T + 8I + 3F,9 + 4T + 8I + 4F,9 + 4T + 8I + 7F,9 + 4T + 8I,9 + 7T + 8I,9 + 7T + 8I + F,9 + 7T + 8I + 4F,9 + 7T + 8I + 9F,9 + 7T + 9I + 11F,9 + 7T + 9I,9 + 7T + 9I + 3F,9 + 7T + 9I + 8F,9 + 7T + 8F,9 + 7T + 9F,9 + 7T,9 + 7T + 5F,9 + 7T + 5I + 3F,9 + 7T + 5I + 4F,9 + 7T + 5I + 7F,9 + 7T + 5I,9 + 3I,9 + 3I + F,9 + 3I + 4F,9 + 3I + 9F,9 + 4I + 11F,9 + 4I,9 + 4I + 3F,9 + 4I + 8F,9 + 7I + 8F,9 + 7I + 9F,9 + 7I,9 + 7I + 5F,9 + 3F,9 + 4F,9 + 7F,9.}

Similarly,wewillusetheidempotentstodividetheelementsoftheneutrosophicrings R ∪ T ∪ I ∪ F when R = F.Letusillustratethesewiththefollowingexample. Example7. Let R = Z3,whichisafield.FromExample 4,thedifferentidempotentsin Z3 are 1,0.From Corollary 4,thenumberofdifferentidempotentsinneutrosophicquadruplering Z3 ∪ T ∪ I ∪ F is 24 = 16. FromAlgorithm 2,thesetofall 16 idempotentsin Z3 ∪ I is: E = {0, F, I + 2F, I, T + 2I, T + 2I + F, T + 2F, T,1 + 2T,1 + 2T + F,1 + 2T + I + 2F,1 + 2T + I,1 + 2I,1 + 2I + F,1 + 2F,1}. Wehave E(0)= {0}, E(F)= {F,2F}, E(I + 2F)= {I + 2F,2I + F}, E(I)= {I, I + F,2I,2I + 2F}, E(T + 2I)= {T + 2I,2T + I}, E(T + 2I + F)= {T + 2I + F, T + 2I + 2F,2T + I + F,2T + I + 2F}, E(T + 2F)= {T + 2F, T + I + F,2T + F,2T + 2I + 2F}, E(T)= {T + F, T, T + I, T + I + 2F,2T,2T + 2F,2T + 2I,2T + 2I + F}, E(1 + 2T)= {1 + 2T,2 + T}, E(1 + 2T + F)= {1 + 2T + F,1 + 2T + 2F,2 + T + F,2 + T + 2F}, E(1 + 2T + I + 2F)= {1 + 2T + I + 2F,1 + 2T + 2I + F,2 + T + I + 2F,2 + T + 2I + F}, E(1 + 2T + I)= {1 + 2T + I,1 + 2T + I + F,1 + 2T + 2I,1 + 2T + 2I + 2F,2 + T + I,2 + T + I + F,2 + T + 2I,2 + T + 2I + 2F}, E(1 + 2I)= {1 + 2I,1 + T + I,2 + I,2 + 2T + 2I}, E(1 + 2I + F)= {1 + 2I + F,1 + 2I + 2F,1 + T + I + F,1 + T + I + 2F,2 + I + F,2 + I + 2F,2 + 2T + 2I + F,2 + 2T + 2I + 2F}, E(1 + 2F)= {1 + 2F,1 + I + F,1 + T + F,1 + T + 2I + 2F,2 + F,2 + 2I + 2F,2 + 2T + 2F,2 + 2T + I + F}, E(1)= {1,1 + F,1 + I,1 + I + 2F,1 + T,1 + T + 2F,1 + T + 2I,1 + T + 2I + F,2,2 + 2F,2 + 2I,2 + 2I + F,2 + 2T,2 + 2T + F,2 + 2T + I,2 + 2T + I + 2F}.So Z3 ∪ T ∪ I ∪ F = e∈E E(e)

5.Conclusions

Inthispaper,westudytheidempotentsinneutrosophicring R ∪ I andneutrosophicquadruple ring R ∪ T ∪ I ∪ F .Wenotonlysolvetheopenproblemandconjecturesinpaper[22]about idempotentsinneutrosophicring Zn ∪ I ,butalsogivealgorithmstoobtainallidempotentsin Zn ∪ I and Zn ∪ T ∪ I ∪ F foreach n.Furthermore,if R = F,thentheneutrosophicrings(neutrosophic quadruplerings)canbeviewedasapartitiondividedbytheidempotents.Asageneralresult,ifall idempotentsinring R areknown,thenallidempotentsin R ∪ I and R ∪ T ∪ I ∪ F canbeobtained too.Moreover,ifthenumberofallidempotentsinring R is t,thenthenumbersofallidempotentsin R ∪ I and R ∪ T ∪ I ∪ F are t2 and t4 respectively.Inthefollowing,ontheonehand,wewillexplore semi-idempotentsinneutrosophicrings,ontheotherhand,wewillstudythealgebrapropertiesof neutrosophicringsandneutrosophicquadruplerings.

AuthorContributions: Allauthorshavecontributedequallytothispaper.

Funding: ThisresearchwasfundedbyNationalNaturalScienceFoundationofChina(GrantNo.61976130), DisciplineConstructionFundingofXi’anPolytechnicUniversity,InstructionalScienceandTechnologyPlan ProjectsofChinaNationalTextileandApparelCouncil(No.2016073)andScientificResearchProgramFundedby ShaanxiProvincialEducationDepartment(ProgramNo.18JS042).

Acknowledgments: Theauthorswouldliketothankthereviewersfortheirmanyinsightfulcomments andsuggestions.

ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.

Symmetry 2019, 11,1254 12of15

AppendixA.TheMATLABcodeforsolvingtheidempotentsin (Zn, ) function neut=solve_neut(n)

%n:nonnegativeinteger %neut:allidempotentsinZ_n

B=[]; digits(32); for i=1:n for j=1:n A1(i,j)=mod((i 1) * (j 1),n); end end a1=factor(n); a2=unique(a1); for i=1: length (a2) b=length ( find (a1==a2(i))); B(i)=a2(i)^b; end D=[1]; for i=1: length (a2) C=combnk(B,i); A=prod (C,2); D=[D;A]; end D=mod(D,n); for i=1: length (D) if D(i)==1 neut(i)=1; elseif D(i)==0 neut(i)=0; else for j=1:n if mod(D(i) * j,n)==D(i) for k=1:n if mod(D(i) * k,n)==j neut(i)=j; break end end end end end end neut= sort (neut);

AppendixB.TheMATLABcodeforsolvingtheidempotentsin Zn ∪ I function ID=Idempotents_ZR(n)

%n:nonnegativeinteger

Symmetry 2019, 11,1254 13of15

%ID:allidempotentsininneutrosophicring<Z_n\cupI>

neut=solve_neut(n); neutall=[]; for i=1: length (neut) for j=1: length (neut) c1=mod(neut(j) neut(i),n); neutall=[neutall;[neut(i),c1]]; end end

%ID:allidempotentsininneutrosophicquadruplering<Z_n\cupT\cupI\cupF>

neut=solve_neut(n); neutall=[]; for i=1: length (neut) a1=neut(i); for j=1: length (neut) a2=mod(neut(j) a1,n); for m=1: length (neut) a3=mod(neut(m) a1 a2,n); for q=1: length (neut) a4=mod(neut(q) a1 a2 a3,n); neutall=[neutall;[a1a2a3a4]]; end end end end

ID=sortrows(neutall’,1)’;

References

1. Smarandache,F. Neutrosophy:NeutrosophicProbability,Set,andLogic:AnalyticSynthesisandSyntheticAnalysis; AmericanResearchPress:SantaFe,NM,USA,1998.

2. Smarandache,F.;Ali,M.Neutrosophictripletgroup. NeuralComput.Appl. 2018, 29,595–601.

3. Smarandache,F. NeutrosophicPerspectives:Triplets,Duplets,Multisets,HybridOperators,ModalLogic,Hedge Algebras.AndApplications;InfiniteStudy:Conshohocken,PA,USA,2017.

4. Zhang,X.;Hu,Q.;Smarandache,F.;An,X.Onneutrosophictripletgroups:basicproperties,NT-subgroups, andsomenotes. Symmetry 2018, 10,289.

5. Ma,Y.;Zhang,X.;Yang,X.;Zhou,X.Generalizedneutrosophicextendedtripletgroup. Symmetry 2019, 11,327.

Symmetry 2019
14of15
, 11,1254
ID=sortrows(neutall’,1)’; AppendixC.TheMATLABcodeforsolvingtheidempotentsin Zn ∪ T ∪ I ∪ F function ID=Idempotents_ZRTIF(n) %n:nonnegativeinteger

Symmetry 2019, 11,1254 15of15

6.

Zhang,X.H.;Bo,C.X.;Smarandache,F.;Dai,J.H.Newinclusionrelationofneutrosophicsetswith applicationsandrelatedlatticestructure. Int.J.Mach.Learn.Cybern 2018, 9,1753–1763.

7. Bal,M.;Shalla,M.M.;Olgun,N.Neutrosophictripletcosetsandquotientgroups. Symmetry 2017, 10,126.

8.

Zhang,X.H.;Smarandache,F.;Liang,X.L.Neutrosophicdupletsemi-groupandcancellableneutrosophic tripletgroups. Symmetry 2017, 9,275.

9. Wu,X.Y.;Zhang,X.H.ThedecompositiontheoremsofAG-neutrosophicextendedtripletloopsandstrong AG-(l,l)-loops. Mathematics 2019, 7,268.

10.

11.

Zhang,X.H.;Wu,X.Y.;Mao,X.Y.;Smarandache,F.;Park,C.Onneutrosophicextendedtripletgroups(loops) andAbel-Grassmann sgroupoids(AG-groupoids). J.Intell.FuzzySyst. 2019,inpress.

Zhang,X.H.;Mao,X.Y.;Wu,Y.T.;Zhai,X.H.Neutrosophicfiltersinpseudo-BCIalgebras. Int.J. UncertaintyQuant. 2018, 8,511–526.

12. Smarandache,F.Hybridneutrosophictripletringinphysicalstructures. Bull.Am.Phys.Soc. 2017, 62,17.

13. Ali,M.;Smarandache,F.;Khan,M.Studyonthedevelopmentofneutrosophictripletringand neutrosophictripletfield. Mathematics 2018, 6,46.

14. Sahin,M.;Abdullah,K.Neutrosophictripletnormedspace. OpenPhys 2017, 15,697–704.

15. Zhang,X.H.;Bo,C.X.;Smarandache,F.;Park,C.Newoperationsoftotallydependent-neutrosophicsetsand totallydependent-neutrosophicsoftsets. Symmetry 2018, 10,187.

16. Agboola,A.;Akinleye,S.Neutrosophicvectorspaces. NeutrosophicSetsSyst. 2014, 4,9–18.

17. Vasantha,W.B.;Smaradache,F. NeutrosophicRings;Hexis:Phoenix,AZ,USA,2006.

18. Agboola,A.A.D.;Akinola,A.D.;Oyebola,O.Y.NeutrosophicringsI. Int.J.Math.Comb. 2011, 4,115.

19. Broumi,S.;Smarandache,F.;Maji,P.K.Intuitionisticneutrosphicsoftsetoverrings. Math.Stat. 2014, 2, 120–126.

20. Ali,M.;Shabir,M.;Smarandache,F.;Vladareanu,L.NeutrosophicLA-semigrouprings. NeutrosophicSets Syst. 2015, 7,81–88.

21. Nicholson,W.K.Liftingidempotentsandexchangerings. Trans.Am.Math.Soc. 1977, 229,269–278.

22. Vasantha,W.B.;Kandasamy,I.;Smarandache,F.Semi-idempotentsinneutrosophicrings. Mathematics 2019, 7,507.

23. SmarandacheF.Neutrosophicquadruplenumbers,refinedneutrosophicquadruplenumbers,absorbance law,andthemultiplicationofneutrosophicquadruplenumbers. NeutrosophicSetsSyst. 2015, 10,96–98.

24. Akinleye,S.A.;Smarandache,F.;Agboola,A.A.A.Onneutrosophicquadruplealgebraicstructures. NeutrosophicSetsSyst. 2016, 12,122–126.

25. Li,Q.;Ma,Y.;Zhang,X.;Zhang,J.Neutrosophicextendedtripletgroupbasedonneutrosophicquadruple numbers. Symmetry 2019, 11,187.

© 2019bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution (CCBY)license(http://creativecommons.org/licenses/by/4.0/).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
The Structure of Idempotents in Neutrosophic Rings and Neutrosophic Quadruple Rings by Florentin Smarandache - Issuu