Soft Rough Neutrosophic Influence Graphs with Application

Page 1

SoftRoughNeutrosophicInfluence GraphswithApplication

HafsaMasoodMalik 1,MuhammadAkram 1, ∗ andFlorentinSmarandache 2

1 DepartmentofMathematics,UniversityofthePunjab,NewCampus,Lahore54590,Pakistan; hafsa.masood.malik@gmail.com

2 UniversityofNewMexicoMathematics&ScienceDepartment705GurleyAve.,Gallup,NM87301,USA; fsmarandache@gmail.com

* Correspondence:m.akram@pucit.edu.pk

Received:28June2018;Accepted:15July2018;Published:18July2018

Abstract: Inthispaper,weapplythenotionofsoftroughneutrosophicsetstographtheory. Wedevelopcertainnewconcepts,includingsoftroughneutrosophicgraphs,softroughneutrosophic influencegraphs,softroughneutrosophicinfluencecyclesandsoftroughneutrosophicinfluence trees.Weillustratetheseconceptswithexamples,andinvestigatesomeoftheirproperties.Wesolve thedecision-makingproblembyusingourproposedalgorithm.

Keywords: softroughneutrosophicgraphs;softroughneutrosophicinfluencegraphs;softrough neutrosophicinfluencecycles;softroughneutrosophicinfluencetrees

1.Introduction

Smarandache[1]introducedneutrosophicsetsasageneralizationoffuzzysetsandintuitionistic fuzzysets.Aneutrosophicsethasthreeconstituents:truth-membership,indeterminacy-membership andfalsity-membership,inwhicheachmembershipvalueisarealstandardornon-standardsubsetof theunitinterval

]0 ,1+[.Inreal-lifeproblems,neutrosophicsetscanbeappliedmoreappropriatelybyusing thesingle-valuedneutrosophicsetsdefinedbySmarandache[1]andWangetal.[2].Ye[3,4]and Pengetal.[5]furtherextendedthestudyofneutrosophicsets.Softsettheory[6]wasproposedby Molodtsovin1999todealwithuncertaintyinaparametricmanner.BabithaandSunildiscussedthe conceptofsoftsetrelation[7].Ontheotherhand,Pawlak[8]proposedthenotionofroughsets.Itisa rigidappearanceofmodelingandprocessingpartialinformation.Ithasbeeneffectivelyconnected todecisionanalysis,machinelearning,inductivereasoning,intelligentsystems,patternrecognition, signalanalysis,expertsystems,knowledgediscovery,imageprocessing,andmanyotherfields[9–12]. Inliterature,roughtheoryhasbeenappliedindifferentfieldofmathematics[13–16].Duboisand Prade[17]developedtwoconceptscalledroughfuzzysetsandfuzzyroughsetsandconcludedthat thesetwotheoriesaredifferentapproachestohandlevagueness.Fengetal.[18]combinedsoftsets withfuzzysetsandroughsets.Mengetal.[19]dealtwithsoftroughfuzzysetsandsoftfuzzyrough sets.Broumietal.[20]studiedroughneutrosophicsets.Yangetal.[21]proposedsingle-valued neutrosophicroughsets,andestablishedanalgorithmfordecision-makingproblembasedonsinglevaluedneutrosophicroughsetsontwouniverses.

Agraphisaconvenientwayofrepresentinginformationinvolvingrelationshipbetweenobjects. Theobjectsarerepresentedbyverticesandrelationsbyedges.Whenthereisvaguenessinthe descriptionoftheobjectsorinitsrelationshipsorinboth,itisnaturalthatweneedtodesignafuzzy graphmodel.Fuzzymodelshasvitalroleastheiraspirationindecreasingtheirregularitybetweenthe traditionalnumericalmodelsusedinengineeringandsciencesandthesymbolicmodelsusedinexpert

Mathematics 2018, 6,125;doi:10.3390/math6070125 www.mdpi.com/journal/mathematics

mathematics Article

systems.ThefuzzygraphtheoryasageneralizationofEuler’sgraphtheorywasfirstintroducedby Kaufmann[22].Later,Rosenfeld[23]consideredfuzzygraphsandobtainedanalogsofseveralgraph theoreticalconcepts.MordesonandPeng[24]definedsomeoperationsonfuzzygraphs.Mathew andSunitha[25,26]presentedsomenewconceptsonfuzzygraphs.Ganietal.[27–30]discussed severalconcepts,includingsize,order,degree,regularityandedgeregularityinfuzzygraphsand intuitionisticfuzzygraphs.ParvathiandKarunambigai[31]describedsomeoperationonintuitionistic fuzzygraph.Recently,Akrametal.[32–36]hasintroducedseveralextensionsoffuzzygraphswith applications.Denish[37]consideredtheideaoffuzzyincidencegraph.Fuzzyincidencegraphswere furtherstudiedin[38,39].Duetothelimitationofhumansknowledgetounderstandthecomplex problems,itisverydifficulttoapplyonlyasingletypeofuncertaintymethodtodealwithsuch problems.Therefore,itisnecessarytodevelophybridmodelsbyincorporatingtheadvantagesof manyotherdifferentmathematicalmodelsdealinguncertainty.Recently,newhybridmodels,including roughfuzzygraphs[40,41],fuzzyroughgraphs[42],intuitionisticfuzzyroughgraphs[43,44],rough neutrosophicgraphs[45]andneutrosophicsoftroughgraphs[46]areconstructed.Forothernotations anddefinitions,thereadersarerefereedto[47–51].Inthispaper,weapplythenotionofsoftrough neutrosophicsetstographtheory.Wedevelopcertainnewconcepts,includingsoftroughneutrosophic graphs,softroughneutrosophicinfluencegraphs,softroughneutrosophicinfluencecyclesandsoft roughneutrosophicinfluencetrees.Weillustratetheseconceptswithexamples,andinvestigatesome oftheirproperties.Wesolvedecision-makingproblembyusingourproposedalgorithm.

Thispaperisorganizedasfollows.InSection 2,somedefinitionsandsomepropertiesofsoft roughneutrosophicgraphsaregiven.InSection 3,softroughneutrosophicinfluencegraphs,softrough neutrosophicinfluencecyclesandsoftroughneutrosophicinfluencetreesarediscussed.InSection 4, anapplicationispresented.Finally,weconcludeourcontributionwithasummaryinSection 5 andan outlookforthefurtherresearch.

2.SoftRoughNeutrosophicGraphs

Definition1. Let B beBooleansetand A asetofattributes.Foranarbitraryfullsoftset S over B such that Ss (a)⊂B,forsome a∈A,where Ss :A→P (B) isaset-valuedfunctiondefinedas Ss (a)={b∈B|(a,b)∈S}, forall a∈A.Let (B,S) beafullsoftapproximationspace.Foranyneutrosophicset N={(b,TN (b),IN (b),FN (b))| b∈B}∈N (B),where N (B) isneutrosophicpowersetofset B.Theupperandlowersoftroughneutrosophic approximationsofN w.r.t (B,S),denotedby S(N) andS(N),respectively,aredefinedasfollows: S(N)={(b, TS(N)(b), IS(N)(b), FS(N)(b)) | b ∈B} , S(N)={(b, TS(N)(b), IS(N)(b), FS(N)(b)) | b ∈B}, where TS(N)(b)= b∈Ss (a) t∈Ss (a) TN (t), TS(N)(b)= b∈Ss (a) t∈Ss (a) TN (t), IS(N)(b)= b∈Ss (a) t∈Ss (a) IN (t) , IS(N)(b)= b∈Ss (a) t∈Ss (a) IN (t),(1) FS(N)(b)= b∈Ss (a) t∈Ss (a) FN (t), FS(N)(b)= b∈Ss (a) t∈Ss (a) FN (t)

Inotherwords, TS(N)(b)= a∈A (1 S(a, b)) ∨ t∈B S(a, t) ∧ TN (t) , TS(N)(b)= a∈A S(a, b) ∧ t∈B (1 S(a, t)) ∨ TN (t) ,

Mathematics 2018, 6,125 2of37

IS(N) (b)= a∈A S(a, b) ∧ t∈B (1 S(a, t)) ∨ IN (t) ,

IS(N) (b)= a∈A (1 S(a, b)) ∨ t∈B S(a, t) ∧ IN (t) ,

FS(N) (b)= a∈A S(a, b) ∧ t∈B (1 S(a, t)) ∨ FN (t) ,

FS(N) (b)= a∈A (1 S(a, b)) ∨ t∈B S(a, t) ∧ FN (t)

Thepair (S(N),S(N)) iscalledsoftroughneutrosophicset(SRNS)ofN w.r.t (B,S)

Example1. Suppose N={(b1,0.8,0.3,0.16),(b2,0.85,0.24,0.2),(b3,0.79,0.2,0.2),(b4,0.85,0.36,0.25),(b5,0.82,0.25,0.25)} isaneutrosophicsetontheuniversalset B={b1,b2,b3,b4,b5} underconsideration.Let A={a1,a2,a3} beasetof parameteronB.AfullsoftsetoverB,denotedbyS,isdefinedinTable 1

Table1. Fullsoftset S. Sb1 b2 b3 b4 b5 a1 00101 a2 10100 a3 01111

Aset-valuedfunction Ss :A→P (B) isdefinedas Ss (a1)={b3,b5},Ss (a2)={b1,b3},Ss (a3)={b2,b3,b4,b5} FromEquation(1)ofDefinition 1,wehave

TS(A) (b1)= y∈Ss (a2) N(y)=∨{0.8,0.79}=0.80, IS(N) (b1)= y∈Ss (a2) N(y)=∧{0.3,0.2} =0.20, FS(N) (b1)= y∈Ss (a2) N(y)=∧{0.16,0.2}=0.16; TS(N)(b1)= y∈Ss (a2) N(y)=∧{0.8,0.79}=0.79, IS(N) (b1)= y∈Ss (a2) N(y)=∨{0.3,0.2} =0.30, FS(N) (b1)= y∈Ss (a2) N(y)=∨{0.16,0.2}=0.20.

Similarly,

TS(N)(b2)= 0.85, IS(N)(b2)= 0.20, FS(N)(b2)= 0.20, TS(N)(b3)= 0.80, IS(N)(b3)= 0.20, FS(N)(b3)= 0.20, TS(N)(b4)= 0.85, IS(N)(b4)= 0.20, FS(N)(b4)= 0.20, TS(N)(b5)= 0.82, IS(N)(b5)= 0.20, FS(N)(b5)= 0.20; TS(N)(b2)= 0.79, IS(N)(b2)= 0.36, FS(N)(b2)= 0.25, TS(N)(b3)= 0.79, IS(N)(b3)= 0.25, FS(N)(b3)= 0.20, TS(N)(b4)= 0.79, IS(N)(b4)= 0.36, FS(N)(b4)= 0.25,

Mathematics 2018, 6,125 3of37

TS(N)(b5)= 0.79, IS(N)(b5)= 0.25, FS(N)(b5)= 0.25. Thus,weobtain

S(N)={(b1,0.80,0.20,0.16), (b2,0.85,0.20,0.20), (b3,0.80,0.20,0.20), (b4,0.85,0.20,0.20), (b5,0.82,0.20,0.20)}, S(N)={(b1,0.79,0.30,0.20), (b2,0.79,0.36,0.25), (b3,0.79,0.25,0.20), (b4,0.79,0.36,0.25), (b5,0.79,0.25,0.25)}

Definition2. Asoftroughneutrosophicrelation(SRNR) (R(M),R(M)) on B=B×B isasoftrough neutrosophicset,R:A(A×A)→P (B) isafullsoftseton Banddefinedby R(akl , bij ) ≤ min{S(ak, bi ), S(al , bj )}, forall (akl ,bij )∈R,suchthat Rs (akl )⊂B forsome akl ∈A,where Rs :A→P (B) isaset-valuedfunction,forall akl ∈A,definedby Rs (akl )= {bij ∈ B | (akl , bij ) ∈ R}, bij ∈ B

Foranyneutrosophicset M∈N (B), theupperandlowersoftroughneutrosophicapproximationof M w.r.t (B,R) aredefinedasfollows:

R(M)={(bij, TR(M)(bij ), IR(M)(bij ), FR(M)(bij )) | bij ∈ ˜ B} , R(M)={(bij, TR(M)(bij ), IR(M)(bij ), FR(M)(bij )) | bij ∈B}, where

TR(M)(bij )= bij ∈Rs (akl ) tij ∈Rs (akl )

IR(M)(bij )= bij ∈Rs (akl ) tij ∈Rs (akl )

FR(M)(bij )= bij ∈Rs (akl ) tij ∈Rs (akl )

Inotherwords,

TM (tij ), TR(M)(bij )= bij ∈Rs (akl ) tij ∈Rs (akl )

IM (tij ) , IR(M)(bij )= bij ∈Rs (akl ) tij ∈Rs (akl )

TM (tij ),

IM (tij ),(2)

FM (tij ), FR(M)(bij )= bij ∈Rs (akl ) tij ∈Rs (akl ) FM (tij ).

TR(M)(bij )= akl ∈A (1 R(akl , bij )) ∨ tij ∈B R(akl , tij ) ∧ TM (tij ) ,

TR(M)(bij )= akl ∈A R(akl , bij ) ∧ tij ∈B (1 R(akl , tij )) ∨ TM (tij ) ,

IR(M) (bij )= akl ∈A R(akl , bij ) ∧ tij ∈B (1 R(akl , tij )) ∨ IM (tij ) ,

IR(M) (bij )= akl ∈A (1 R(akl , bij )) ∨ tij ∈B R(akl , tij ) ∧ IM (tij ) ,

FR(M) (bij )= akl ∈A R(akl , bij ) ∧ tij ∈B (1 R(akl , tij )) ∨ FM (tij ) ,

FR(M) (bij )= akl ∈A (1 R(akl , bij )) ∨ tij ∈B R(akl , tij ) ∧ FM (tij ) .

Mathematics 2018, 6,125 4of37

If R(M)=R(M),thenitiscalledinducedsoftroughneutrosophicrelationonsoftroughneutrosophicset, otherwise,softroughneutrosophicrelation.

Remark1. Foraneutrosophicset M on B andaneutrosophicset N on B,wehaveneutrosophicrelation asfollow

TM (bij ) ≤min i {TN (bi )}, IM (bij )≤ min i {IN (bi )}, FM (bij )≤ min i {FN (bi )}

FromDefinition 2,itfollowsthat:

TR(M)(bij ) ≤min{TS(N)(bi ), TS(N)(bj )}, TR(M)(bij ) ≤min{TS(N)(bi ), TS(N)(bj )}, IR(M) (bij ) ≤ max{IS(N)(bi ), IS(N)(bj )}, IR(M) (bij ) ≤ max{IS(N)(bi ), IS(N)(bj )}, FR(M) (bij ) ≤max{FS(N)(bi ), FS(N)(bj )}, FR(M) (bij ) ≤max{FS(N)(bi ), FS(N)(bj )}

Definition3. InDefinition 2 bij iscalledeffective,if

TR(M)(bij )=TS(N)(bi ) ∧ TSN (bj ), TR(M)(bij )=TS(N)(bi ) ∧ TSN (bj ),

IR(M)(bij )=IS(N)(bi ) ∨ ISN (bj ), IR(M)(bij )=IS(N)(bi ) ∨ ISN (bj ), FR(M)(bij )=FS(N)(bi ) ∨ FSN (bj ), FR(M)(bij )=FS(N)(bi ) ∨ FSN (bj ).

Definition4. Asoftroughneutrosophicinfluence(SRNI)isarelationfromsoftroughneutrosophicsettosoft roughneutrosophicrelation,denotedby (X(Q),X(Q)) on ˆ B=B×B,where X: ˆ A(A×A)→P ( ˆ B) isafullsoft seton ˆ Bdefinedby

X(al amn, bi bjk ) ≤ S(al , bi ) ∧ R(amn, bjk ), forall (al amn,bi bjk )∈X andforsome i=j=k and l=m=n.Let Xs : ˆ A→P ( ˆ B) beaset-valuedfunctiondefinedby

Xs (al amn )= {bi bjk ∈ ˆ B|(al amn, (bi,, bjk )) ∈ X}, ∀(a , lamn ) ∈ ˆ A,

Forany Q∈N ( ˆ B),theupperandlowersoftroughneutrosophicapproximationof Q w.r.t ( ˆ B,X),forall bi bjk ∈ ˆ B,aredefinedasfollows:

X(Q)={(bi bjk, TX(Q)(bi bjk ), IX(Q)(bi bjk ), FX(Q)(bi bjk ))},

X(Q)={(bi bjk, TX(Q)(bi bjk ), IX(Q)(bi bjk ), FX(Q)(bi bjk ))}, where

TX(Q)(bi bjk )= bi bjk ∈Xs (al amn ) ti tjk ∈Xs (al amn )

TX(Q)(bi bjk )= bi bjk ∈Xs (al amn ) ti tjk ∈Xs (al amn )

IX(Q)(bi bjk )= bi bjk ∈Xs (al amn ) ti tjk ∈Xs (al amn )

IX(Q)(bi bjk )= bi bjk ∈Xs (al amn ) ti tjk ∈Xs (al amn )

FX(Q)(bi bjk )= bi bjk ∈Xs (al amn ) ti tjk ∈Xs (al amn )

TQ (ti tjk ) ,

TQ (ti tjk ) ,

IQ (ti tjk ),

IQ (ti tjk ) ,(3)

FQ (ti tjk ),

Mathematics 2018, 6,125 5of37

FX(Q)(bi bjk )= bi bjk ∈Xs (al amn ) ti tjk ∈Xs (al amn ) FQ (ti tjk ) .

Inotherwords,

TX(Q)(bi bjk )= al amn ∈A

TX(Q)(bi bjk )= al amn ∈A

IX(Q) (bi bjk )= al amn ∈A

(1 X(al amn, bi bjk )) ∨ ti tjk ∈B X(al amn, ti tjk ) ∧ TQ (ti tjk ) ,

X(al amn, bi bjk ) ∧ ti tjk ∈B (1 X(al amn, ti tjk )) ∨ TQ (ti tjk ) ,

X(al amn, bi bjk ) ∧ ti tjk ∈B (1 X(al amn, ti tjk )) ∨ IQ (ti tjk ) ,

IX(Q) (bi bjk )= al amn ∈A (1 X(al amn, bi bjk )) ∨ ti tjk ∈B X(al amn, ti tjk ) ∧ IQ (ti tjk ) ,

FX(Q) (bi bjk )= al amn ∈A X(al amn, bi bjk ) ∧ ti tjk ∈B (1 X(al amn, ti tjk )) ∨ FQ (ti tjk ) ,

FX(Q) (bi bjk )= al amn ∈A (1 X(al amn, bi bjk )) ∨ ti tjk ∈B X(al amn, ti tjk ) ∧ FQ (ti tjk )

Remark2. Foraneutrosophicset Q on ˆ B andaneutrosophicset N and M on B and ˜ B,respectively,wehave neutrosophicrelationasfollow

TQ (bi bjk ) ≤min jk {TM (bjk )}, IQ (bi bjk ) ≤ min jk {IM (bjk )}, FQ (bi bjk ) ≤min jk {FM (bjk )}

FromDefinition 4,wehave

TX(Q)(bi bjk ) ≤min{TS(N)(bi ), TR(M)(bjk )}, TX(Q)(bi bjk )≤ min{TS(N)(bi ), TR(M)(bjk )}, IX(Q) (bi bjk ) ≤ max{IS(N)(bi ), IR(M)(bjk )}, IX(Q)(bi bjk )≤ max{IS(N)(bi ), IR(M)(bjk )}, FX(Q) (bi bjk ) ≤max{FS(N)(bi ), FR(M)(bjk )}, FX(Q)(bi bjk )≤ max{FS(N)(bi ), FR(M)(bjk )}. Definition5. InDefinition 4 bi bjk iscalledinfluenceeffective,if

TX(Q)(bi bjk )=TS(N)(bi ) ∧ TRM (bij ), TX(Q)(bi bjk )=TS(N)(bi ) ∧ TRM (bij ), IX(Q)(bi bjk )=IS(N)(bi ) ∨ IRM (bij ), IX(Q)(bi bjk )=IS(N)(bi ) ∨ IRM (bij ), FX(Q)(bi bjk )=FS(N)(bi ) ∨ FRM (bij ), FX(Q)(bi bjk )=FS(N)(bi ) ∨ FRM (bij )

Example2. Letafullsoftset S onanuniversalset B={b1,b2,b3,b4} with A={a1,a2,a3} asetofparameters canbedefinedintabularformasTable 2 asfollows:

Table2. Fullsoftset S Sb1 b2 b3 b4 a1 1101 a2 0011 a3 1111

Now,wecandefineset-valuedfunctionSs suchthat Ss (a1)= {b1, b2, b4}, Ss (a2)= {b3, b4}, Ss (a3)= {b1, b2, b3, b4}

Mathematics 2018, 6,125 6of37

Let N= {(b1,1.0,0.0,0.0),(b2,0.8,0.0,0.1),(b3,0.5,0.5,0.5),(b4,0.4,0.7,0.3)} beaneutrosophicseton B, thenbyusingEquation(1)ofDefinition 1,wehave

S(N)= {(b1,1.0,0.0,0.0), (b2,1.0,0.0,0.0), (b3,0.5,0.5,0.3), (b4,0.5,0.5,0.3)},

S(N)= {(b1,0.4,0.7,0.3), (b2,0.4,0.7,0.3), (b3,0.4,0.7,0.5), (b4,0.4,0.7,0.3)}.

Hence (S(N), S(N)) issoftroughneutrosophicset.Letafullsoftset R on C={b12,b22,b23, b32,b42}⊆ ˜ B withL={a13,a21,a32}⊆ ˜ AcanbedefinedinTable 3 (fromLtoC)asfollows: Table3. Fullsoftset R

Rb12 b22 b23 b32 b42 a13 11101 a21 00010 a32 00100

Now,wecandefineset-valuedfunctionRs suchthat Rs (a13)= {b12, b22, b23, b42}, Rs (a21)= {b32}, Rs (a32)= {b23} andM= {(b12,0.4,0.0,0.0),(b22,0.4,0.0,0.0),(b23,0.4,0.0,0.0),(b32,0.4,0.0,0.0),(b42,0.4,0.0,0.0)} aneutrosophic relationonB,thenbyusingEquation(2)ofDefinition 2,weget

R(M)={(b12,0.4,0.0,0.0),(b22,0.4,0.0,0.0),(b23,0.4,0.0,0.0),(b32,0.4,0.0,0.0),(b42,0.4,0.0,0.0)}, R(M)={(b12,0.4,0.0,0.0),(b22,0.4,0.0,0.0),(b23,0.4,0.0,0.0),(b32,0.4,0.0,0.0),(b42,0.4,0.0,0.0)}.

Hence (R(M), R(M)) isaninducedsoftroughneutrosophicrelation.Letafullsoftset X on D={b1b22,b1b23,b1b32,b1b42,b3b12,b3b22,b3b42,b4b12,b4b22,b4b23,b4b32}⊆ ˆ B with P={a13,a21,a32}⊆ ˆ A canbe definedinTable 4 (fromPtoD)asfollows: Table4. Fullsoftset X.

Mathematics 2018
7of37
, 6,125
23
1
32
1
42
Xb1b22 b1b
b
b
b
b
b3b12 b3b22 b3b42 b4b12 b4b22 b4b23 b4b32 a1 a32 01000000010 a2 a13 00000111111 a3 a21 01000000001 SinceXisnotfullsoftsetonD,therefore,softroughneutrosophicinfluencecannotbedefinedonD. Definition6. Asoftroughneutrosophicgraphonanonempty V isa 5-orderedtuple G=(A,S,SN,R,RM) suchthat (i) Aisasetofattributes, (ii) SisanarbitraryfullsoftsetoverV, (iii) RisanarbitraryfullsoftsetoverE ⊆ V, (vi) SN=(S(N),S(N)) isasoftroughneutrosophicsetofV, (v) RM=(R(M),R(M)) isasoftroughneutrosophicsetonE ⊂ V, Inotherwords G=(G,G)=(SN,RM) isasoftroughneutrosophicgraph(SRNG),where G=(S(N),R(M)) and G=(S(N),R(M)) arelowersoftroughneutrosophicapproximategraphs(LSRNAGs) anduppersoftroughneutrosophicapproximategraphs(USRNAGs),respectively,ofG=(SN,RM)

Example3. Let V={v1,v2,v3,v4,v5,v6} beavertexsetand A={a1,a2,a3} asetofparameters.Afullsoftset SfromAonVcanbedefinedintabularforminTable 5 asfollows:

Table5. Fullsoftset S

Sv1 v2 v3 v4 v5 v6 a1 111110 a2 001111 a3 110011

LetN={(v1,0.8,0.6,0.4),(v2,0.9,0.4,0.45),(v3,0.7,0.4,0.35),(v4,0.6,0.3,0.5),(v5,0.4,0.7,0.6),(v6,0.5,0.5,0.5)} beaneutrosophicsetonV.ThenfromEquation(1)ofDefinition 1,wehave

S(N)={(v1,0.9,0.4,0.4),(v2,0.9,0.4,0.4),(v3,0.7,0.3,0.5),(v4,0.7,0.3,0.5),(v5,0.7,0.4,0.5), (v6,0.7,0.4,0.5)},

S(N)={(v1,0.4,0.7,0.6),(v2,0.4,0.7,0.6),(v3,0.4,0.7,1.0),(v4,0.4,0.7,1.0),(v5,0.4,0.7,0.6), (v6,0.4,0.7,0.6)}

Hence, SN=(S(N),S(N)) isasoftroughneutrosophicseton V.Let E={v11,v15,v16,v23,v25,v34,v41,v43, v56,v62,v63}⊆ ˜ V and L={a12,a13,a21,a23,a31}⊆ ˜ A.Thenafullsoftset R on E (from L to E)canbedefinedin Table 6 asfollows:

Table6. Fullsoftset R Rv11 v15 v16 v23 v25 v34 v41 v43 v56 v62 v63 a12 01111101100 a13 11101010100 a21 00000111011 a23 00000010110 a31 11011000010

Let M={(v11,0.4,0.3,0.35),(v15,0.3,0.3,0.2),(v16,0.3,0.2,0.25),(v23,0.4,0.1,0.1),(v25,0.4,0.2,0.0),(v34,0.3, 0.1,0.3),(v41,0.2,0.1,0.2),(v43,0.4,0.28,0.2),(v56,0.4,0.3,0.3),(v62,0.35,0.25,0.32),(v63,0.4,0.12,0.34)} bea neutrosophicsetonE.ThenfromEquation(2)ofDefinition 2,wehave

R(M)={(v11,0.4,0.1,0.00), (v15,0.4,0.10,0.00), (v16,0.4,0.10,0.00), (v23,0.4,0.10,0.00), (v25,0.4,0.1,0.00), (v34,0.4,0.10,0.20), (v41,0.4,0.10,0.30), (v43,0.4,0.10,0.20), (v56,0.4,0.1,0.30), (v62,0.4,0.10,0.30), (v63,0.4,0.10,0.20)},

R(M)={(v11,0.3,0.3,0.35), (v15,0.3,0.30,0.35), (v16,0.3,0.30,1.00), (v23,0.3,0.30,0.35), (v25,0.3,0.3,0.35), (v34,0.3,0.28,0.34), (v41,0.2,0.28,0.32), (v43,0.3,0.28,0.34), (v56,0.3,0.3,0.32), (v62,0.3,0.28,0.32), (v63,0.2,0.28,0.34)}

Hence, RM=(R(M),R(M)) issoftroughneutrosophicseton E.Thus, G=(S(N),R(M)) and G=(S(N),R(M)) areLSRNAGandUSRNAG,respectively,asshowninFigure 1

Mathematics 2018, 6,125 8of37

v1 (0 4, 0 7, 0 6) (0 .3 ,0 .3 ,0 .35) (0 .3 , 0 .3 , 0 .35)

v2 (0 4, 0 7, 0 6)

(0.3, 0.3, 1.0) ‘

(0.3,0.3,0.35) (0 3, 0 3, 0.35) (0.3,0.28,0. 34) (0 . 2, 0 . 28, 0 . 32) (0.3,0.28,0.34) (0.3,0.3,0.32)

v4 (0.4, 0.7, 0.1) v5 (0 4, 0 7, 0 6)

v1 (0 9, 0 4, 0 4) (0 .4 ,0 .1 ,0 .0) (0 .4 , 0 .1 , 0 .0)

v3 (0 4, 0 7, 0 1)

(0 .3, 0.28, 0.32)

v6 (0 4, 0 7, 0 6)

(0 .2 ,0 .28 ,0 . 34) (S(N ),R(M ))

v2 (0 9, 0 4, 0 4)

(0.4, 0.1, 0.0)

(0.4,0.1,0.0) (0 .4 , 0 .1 , 0 . 0) (0. 4,0. 1,0. 2) (0 . 4, 0 . 1, 0 . 3) (0. 4,0. 1,0. 2) (0.4,0.1,0.3)

v4 (0 7, 0 3, 0 5) v5 (0.7, 0.4, 0.5)

v3 (0 7, 0 3, 0 5)

(0 .4, 0.1, 0.3)

v6 (0.7, 0.4, 0.5)

(0 .4 ,0 .1 ,0 . 2) (S(N ), R(M ))

Figure1. Softroughneutrosophicgraph G =(G, G)

Figure1:Softroughneutrosophicgraph G =(G, G)

Hence,G=(G,G) isSRNG.

Definition7. Anunderlyinggraph(supportinggraph) G∗=(G∗ ,G∗) ofasoftroughneutrosophicgraph G=(G,G) isoftheformG∗=(V∗ ,E∗) and G∗=(V∗ ,E∗),

V∗ =LowerVertexSet={v ∈ V|TS(N)(v) = 0, IS(N)(v) = 0, FS(N)(v) = 0}, V∗ =UpperVertexSet={v ∈ V|TS(N)(v) = 0, IS(N)(v) = 0, FS(N)(v) = 0}, E∗ =LowerEdgeSet ={vij ∈ E|TR(M)(vij ) = 0, IR(M)(vij ) = 0, FR(M)(vij ) = 0}, E∗ =UpperEdgeSet ={vij ∈ E|TR(M)(vij ) = 0, IR(M)(vij ) = 0, FR(M)(vij ) = 0}.

Definition2.9. A strength ofsoftroughneutrosophicgraph,denotedbystren,isdefinedas stren= ( vjk ∈E ∗ TR(M ) (vjk )) ∧ ( vjk ∈E∗ TR(M ) (vjk )), ( vjk ∈E∗ IR(M ) (vjk ))∨ ( vjk ∈E ∗ IR(M ) (vjk )), ( vjk ∈E ∗ FR(M ) (vjk )) ∨ ( vjk ∈E ∗ FR(M ) (vjk )) .

Definition8. Asoftroughneutrosophicgraphhasawalkifeachapproximationgraphhasanalternative sequenceoftheform v0, e0, v1, e1, v2, ··· , vn 1, en 1, vn suchthat vk ∈ V∗ , ek ∈ E∗ , vk ∈ V∗ , ek ∈ E∗ where ek = vk(k+1) ∈ E, ∀k=0,1,2, ,n 1.If v0 = vn,thenitiscalledclosedwalk.Iftheedgesaredistinct, thenitiscalledasoftroughneutrosophictrail(SRNtrail).Iftheverticesaredistinct,thenitiscalledasoft roughneutrosophicpath(SRNpath).IfapathinaSRNGisclosed,thenitiscalledacycle.

Definition2.10. Astrongestpathjoininganytwovertices vi and vk isthesoftroughneutrosophicpath whichhasmaximumstrengthfrom vi and vk ,denotedby CONNG(vi,vk )or E ∞(vi ,vk ),iscalled strength ofconnectedness from vi and vk . Definition2.11. Asoftroughneutrosophicgraphisa cycle ifandonlyiftheunderlyinggraphsofeach approximationisacycle.A softroughneutrosophiccycle isasoftroughneutrosophicgraphifandonlyif thesupportinggraphofeachapproximationgraphisacycleandthereexist vlm,vij ∈E ∗ ,vlm ,vij ∈E ∗ =vij suchthat R(M )(vij )= vlm ∈E∗ vij

R(M )(vlm ), R(M )(vij )= vlm ∈E ∗ vij

R(M )(vlm ).

Mathematics 2018, 6,125 9of37

Definition9. Astrengthofsoftroughneutrosophicgraph,denotedbystren,isdefinedas

stren= ( vjk ∈E∗ TR(M)(vjk )) ∧ ( vjk ∈E∗ TR(M)(vjk )), ( vjk ∈E∗ IR(M)(vjk ))∨ ( vjk ∈E∗ IR(M)(vjk )), ( vjk ∈E∗ FR(M)(vjk )) ∨ ( vjk ∈E∗ FR(M)(vjk ))

Definition10. Astrongestpathjoininganytwovertices vi and vk isthesoftroughneutrosophicpathwhichhas maximumstrengthfrom vi and vk,denotedby CONNG (vi, vk ) or E∞ (vi, vk ),iscalledstrengthofconnectedness fromvi andvk.

Definition11. Asoftroughneutrosophicgraphisacycleifandonlyiftheunderlyinggraphsofeach approximationisacycle.Asoftroughneutrosophiccycleisasoftroughneutrosophicgraphifandonly ifthesupportinggraphofeachapproximationgraphisacycleandthereexist vlm,vij ∈E∗,vlm,vij ∈E∗ and vlm =vij suchthat R(M)(vij )= vlm ∈E∗ vij

R(M)(vlm ), R(M)(vij )= vlm ∈E∗ vij

Equivalently,eachapproximationgraphisacyclesuchthat R(M)(vij )= vlm ∈E∗ vij

R(M)(vlm )

TR(M)(vlm ), vlm ∈E∗ vij

TR(M)(vlm ), vlm ∈E∗ vij

IR(M)(vlm ), vlm ∈E∗ vij

IR(M)(vlm ), vlm ∈E∗ vij

FR(M)(vlm ) .

FR(M)(vlm ) , R(M)(vij )= vlm ∈E∗ vij

Example4. Let V={v1,v2,v3,v4} beavertexsetand A={a1,a2,a3,a4} asetofparameters.Arelation S over A×VcanbedefinedintabularforminTable 7 asfollows: Table7. Fullsoftset S Sv1 v2 v3 v4 a1 1111 a2 0101 a3 1011 a4 1010

Let N={(v1,0.3,0.4,0.6),(v2,0.4,0.5,0.1),(v3,0.9,0.6,0.4),(v4,1.0,0.2,0.1)} beaneutrosophicseton V ThenfromEquation(1)ofDefinition 1,wehave S(N)= {(v1,0.9,0.4,0.4), (v2,1.0,0.2,0.1), (v3,0.9,0.4,0.4), (v4,1.0,0.2,0.1)}, S(N)= {(v1,0.3,0.6,0.6), (v2,0.4,0.5,0.1), (v3,0.3,0.6,0.6), (v4,0.4,0.5,0.1)}

Hence, SN =(S(N), S(N)) issoftroughneutrosophicseton V.Let E={v13,v32,v24,v41}⊆V and L={a13,a32,a43}⊆A.ThenafullsoftsetRonE(fromLtoE)canbedefinedinTable 8 asfollows:

Mathematics 2018, 6,125 10of37

Hence, SN =(S(N ), S(N ))issoftroughneutrosophicseton V .Let E={v13,v32 ,v24 ,v41 }⊆

13

,a32 ,a

Table8:Fullsoftset R R v13 v32 v24 v41 a13 1011 a32 0100 a43 1000

Table8. Fullsoftset R.

Rv13 v32 v24 v41 a13 1011 a32 0100 a43 1000

Let M={(v13,0.3,0.2,0.1),(v32,0.2,0.1,0.1),(v24,0.3,0.2,0.1),(v41,0.3,0.1,0.1)} beaneutrosophicseton E

ThenfromEquation(2)ofDefinition 2,wehave

R(M)= {(v13,0.3,0.2,0.1), (v32,0.2,0.1,0.1), (v24,0.3,0.1,0.1), (v41,0.3,0.1,0.1)}, R(M)= {(v13,0.3,0.2,0.1), (v32,0.2,0.1,0.1), (v24,0.3,0.2,0.1), (v41,0.2,0.1,0.1)}.

M ={(v13,0.3,0.2,0.1),(v32,0.2,0.1,0.1),(v24,0.3,0.2,0.1),(v41,0.3,0.1,0.1)} beaneutrosophicseton E ThenfromtheEquations2.2ofDefinition2.2,wehave R(M )= {(v13 , 0 3, 0 2, 0 1), (v32, 0 2, 0 1, 0 1), (v24, 0 3, 0 1, 0 1), (v41, 0 3, 0 1, 0 1)}, R(M )= {(v13 , 0 3, 0 2, 0 1), (v32, 0 2, 0 1, 0 1), (v24, 0 3, 0 2, 0 1), (v41, 0 2, 0 1, 0 1)} Hence, RM =(R(M ), R(M ))issoftroughneutrosophicseton E.Thus, G =(S(N ),R(M ))and S(N ), R(M ))areLSRNAGandUSRNAG,respectively,asshowninFigure2.Hence, G =(G, G v1 (0 3, 0 6, 0 6) v2 (0 4, 0 5, 0 1)

Figure2. Softroughneutrosophiccycle G =(G, G)

.

,RM2) ofasoftroughneutrosophicgraph

1)(v), FS(N2)(v)≥FS(N1)(v), andvij ∈H,

(M2)

ij

(

(M1)(vij ), IR(M2)(vij )≥IR(M1)(vij ), FR(M2)(vij )≥FR(M1)(vij ),

R(M2)(vij )≤TR(M1)(vij ), IR(M2)(vij )≥IR(M1)(vij ), FR(M2)(vij )≥FR(M1)(vij )

11of37
Mathematics 2018, 6,125
Hence, RM =(R(M), R(M)) issoftroughneutrosophicseton E.Thus, G =(S(N), R(M)) and G =(S(N), R(M)) areLSRNAGandUSRNAG,respectively,asshowninFigure 2.Hence, G =(G, G) is SRNGanditisalsoasoftroughneutrosophiccycle. ˜ V and
43 }⊆A.Thenafullsoftset R on E (from L to E)canbedefinedinTable8asfollows:
v 3 (0 . 3 , 0 . 6 , 0 . 6) v 4 (0 .4 ,0 .5 ,0 . 1) Definition12. Asoftroughneutrosophicsubgraph H=(SN2
(0 .3 ,0 .2 ,0 . 1) (0 . 2, 0. 1, 0. 1) (0 .3 ,0 .2 ,0 . 1) G=(SN1,RM1),ifv∈Hsuchthat TS(N2)(v)≤TS(N1)(v), IS(N2)(v)≥IS(N1)(v), FS(N2)(v)≥FS(N1)(v), TS(N2)(v)≤TS(N1)(v), IS(N2)(v)≥IS
(0 . 2, 0. 1, 0. 1) G =(S(N ),R(M )) N
v1 (0 9, 0 4, 0 4) v2 (1 0, 0 2, 0 1) TR
v 3 (0 . 9 , 0 . 4 , 0 . 4) v 4 (1 .0 ,0 .2 ,0 . 1) (v
(0 .3 ,0 .2 ,0 . 1) (0 . 2, 0. 1, 0. 1) (0 .3 ,0 .1 ,0 . 1) )≤TR
(0 . 2, 0. 1, 0. 1) G =(S(N ), R(M )) Figure2:Softroughneutrosophicgraph G =(G, G) isSRNGanditisalsoasoftroughneutrosophiccycle. 10 T

Definition13. A H=(SN2,RM2) iscalledsoftroughneutrosophicspanningsubgraphofasoftrough neutrosophicgraphG=(SN1,RM1),ifHisasoftroughneutrosophicsubgraphsuchthat

TS(N2)(v)=TS(N1)(v), IS(N2)(v)=IS(N1)(v), FS(N2)(v)=FS(N1)(v), TS(N2)(v)=TS(N1)(v), IS(N2)(v)=IS(N1)(v), FS(N2)(v)=FS(N1)(v)

Definition14. Asoftroughneutrosophicgraphisaforestifandonlyifeachsupportingapproximationgraphis aforest.Asoftroughneutrosophicgraph G=(SN1,RM1) isasoftroughneutrosophicforestifandonlyifthere existasoftroughneutrosophicspanningsubgraphH=(SN1,RM2) isaforestsuchthatvij ∈G H

TR(M1)(vij )<TCONNH (vi, vj ), IR(M1)(vij )>ICONNH (vi, vj ), FR(M1)(vij ) >FCONNH (vi, vj ),

TR(M1)(vij )<TCONNH (vi, vj ), IR(M1)(vij )>ICONNH (vi, vj ), FR(M1)(vij ) >FCONNH (vi, vj )

Asoftroughneutrosophicgraphisatreeifandonlyifeachsupportingapproximationgraphisatree. Asoftroughneutrosophicgraph G=(SN1,RM1) isasoftroughneutrosophictreeifandonlyifthereexistasoft roughneutrosophicspanningsubgraphH=(SN1,RM2) isatreesuchthatvij ∈G H

TR(M1)(vij )<TCONNH (vi, vj ), IR(M1)(vij )>ICONNH (vi, vj ), FR(M1)(vij ) >FCONNH (vi, vj ), TR(M1)(vij )<TCONNH (vi, vj ), IR(M1)(vij )>ICONNH (vi, vj ), FR(M1)(vij ) >FCONNH (vi, vj ).

Definition15. Let G=(SN,RM) beasoftroughneutrosophicgraph,anedge vij isabridgeiftheedge vij isa bridgeinbothsupportinggraphof G and G,thatistheremovalof vij disconnectsboththe G and G.Anedge vij isasoftroughneutrosophicbridgeinasoftroughneutrosophicgraphG=(SN,RM),ifvlm ∈G

TCONNG vij (vl , vm )<TCONNG (vl , vm ), TCONNG vij (vl , vm )<TCONNG (vl , vm ), ICONNG vij (vl , vm ) >ICONNG (vl , vm ), ICONNG vij (vl , vm ) >ICONNG (vl , vm ), FCONNG vij (vl , vm )>FCONNG (vl , vm ), FCONNG vij (vl , vm )>FCONNG (vl , vm ).

Definition16. Let G=(SN1,RM1) beasoftroughneutrosophicgraphthenavertex vi in G isa cutnode(cutvertex)ifitisacutnodeineachsupportinggraphof G and G.Thatis,thedeletionof vi fromthe supportinggraphsof G and G increasethecomponentsinthesupportinggraphs.Avertex vi iscalledsoftrough neutrosophiccutnode(cutvertex)inasoftroughneutrosophicgraphiftheremovalof vi reducesthestrengthof theconnectednessfromnodesvj tovk ∈V∗ ,V∗

TCONNG vi (vj, vk )<TCONNG (vj, vk ), TCONNG vi (vj, vk )<TCONNG (vj, vk ), ICONNG vi (vj, vk ) >ICONNG (vj, vk ), ICONNG vi (vj, vk ) >ICONNG (vj, vk ),

Mathematics 2018, 6,125 12of37
F
TR(M)(vij )≥TCONNG vij (v
vj
, TR(
(vij ) ≥T
G
IR(M)(vij ) ≤I
G vij
IR
(
) ≤ I
F
(v
)≤F
F
≤ F
CONNG vi (vj, vk )>FCONNG (vj, vk ), FCONNG vi (vj, vk )>FCONNG (vj, vk ) Definition17. Anedge vij insoftroughneutrosophicgraph G iscalledstrongsoftroughneutrosophicedgeif
i,
)
M)
CONN
vij (vi, vj ),
CONN
(vi, vj ) ,
(M)
vij
CONNG vij (vi, vj ),
R(M)
ij
CONNG vij (vi, vj ),
R(M)(vij )
CONNG vij (vi, vj ).

Definition18. Anedge vij insoftroughneutrosophicgraph G iscalled α strongsoftroughneutrosophic edgeif

TR(M)(vij )>TCONNG vij (vi, vj ), TR(M)(vij ) >TCONNG vij (vi, vj ),

IR(M)(vij ) <ICONNG vij (vi, vj ) , IR(M)(vij ) < ICONNG vij (vi, vj ),

FR(M)(vij )<FCONNG vij (vi, vj ), FR(M)(vij ) < FCONNG vij (vi, vj )

Definition19. Anedge vij insoftroughneutrosophicgraph G iscalled β strongsoftroughneutrosophic edgeif

TR(M)(vij )=TCONNG vij (vi, vj ), TR(M)(vij )=TCONNG vij (vi, vj ),

IR(M)(vij )=ICONNG vij (vi, vj ) , IR(M)(vij )= ICONNG vij (vi, vj ),

FR(M)(vij )=FCONNG vij (vi, vj ), FR(M)(vij )= FCONNG vij (vi, vj )

Definition20. Anedge vij insoftroughneutrosophicgraph G iscalled δ strongsoftroughneutrosophic edgeif

TR(M)(vij )<TCONNG vij (vi, vj ), TR(M)(vij ) <TCONNG vij (vi, vj ),

IR(M)(vij ) >ICONNG vij (vi, vj ) , IR(M)(vij ) > ICONNG vij (vi, vj ),

FR(M)(vij )>FCONNG vij (vi, vj ), FR(M)(vij ) > FCONNG vij (vi, vj )

Example5. Let V={v1,v2,v3,v4} beavertexsetand A={a1,a2,a3,a4} asetofparameters.Arelation S over A × VcanbedefinedintabularforminTable 9 asfollows:

Table9. Fullsoftset S Sv1 v2 v3 v4 a1 1111 a2 0101 a3 1011 a4 1010

Let N={(v1,0.3,0.4,0.6),(v2,0.4,0.5,0.1),(v3,0.9,0.6,0.4),(v4,1.0,0.2,0.1)} beaneutrosophicseton V ThenfromEquation(1)ofDefinition 1,wehave

S(N)= {(v1,0.9,0.4,0.4), (v2,1.0,0.2,0.1), (v3,0.9,0.4,0.4), (v4,1.0,0.2,0.1)}, S(N)= {(v1,0.3,0.6,0.6), (v2,0.4,0.5,0.1), (v3,0.3,0.6,0.6), (v4,0.4,0.5,0.1)}

Hence, SN=(S(N),S(N)) issoftroughneutrosophicseton V.Let E={v13,v32,v43}⊆ ˜ V and L={a12,a24,a34}⊆ ˜ A.ThenafullsoftsetRonE(fromLtoE)canbedefinedinTable 10 asfollows:

Table10. Fullsoftset R

Rv13 v32 v43 a12 010 a24 101 a34 001

Mathematics 2018, 6,125 13of37

Hence, SN =(S(N ),S(N ))issoftroughneutrosophicseton V .Let E={v13,v32,v43 }⊆V and L

Thenafullsoftset R on E (from L to E)canbedefinedinTable10asfollows:

2018, 6,125

Table10:Fullsoftset R R v13 v32 v43 a12 010 a24 101 a34 001

Let M={(v13,0.3,0.2,0.0),(v32,0.3,0.0,0.1),(v43,0.3,0.2,0.1)} beaneutrosophicseton E.Thenfrom Equation(2)ofDefinition 2,wehave

R(M)= {(v13,0.3,0.2,0.0), (v32,0.3,0.0,0.1), (v43,0.3,0.2,0.1)},

Let M ={(v13,0.3,0.2,0.0),(v32,0.3,0.0,0.1),(v43,0.3,0.2,0.1)} beaneutrosophicseton E.Thenfromthe Equations2.2ofDefinition2.2,wehave

R(M)= {(v13,0.3,0.2,0.1), (v32,0.3,0.0,0.1), (v43,0.3,0.2,0.1)}.

R(M )= {(v13 , 0 3, 0 2, 0 0), (v32, 0 3, 0 0, 0 1), (v43, 0 3, 0 2, 0 1)}, R(M )= {(v13 , 0.3, 0.2, 0.1), (v32, 0.3, 0.0, 0.1), (v43, 0.3, 0.2, 0.1)}.

Hence, RM=(R(M),R(M)) issoftroughneutrosophicseton E.Thus, G=(S(N),R(M)) and G=(S(N),R(M)) areLSRNAGandUSRNAG,respectively,asshowninFigure 3.Hence, G =(G, G) is SRNGandatree.v13 isabridgeandv3 isacutenode

Hence, RM =(R(M ),R(M ))issoftroughneutrosophicseton E.Thus, G=(S(N ),R(M ))and G=(S(N ),R(M )) areLSRNAGandUSRNAG,respectively,asshowninFigure3.Hence, G =(G, G)isSRNGandatree.

v1(0 3, 0 6, 0 6)

(0 3, 0.2, 0 1) (0 3, 0 0, 0 1) (0.3,0.2,0.1) G =(S(N ),R(M ))

v2(0 4, 0 5, 0 1) v4(0.4,0.5,0. 1)

v3(0 3, 0 6, 0 6)

v1 (0 9, 0 4, 0 4) v2 (1 0, 0 2, 0 1) v4(1.0,0.2,0. 1)

v3 (0 9, 0 4, 0 4)

(0 3, 0.2, 0 0) (0 3, 0.0, 0 1) (0.3,0.2,0.1) G =(S(N ), R(M ))

Figure3. Softroughneutrosophicgraph G =(G, G)

Figure3:Softroughneutrosophicgraph G =(G, G)

v13 isabridgeand v3 isacutenode

WestatethefollowingTheoremswithouttheirproofs.

WestatethefollowingTheoremswithouttheirproofs.

Theorem1. Let G=(SN1,RM1) beasoftroughneutrosophicgraphtree.Anedge vij isthestrongestedgeif vij isanedgeofitssubgraphH=(SN1,RM2)

Theorem2.1. Let G=(SN1,RM1) beasoftroughneutrosophicgraphtree.Anedge vij isthestrongest edgeif vij isanedgeofitssubgraph H=(SN1,RM2)

Theorem2. If v isacommonnodeofatleasttwosoftroughneutrosophicbridges,then v isasoftrough neutrosophiccutnode.

Theorem2.2. If v isacommonnodeofatleasttwosoftroughneutrosophicbridges,then v isasoft roughneutrosophiccutnode.

Theorem3. Ifvij isasoftroughneutrosophicbridgeofG,then

Theorem2.3. If vij isasoftroughneutrosophicbridgeof G,then

TR(M )(vij )=TCONNG vij (vi,vj ),TR(M )(vij )=TCONNG vij (vi,vj ), IR(M )(vij )=ICONNG vij (vi,vj ) ,IR(M )(vij )= ICONNG vij (vi,vj ), FR(M )(vij )=FCONNG vij (vi,vj ),FR(M )(vij )=FCONNG vij (vi,vj )

TR(M)(vij )=TCONNG vij (vi, vj ), TR(M)(vij )=TCONNG vij (vi, vj ), IR(M)(vij )=ICONNG vij (vi, vj ) , IR(M)(vij )= ICONNG vij (vi, vj ), FR(M)(vij )=FCONNG vij (vi, vj ), FR(M)(vij )= FCONNG vij (vi, vj ).

3.SoftRoughNeutrosophicInfluenceGraphs

3SoftRoughNeutrosophicInfluenceGraphs

Definition21. Asoftroughneutrosophicinfluencegraph G onanonemptyset V isa7-orderedtuple (A,S,SN,R,RM,X,XQ) suchthat (i) Aisasetofparameters, (ii) SisanarbitraryfullsoftsetoverV, (iii) RisanarbitraryfullsoftsetoverE ⊆ V × V, (iv) XisanarbitraryfullsoftsetoverI ⊆ V × E, (v) SN=(S(N),S(N)) isasoftroughneutrosophicsetonV,

Definition3.1. A softroughneutrosophicinfluencegraph Gonanonemptyset V isa7-orderedtuple (A,S,SN,R,RM,X,XQ)suchthat

14of37
Mathematics
=
a12
a24 ,a34}⊆A
{
,
13

(vi) RM=(R(M),R(M)) isasoftroughneutrosophicsetonE, (vii) XQ=(X(Q),X(Q)) isasoftroughneutrosophicsetonI,

Thus, G=(G,G)=(SN,RM,XQ) isasoftroughneutrosophicinfluencegraph(SRNIG),where G=(S(N),R(M),X(Q)) and G=(S(N),R(M),X(Q)) areloweranduppersoftroughneutrosophicinfluence approximationgraphs(LSRNIAGs)and(USRNIAGs),respectively,of G

Example6. Let V={v1,v2,v3,v4,v5,v6} beavertexsetand A={a1,a2,a3,a4} asetofparameters.Afullsoft setSoverA × VcanbedefinedintabularforminTable 11 asfollows:

Table11. Fullsoftset S

Sv1 v2 v3 v4 v5 v6 a1 111001 a2 010011 a3 101111 a4 111111

LetN={(v1,1.0,0.4,0.7),(v2,0.9,0.6,0.55),(v3,0.7,0.9,0.5),(v4,0.6,0.5,0.6), (v5,0.65,0.8,0.65),(v6,0.8,0.7,0.8)} beaneutrosophicsetonV.ThenfromEquation(1)ofDefinition 1,wehave

S(N)={(v1,1.0,0.4,0.50), (v2,0.9,0.6,0.55), (v3,1.0,0.4,0.5), (v4,1.0,0.4,0.5), (v5,0.9,0.6,0.55), (v6,0.9,0.6,0.55)}, S(N)={ (v1,0.7,0.9,0.80), (v2,0.7,0.8,0.80), (v3,0.7,0.9,0.8), (v4,0.6,0.9,0.8), (v5,0.65,0.8,0.8) (v6,0.7,0.8,0.8)}

Hence, SN=(S(N),S(N)) issoftroughneutrosophicseton V.Let E={v12,v24,v32,v42,v52,v62,}⊆V and L={a13,a24,a34,a41}⊆A.ThenafullsoftsetRonE(fromLtoE)canbedefinedinTable 12 asfollows:

Table12. Fullsoftset R

Rv12 v24 v32 v42 v52 v62 a13 010001 a24 010011 a34 101111 a41 111111

LetM={(v12,0.6,0.3,0.4),(v24,0.58,0.38,0.46),(v32,0.56,0.37,0.47),(v42,0.54,0.34,0.38), (v52,0.52,0.32,0.5),(v62,0.5,0.4,0.45)} beaneutrosophicsetonE.ThenfromEquation(2)ofDefinition 2,wehave

R(M)={(v12,0.60,0.30,0.38), (v24,0.58,0.38,0.45), (v32,0.60,0.30,0.38), (v42,0.60,0.30,0.38), (v52,0.58,0.32,0.45), (v62,0.58,0.38,0.45)},

R(M)={(v12,0.50,0.40,0.50), (v24,0.50,0.40,0.46), (v32,0.50,0.40,0.50), (v42,0.50,0.40,0.50), (v52,0.50,0.40,0.50), (v62,0.50,0.40,0.46)}

Hence, RM=(R(M),R(M)) issoftroughneutrosophicseton E.Thus, G=(S(N),R(M)) and G=(S(N),R(M)) areLSRNAGandUSRNAG,respectively,asshownin Figure 4.Hence, G=(G,G) isSRNG.Let I={v1v24,v1v32,v1v42,v1v52,v1v62,v3v12,v3v24, v3v42,v3v52,v3v62,v4v12,v4v32,v4v52,v4v62,v5v12, v5v24,v5v32,v5v42,v5v62,v6v12,v6v24,v6v32,v6v42,v6v52} ⊆V × E and P={a1 a24,a1 a34,a2 a13,a2 a34,a2 a41,a3 a24,a3 a41,a4 a13}⊆ ˆ A.Thenand Q aneutrosophicseton I andafullsoftsetXonI(fromPtoI)canbedefinedinTable 13,respectivelyasfollows:

Mathematics 2018, 6,125 15of37

(v4, 0 6, 0 9, 0 8)

(v3 , 0 7, 0 9, 0 8)

(v1 , 0.7, 0.9, 0.8)

(v5, 0 65, 0 8, 0 8) (0 .50 , 0 .40 , 0 .50) (0. 50, 0. 40, 0. 46) (0 . 50, 0. 40, 0. 50) (0 .50 ,0 .40 ,0 . 50) (0 . 50 , 0 . 40 , 0 50) (0 . 50, 0 . 40, 0 46)

(v2 , 0 7, 0 8, 0 8)

G =(S(N ),R(M ))

(v4 , 1 0, 0 4, 0 5)

(v6 , 0 7, 0 8, 0 8)

(v3 , 1 0, 0 4, 0 5)

(v1 , 1 0, 0 4, 0 5)

(v5, 0 9, 0 6, 0 55) (0 .60 , 0 .30 , 0 .38) (0. 58, 0. 38, 0. 45) (0 . 58, 0. 32, 0. 45) (0 .60 ,0 .30 ,0 . 38) (0 . 60 , 0 . 30 , 0 . 38) (0 . 58, 0 . 38, 0 . 45)

(v6 , 0 9, 0 6, 0 55)

(v2, 0.9, 0.6, 0.55)

G =(S(N ), R(M ))

Figure4:Softroughneutrosophicgraph G =(G, G)

Figure4. Softroughneutrosophicgraph G =(G, G) Table13. Fullsoftset X

v

Hence, RM =(R(M ),R(M ))issoftroughneutrosophicseton E.Thus, G=(S(N ),R(M ))and G=(S(N ),R(M ))areLSRNAGandUSRNAG,respectively,asshowninFigure4.Hence, G=(G,G)is SRNG.Let I={v1v24 ,v1v32 ,v1 v42,v1 v52,v1 v62,v3 v12 ,v3v24 , v3 v42,v3 v52,v3 v62,v4 v12 ,v4v32 ,v4v52 ,v4v62 ,v5 v12, v5v24 ,v5 v32,v5 v42,v5 v62,v6 v12 ,v6v24 ,v6v32 ,v6v42 ,v6 v52}⊆V ×E and P ={a1a24,a1a34 ,a2a13,a2a34,a2 a41,a3a24, a3a41,a4 a13}⊆ ˆ A.Thenand Q aneutrosophicseton I andafullsoftset X on I (from P to I)canbe definedinTable13,respectivelyasfollows: Q={(v1 v24 , 0 42, 0 3, 0 38), (v1v32, 0 43, 0 28, 0 37), (v1v42, 0 49, 0 26, 0 33), (v1v52, 0 47, 0 29, 0 32), (v1 v62 , 0.46, 0.28, 0.36), (v3v12 , 0.4, 0.29, 0.37), (v3v24, 0.45, 0.24, 0.36), (v3v42, 0.48, 0.29, 0.35), (v3 v52, 0 41, 0 24, 0 36), (v3v62, 0 42, 0 26, 0 34), (v4v12, 0 5, 0 25, 0 3), (v4v32, 0 44, 0 27, 0 32), (v4 v52 , 0 45, 0 23, 0 31), (v4v62 , 0 48, 0 23, 0 38), (v5v12 , 0 46, 0 24, 0 3), (v5v24, 0 47, 0 26, 0 34), (v5 v32, 0.4, 0.3, 0.36), (v5v42, 0.48, 0.29, 0.38), (v5v62, 0.49, 0.3, 0.37), (v6v12 , 0.49, 0.3, 0.37), (v6 v24, 0.4, 0.28, 0.35), (v6v32 , 0.47, 0.27, 0.34), (v6v42 , 0.46, 0.29, 0.33), (v6v52 , 0.49, 0.3, 0.32)}

Thentheloweranduppersoftroughneutrosophicapproximationis directlycalculatedusingtheEquations2.3ofDefinition2.4,wehave

Mathematics 2018, 6,125 16of37
X v1v24 v1v32 v1v42 v1v52 v1v62 v3
12 v3v24 v3v42
3
52 v3v62 v4v12
4
X (Q)={(v1 v24, 0 49, 0 26, 0 32), (v1v32, 0 49, 0 26, 0 32), (v1v42, 0 49, 0 26, 0 32), (v1v52, 0 49, 0 26, 0 32), (v1v62, 0 49, 0 26, 0 34), (v3v12, 0 5, 0 23, 0 3), (v3v24, 0 49, 0 23, 0 34), (v3v42, 0 5, 0.23, 0.3), (v3v52, 0.5, 0.23, 0.3), (v3v62, 0.49, 0.23, 0.3), (v4v12 , 0.5, 0.23, 0.38), (v4v32, 0 5, 0 23, 0 3), (v4v52, 0 49, 0 23, 0 31), (v4v62, 0 49, 0 23, 0 34), (v5v12, 0 49, 0 24, 0 3), (v5 v24, 0 49, 0 26, 0 34), (v5v32, 0 49, 0 24, 0 3), (v5v42 , 0 49, 0 24, 0 3), (v5v62, 0 49, 0 26, 0 34) ( 0 49 0 26 0 32) ( 0 49 0 26 0 34) ( 0 49 0 24 0 3) ( 0 49 32 v4v52 v4v62 v5v12 v5v24 v5v32 v5v42 v5v62 v6v12 v6v24 v6v32 v6v42 v6v52 a1 a24 111110000000 000000001001 a1 a34 001110000000 000000010011 a2 a13 000000000000 000100101010 a2 a34 000000000011 111011110111 a2 a41 000000000000 001111111111 a3 a24 100110000000 110100101001 a3 a41 111111111111 111111111111 a4 a13 000010100100 010100101000
v
v
v
v

Q={(v1v24,0.42,0.3,0.38), (v1v32,0.43,0.28,0.37), (v1v42,0.49,0.26,0.33), (v1v52,0.47,0.29,0.32), (v1v62,0.46,0.28,0.36), (v3v12,0.4,0.29,0.37), (v3v24,0.45,0.24,0.36), (v3v42,0.48,0.29,0.35), (v3v52,0.41,0.24,0.36), (v3v62,0.42,0.26,0.34), (v4v12,0.5,0.25,0.3), (v4v32,0.44,0.27,0.32), (v4v52,0.45,0.23,0.31), (v4v62,0.48,0.23,0.38), (v5v12,0.46,0.24,0.3), (v5v24,0.47,0.26,0.34), (v5v32,0.4,0.3,0.36), (v5v42,0.48,0.29,0.38), (v5v62,0.49,0.3,0.37), (v6v12,0.49,0.3,0.37), (v6v24,0.4,0.28,0.35), (v6v32,0.47,0.27,0.34), (v6v42,0.46,0.29,0.33), (v6v52,0.49,0.3,0.32)}

ThentheloweranduppersoftroughneutrosophicapproximationisdirectlycalculatedusingEquation(3)of Definition 4,wehave

X(Q)={(v1v24,0.49,0.26,0.32), (v1v32,0.49,0.26,0.32), (v1v42,0.49,0.26,0.32), (v1v52,0.49,0.26, 0.32), (v1v62,0.49,0.26,0.34), (v3v12,0.5,0.23,0.3), (v3v24,0.49,0.23,0.34), (v3v42,0.5, 0.23,0.3), (v3v52,0.5,0.23,0.3), (v3v62,0.49,0.23,0.3), (v4v12,0.5,0.23,0.38), (v4v32, 0.5,0.23,0.3), (v4v52,0.49,0.23,0.31), (v4v62,0.49,0.23,0.34), (v5v12,0.49,0.24,0.3), (v5v24,0.49,0.26,0.34), (v5v32,0.49,0.24,0.3), (v5v42,0.49,0.24,0.3), (v5v62,0.49,0.26, 0.34), (v6v12,0.49,0.26,0.32), (v6v24,0.49,0.26,0.34), (v6v32,0.49,0.24,0.3), (v6v42,0.49, 0.26,0.33), (v6v52,0.49,0.26,0.32)};

X(Q)={(v1v24,0.4,0.3,0.38), (v1v32,0.4,0.3,0.38), (v1v42,0.46,0.3,0.37), (v1v52,0.46,0.3,0.37), (v1v62,0.46,0.3,0.37), (v3v12,0.4,0.3,0.38), (v3v24,0.4,0.3,0.38), (v3v42,0.4,0.3,0.38), (v3v52,0.4,0.3,0.38), (v3v62,0.4,0.3,0.38), (v4v12,0.4,0.3,0.38), (v4v32,0.4,0.3,0.38), (v4v52,0.4,0.3,0.38), (v4v62,0.4,0.3,0.38), (v5v12,0.4,0.3,0.38), (v5v24,0.4,0.3,0.37), (v5v32,0.4,0.3,0.38), (v5v42,0.4,0.3,0.38), (v5v62,0.4,0.3,0.37), (v6v12,0.46,0.3,0.37), (v6v24,0.4,0.3,0.37), (v6v32,0.4,0.3,0.38), (v6v42,0.46,0.3,0.37), (v6v52,0.46,0.3,0.37)}

Thus, G=(S(N),R(M),X(Q)) and G=(S(N),R(M),X(Q)) areLSRNIAGandUSRNIAG,respectively, asshowninFigures 5 and 6.Hence,G=(G,G) isSRNIG.

v4 (0 . 6, 0. 9, 08)

v5(0 65, 0 8, 0 8)

(0 46 ,0 3 ,0 37) (0 4, 0 3, 0 37) (0 4, 0. 3, 0 38) (0. 4, 0. 3, 038) (0 4, 0 3, 0 38)

(0 46, 0 3, 0 37) (0 46, 0. 3, 0. 37)

suchthat

(1 .2 ,0 .3 ,038)

v1(0 7, 0 9, 0 8) v2 (0 . 7, 0. 8, 0. 8)

(0 . 4, 0. 3, 0. 38) (046 ,03 ,0 .37)

(0 4, 0 3, 0 38) (0. 46, 0. 3, 037)

(0 .4 ,03 ,0 . 38) (04,03,038) (0 4 ,0 .3 ,0 38)

(04, 0. 3, 0. 38)

(04 ,0 .3 ,038)

(0 .5 ,04 ,046) (0 5, 0 4, 0 5) (05,0. 4,05) (0 5, 0 4, 0 46) (0 .5 ,0 .4 ,05)

(0 . 4, 0. 3, 0. 38) (0 4 , 0 03 , 0 37)

(04,0 3,038)

v6(0 7, 0 8, 0 8)

(0 4 , 0 3 , 0 38) (0 4 0 3 , 0 38) (0 46, 0 03, 0 38)

(0 .4 ,0 .3 ,038) (04 ,03 ,038)

v3(0 7, 0 9, 0 8)

Figure5. LowerSoftroughneutrosophicgraphG =(S(N), R(M), X(Q))

Figure5:LowerSoftroughneutrosophicgraphG =(S(N),R(M),X(Q))

vk ∈ V∗ ,ek ∈ E∗,ik,i′ k ∈ I∗ , vk ∈ V ∗ ,ek ∈ E ∗ ,ik,i′ k ∈ I ∗ where ik=(vkuv), ek=uv, i′ k=(vwvk+1)and ∀k=0,1,2, ,n 1.If v0 = vn,thenitiscalled closed.Ifthe pairsaredistinct,thenitiscalleda softroughneutrosophicinfluencetrail (SRNItrail).Iftheedges aredistinct,thenitiscalleda softroughneutrosophictrail (SRNtrail).Iftheverticesaredistinctin SRNtrail,thenitiscalleda softroughneutrosophicpath (SRNpath).Ifthevertices,edgeandpairsare distinctinawalkofSRNIG,thenitiscalleda softroughneutrosophicinfluencepath (SRNIpath).A pathisatrailandaninfluencetrail.Ifapathinasoftroughneutrosophicinfluencegraphisclosed,then

Mathematics 2018, 6,125 17of37

v1(1 0, 0 4, 0 7)

v4 (1 . 0, 0. 4, 0. 5)

v5(0 9, 0 6, 0 55)

(0 .49 ,0 .26 ,0 . 34) (0 . 49, 0. 26, 0. 34) (0 . 49, 0. 24, 0. 3) (0. 49, 0. 24, 0. 3) (0 49, 0 24, 0 3)

(0 . 49, 0 . 26, 0 32) (0 . 49, 0. 26, 0. 32)

(0 .6 ,0 .3 ,0 . 38)

(0 . 49, 0. 26, 0. 32) (0 .49 , 0 .26 , 0 .32)

(0 5, 0 23, 0 38) (0. 49, 0. 26, 0. 34)

(0 .49 ,0 .23 ,0 . 34) (0 .5, 0.23, 0.3) (0 .49 ,0 .23 ,0 . 34)

(0 . 49, 0. 26, 0. 32)

(0 . 49, 0. 24, 0. 3) (0 .49 , 0 .26 , 0 . 34)

(0 49,0 26,0.34)

(0 .58 ,0 .38 ,0 .45) (0 6, 0 3, 0 38) (0. 58,0. 32,0. 45) (0 . 58, 0 . 38, 0 45) (0 .6 ,0 .3 ,0 .38)

v6(0 9, 0 6, 0 55)

v2(0 9, 0 6, 0 55)

(0 .5 ,0 .23 ,0 .3) (0 .49 ,0 .23 ,0 .3)

(0 5, 0.23, 0.3)

(0 . 5 , 0 . 23 , 0 . 3) (0 . 49 , 0 . 23 , 0 . 31) (0 49, 0 26, 0 32)

v3(1 0, 0 4, 0 5)

Figure6. UpperSoftroughneutrosophicgraph G =(S(N), R(M), X(Q))

Definition22. Anunderlyinginfluencegraph(supportinginfluencegraph) G∗=(G∗,G∗) ofasoftrough neutrosophicinfluencegraph G=(G,G) isoftheform G∗=(V∗,E∗,I∗) and G∗=(V∗,E∗,I∗),where

V∗ =LowerVertexSet={v ∈ V|TS(N)(v) = 0, IS(N)(v) = 0, FS(N)(v) = 0},

V∗ =UpperVertexSet={v ∈ V|TS(N)(v) = 0, IS(N)(v) = 0, FS(N)(v) = 0}, E∗ =LowerEdgeSet ={vij ∈ E|TR(M)(vij ) = 0, IR(M)(vij ) = 0, FR(M)(vij ) = 0}, E∗ =UpperEdgeSet ={vij ∈ E|TR(M)(vij ) = 0, IR(M)(vij ) = 0, FR(M)(vij ) = 0},

I∗ =LowerInfluence ={vi vjk ∈ I|TX(Q)(vi vjk ) = 0, IX(Q)(vi vjk ) = 0, FX(Q)(vi vjk ) = 0}, I∗ =UpperInfluence ={vi vjk ∈ I|TX(Q)(vi vjk ) = 0, IX(Q)(vi vjk ) = 0, FX(Q)(vi vjk ) = 0}

Definition23. If vij ∈E∗ (E∗),then vij isaloweredge(upperedge)ofthesoftroughneutrosophicinfluence graph.If vi vjk ∈I∗ (I∗),then vi vjk islowerpairs(upperpair).If vjk ∈E∗(E∗)and vi vjk,isnotlowerpairs (upperpairs),thenitisalowernon-influenceedge(uppernon-influenceedge).

Figure6:UpperSoftroughneutrosophicgraph G=(S(N ), R(M ), X(Q)) vivjk ∈I ∗ IR(M )(vivjk )), ( vivjk ∈I ∗ FR(M )(vivjk ) ∨ vivjk ∈E∗ FR(M )(vivjk )) . Definition3.6. InasoftroughneutrosophicinfluencegraphG,ifineachapproximationgraph CONNG(vi,vk)=E∞(vi,vk)= ∨α{Eα(vi,vk)},CONNG(vi,vk)= E∞(vi,vk)= ∨α{Eα(vi,vk)} where Eα(vi,vk)=(Eα 1 ◦ E)(vi,vk), Eα(vi,vk)=(Eα 1 ◦ E)(vi,vk), and (E ◦ E)(vi,vk)= vj ∈V∗ (TR(M )(vij ) ∧ TR(M )(vjk ))), vj ∈V∗ (IR(M )(vij ) ∨ IR(M )(vjk )), vj ∈V∗ (FR(M )(vij ) ∨ FR(M )(vjk )) , (E ◦ E)(vi,vk)= vj ∈V∗ (TR(M )(vij ) ∧ TR(M )(vjk )), vj ∈V∗ (IR(M )(vij ) ∨ IR(M )(vjk )), vj ∈V∗ (FR(M )(vij ) ∨ FR(M )(vjk )) .

Definition24. Asoftroughneutrosophicinfluencegraphhasawalkifeachapproximationgraphhasan alternativesequenceoftheform v0, i0, e0, i0, v1, , vn 1, in 1, en 1, in 1, vn suchthat vk ∈ V∗ , ek ∈ E∗ , ik, ik ∈ I∗ , vk ∈ V∗ , ek ∈ E∗ , ik, ik ∈ I∗

Mathematics 2018, 6,125 18of37
18

where ik =(vk uv), ek =uv, ik =(vwvk+1) and ∀k=0,1,2, ,n 1.If v0 = vn,thenitiscalledclosed.Ifthe pairsaredistinct,thenitiscalledasoftroughneutrosophicinfluencetrail(SRNItrail).Iftheedgesaredistinct, thenitiscalledasoftroughneutrosophictrail(SRNtrail).IftheverticesaredistinctinSRNtrail,thenitis calledasoftroughneutrosophicpath(SRNpath).Ifthevertices,edgeandpairsaredistinctinawalkofSRNIG, thenitiscalledasoftroughneutrosophicinfluencepath(SRNIpath).Apathisatrailandaninfluencetrail. Ifapathinasoftroughneutrosophicinfluencegraphisclosed,thenitiscalledacycle.

Definition25. Astrengthofsoftroughneutrosophicinfluencegraph,denotedbystren,isdefinedas stren= ( vjk ∈E∗ TR(M)(vjk )) ∧ ( vjk ∈E∗ TR(M)(vjk )), ( vjk ∈E∗ IR(M)(vjk ))∨ ( vjk ∈E∗ IR(M)(vjk )), ( vjk ∈E∗ FR(M)(vjk )) ∨ ( vjk ∈E∗ FR(M)(vjk )) .

Aninfluencestrengthofsoftroughneutrosophicinfluencegraph,denotedbyInstren,isdefinedas Instren= ( vi vjk ∈I∗ TX(Q)(vi vjk ) ∧ vi vjk ∈I∗ TX(Q)(vi vjk )), ( (vi vjk )∈I∗ IR(M)(vi vjk )∨ vi vjk ∈I∗ IR(M)(vi vjk )), ( vi vjk ∈I∗ FR(M)(vi vjk ) ∨ vi vjk ∈E∗ FR(M)(vi vjk )) . Definition26. Inasoftroughneutrosophicinfluencegraph G,ifineachapproximationgraph

CONNG(vi, vk )= E∞ (vi, vk )= ∨α {Eα (vi, vk )}, CONNG(vi, vk )= E∞ (vi, vk )= ∨α {Eα (vi, vk )} where Eα (vi, vk )=(Eα 1 ◦ E)(vi, vk ), Eα (vi, vk )=(Eα 1 ◦ E)(vi, vk ), and (E ◦ E)(vi, vk )= vj ∈V∗ (TR(M)(vij ) ∧ TR(M)(vjk )), vj ∈V∗ (IR(M)(vij ) ∨ IR(M)(vjk )), vj ∈V∗ (FR(M)(vij ) ∨ FR(M)(vjk )) , (E ◦ E)(vi, vk )= vj ∈V∗ (TR(M)(vij ) ∧ TR(M)(vjk )), vj ∈V∗ (IR(M)(vij ) ∨ IR(M)(vjk )), vj ∈V∗ (FR(M)(vij ) ∨ FR(M)(vjk )) .

Thusitisthestrengthofstrongestpathfromvi tovk in G

Inasoftroughneutrosophicinfluencegraph G,ifineachapproximationgraph

ICONNG(vi, vk )= I∞ (vi, vk )= ∨α {Iα (vi, vk )}, ICONNG(vi, vk )= I∞ (vi, vk )= ∨α {Iα (vi, vk )}. where Iα (vi, vk )=(Iα 1 ◦ I)(vi, vk ), Iα (vi, vk )=(Iα 1 ◦ I)(vi, vk ),

Mathematics 2018, 6,125 19of37

and (I ◦ I)(vi, vk )= vm ∈V∗ (TX(Q)(vi vlm ) ∧ TX(Q)(vm vpk )), vm ∈V∗ (IX(Q)(vi vlm ) ∨ IX(Q)(vm vpk )), vm ∈V∗ (FX(Q)(vi vlm ) ∨ FX(Q)(vm vpk )) ,

(I ◦ I)(vi, vk )= vm ∈V∗ (TX(Q)(vi vlm ) ∧ TX(Q)(vm vpk )), vm ∈V∗ (IX(Q)(vi vlm ) ∨ IX(Q)(vm vpk )), vm ∈V∗ (FX(Q)(vi vlm ) ∨ FX(Q)(vm vpk )) .

Thusitisthestrengthofstrongestpathfromvi tovk in G.

Definition27. ASRNIGiscalledconnectedifeachtwovertex vj and vk arejoinedbyaSRN(SRNI)path. Maximalconnectedpartialsubgraphsineachapproximationsubgrapharecalledcomponent.

Definition28. Asoftroughneutrosophicinfluencegraphisacycleifandonlyiftheunderlyinggraphsofeach approximationisacycle.Asoftroughneutrosophicinfluencegraphisasoftroughneutrosophiccycleifandonly iftheunderlyinggraphsofeachapproximationsisacycleandthereexist vlm,vij ∈E∗,vlm,vij ∈E∗ and vlm =vij, suchthat R(M)(vij )= vlm ∈E∗ vij

TR(M)(vlm ), vlm ∈E∗ vij

TR(M)(vlm ), vlm ∈E∗ vij

IR(M)(vlm ), vlm ∈E∗ vij

IR(M)(vlm ), vlm ∈E∗ vij

FR(M)(vlm )

FR(M)(vlm ) , R(M)(vij )= vlm ∈E∗ vij

IX(Q)(vl vmn ), vl vmn ∈I∗ vi vjk

FX(Q)(vl vmn ) , X(Q)(vi vjk )= vl vmn ∈I∗ vi vjk

Example7.

IX(Q)(vl vmn ), vl vmn ∈I∗ vi vjk X Xv1v32 v1v24 v2v13 v3v24 v3v41 v4v13 v4v32 a1 a32 1000001 a2 a43 0010010 a4 a13 0101100

FX(Q)(vl vmn ) .

TX(Q)(vl vmn ), vl vmn ∈I∗ vi vjk ConsideringExample 4.Let I={v1v32,v1v24,v2v13,v3v24,v3v41,v4v13,v4v32}⊆ ˆ V and P={a1 a32,a2 a43,a4 a13}⊆ ˆ A.ThenafullsoftsetXonI(fromPtoI)canbedefinedinTable 14

asfollows: Table14. Fullsoftset

Mathematics 2018, 6,125 20of37
Asoftroughneutrosophicinfluencegraphisasoftroughneutrosophicinfluencecycleifandonlyif thegraphsissoftroughneutrosophiccycleandthereexist vl vmn,vi vjk ∈I∗,vl vmn,vi vjk ∈I∗ and vl vmn =vi vjk, suchthat X(Q)(vi vjk )= vl vmn ∈I∗ vi vjk
TX(Q)(vl vmn ), vl vmn ∈I∗ vi vjk

Let Q={(v1v32,0.2,0.1,0.0),(v1v24,0.1,0.0,0.1),(v2v13,0.2,0.1,0.0),(v3v24,0.2,0.1,0.0),(v4v13,0.1,0.1,0.0), (v4v32,0.0,0.1,0.0)} beaneutrosophicsetonI.ThenfromEquation(3)ofDefinition 4,wehave

Table14:Fullsoftset X X v1v32 v1v24 v2 v13 v3 v24 v3v41 v4 v13 v4 v32 a1a32 1000001 a2a43 0010010 a4a13 0101100

X(Q)={(v1v32,0.2,0.1,0.0), (v1v24,0.1,0.0,0.0), (v2v13,0.2,0.1,0.0), (v3v24,0.1,0.0,0.0), (v3v41,0.1,0.0,0.0), (v4v13,0.1,0.1,0.0), (v4v32,0.2,0.1,0.0)},

X(Q)={(v1v32,0.0,0.1,0.0), (v1v24,0.1,0.1,0.1), (v2v13,0.1,0.1,0.1), (v3v24,0.0,0.1,0.1), (v3v41,0.1,0.1,0.1), (v4v13,0.1,0.1,0.1), (v4v32,0.0,0.1,0.0)}

Thus, G =(S(N), R(M), X(Q)) and G =(S(N), R(M),X(Q)) areLSRNIAGandUSRNIAG, respectively,asshowninFigure 7.Hence, G =(G, G) isSRNIG.Theunderlyinggraph G∗=(G∗,G∗) suchthat G∗=(V∗,E∗,I∗), G∗=(V∗,E∗,I∗) where V∗ =V=V∗ , E∗ =E=E∗ and I∗ =I=I∗ v13,v32,v24,v41 arethelower edgeandupperedgeand v1v32,v4v32 isalowerpairandupperpair. v2v41 isbothloweranduppernon-influence edge. P(v1, v4) isapathofthesequenceoftheform v1,v1v24,v24,v2v13,v3,v3v41,v41,v1v32,v2,v2v13,v3v24,v4. Bydirectcalculations,thestrengthandinfluencestrengthofthispathare (0.2,0.2,0.1) and (0.0,0.1,0.1), respectively. G iscycle,softroughneutrosophiccycleandsoftroughneutrosophicinfluencecycle.

X (Q)={(v1 v32, 0.0, 0.1, 0.0), (v1v24 , 0.1, 0.1, 0.1), (v2v13, 0.1, 0.1, 0.1), (v3v24 , 0.0, 0.1, 0.1), (v3v41 , 0.1, 0.1, 0.1), (v4v13, 0.1, 0.1, 0.1), (v4v32 , 0.0, 0.1, 0.0)}.

v1(0.9, 0.4, 0.4)

∗=(V∗ ,E

(0 . 2, 0. 1, 0. 1) (0 . 1, 0. 1, 0. 1) (0 .0 , 0 .1 , 0 . 0) (0 . 1, 0. 1, 0. 1) (0. 0, 0. 1, 0. 1)

(0 .3 ,0 .2 ,0 . 1) (0 . 2, 0. 1, 0. 1) (0 .3 ,0 .2 ,0 . 1)

Thus,G =(S(N ),R(M ),X (Q))and G=(S(N ), R(M ), X(Q))areLSRNIAGandUSRNIAG,respectively,asshowninFigure7.Hence,G=(G, G)isSRNIG.TheunderlyinggraphG∗=(G∗ ,G∗)suchthat v1(0.3, 0.6, 0.6) v2 (0 4, 0 5, 0 1)

v 3 (0 . 3 , 0 . 6 , 0 . 6) v 4 (0 .4 ,0 .5 ,0 . 1)

(0 1, 0.1, 0.1) (0 .0 , 0 .1 , 0 .0) G =(S(N ),R(M ),X (Q))

(0.1,0.1,0.1)

SoftroughneutrosophicinfluencegraphG =(G, G)

(0.1,0.1,0.0) Figure7:SoftroughneutrosophicinfluencegraphG=(G, G) G

,I

), G

=(V

,E ∗ ,I

Definition29. Asoftroughneutrosophicinfluencesubgraph H

=(SN2,RM2,XQ2) ofasoftrough

neutrosophicinfluencegraph G=(SN1,RM1,XQ1),ifv∈Hsuchthat TS(N2)(v)≤TS(N1)(v), IS(N2)(v)≥IS(N1)(v), FS(N2)(v)≥FS(N1)(v), TS(N2)(v)≤TS(N1)(v), IS(N2)(v)≥IS(N1)(v), FS(N2)(v)≥FS(N1)(v), vij ∈H, TR(M2)(vij )≤TR(M1)(vij ), IR(M2)(vij )≥IR(M1)(vij ), FR(M2)(vij )≥FR(M1)(vij ), TR(M2)(vij )≤TR(M1)(vij ), IR(M2)(vij )≥IR(M1)(vij ), FR(M2)(vij )≥FR(M1)(vij ), andvi vjk ∈H, TX(Q2)(vi vjk )≤TX(Q1)(vi vjk ), IX(Q2)(vi vjk )≥IX(Q1)(vi vjk ), FX(Q2)(vij )≥FX(Q1)(vi vjk ),

Definition3.9. A softroughneutrosophicinfluencesubgraph H=(SN2,RM2,XQ2)ofasoftroughneutrosophicinfluencegraphG=(SN1,RM1,XQ1),if v∈H suchthat

TR(M2 ) (vij )≤TR(M1 ) (vij ),IR(M2 ) (vij )≥IR(M1 ) (vij ),FR(M2 ) (vij )≥FR(M1 ) (vij ), TR(M2 ) (vij )≤TR(M1 ) (vij ),IR(M2 ) (vij )≥IR(M1 ) (vij ),FR(M2 ) (vij )≥FR(M1 ) (vij ),

Mathematics 2018, 6,125 21of37
v2 (1 0, 0 2, 0 1) ∗
v 3 (0 . 9 , 0 4 , 0 4) v 4 (1 .0 ,0 .2 ,0 . 1) ∗
(0 .3 ,0 .2 ,0 . 1) (0 . 2, 0. 1, 0. 1) (0 .3 ,0 .1 ,0 . 1) ∗
(0 . 3, 0. 1, 0. 1) (0 . 1, 0. 0, 0. 0) (0 .2 , 0 .1 , 0 . 0) (0 . 2, 0. 1, 0. 0) (0. 1, 0. 0, 0. 0) ∗
(0.1, 0 0, 0.0) (0 .2 , 0 .1 , 0 .0) G =(S(N ),R(M ),X (Q)) ∗
)whereV
=V =V
,E
=E=E ∗
andI
∗ =
I =I
.v13 ,v32 ,v24,v41 arethelower edgeandupperedgeand v1v32 ,v4 v32 isalowerpairandupperpair. v2 v41 isbothloweranduppernoninfluenceedge. P (v1,v4 )isapathofthesequenceoftheform v1,v1 v24,v24 ,v2v13 ,v3 ,v3v41 ,v41,v1 v32,v2 ,v2 v13 v3v24 ,v4 .Bydirectcalculations,thestrengthandinfluencestrengthofthispathare(0.2,0.2,0.1)and (0.0,0.1,0.1),respectively.Giscycle,softroughneutrosophiccycleandsoftroughneutrosophicinfluence cycle.
TS(N2 ) (v)≤TS(N1 ) (v),IS(N2 ) (v)≥IS (N1 ) (v),FS(N2 ) (v)≥FS(N1 ) (v), TS(N2 ) (v)≤TS(N1 ) (v),IS(N2 ) (v)≥IS (N1 ) (v),FS(N2 ) (v)≥FS(N1 ) (v), vij ∈H ,
Figure7.

TX(Q2)(vi vjk )≤TX(Q1)(vi vjk ), IX(Q2)(vi vjk )≥IX(Q1)(vi vjk ), FX(Q2)(vij )≥FX(Q1)(vi vjk ).

Definition30. A H=(SN2,RM2,XQ2) iscalledsoftroughneutrosophicinfluencespanningsubgraphofasoft roughneutrosophicinfluencegraph G=(SN1,RM1,XQ1),if H isasoftroughneutrosophicinfluencesubgraph suchthat

TS(N2)(v)=TS(N1)(v), IS(N2)(v)=IS(N1)(v), FS(N2)(v)=FS(N1)(v),

TS(N2)(v)=TS(N1)(v), IS(N2)(v)=IS(N1)(v), FS(N2)(v)=FS(N1)(v).

Definition31. Asoftroughneutrosophicinfluencegraphisaforestifandonlyifeachsupportingapproximation graphisaforest.Asoftroughneutrosophicinfluencegraph G=(SN1,RM1,XQ1) isasoftroughneutrosophic forestifandonlyifthereexistasoftroughneutrosophicspanningsubgraph H=(SN1,RM2,XQ2) isaforest suchthatvij ∈G H

TR(M1)(vij )<TCONNH (vi, vj ), IR(M1)(vij )>ICONNH (vi, vj ), FR(M1)(vij ) >FCONNH (vi, vj ),

TR(M1)(vij )<TCONNH (vi, vj ), IR(M1)(vij )>ICONNH (vi, vj ), FR(M1)(vij ) >FCONNH (vi, vj )

Asoftroughneutrosophicinfluencegraph G=(SN1,RM1,XQ1) isasoftroughneutrosophicinfluence forestifandonlyifthereexistasoftroughneutrosophicspanningsubgraph H=(SN1,RM1,XQ2) isaforest suchthatvi vjk ∈G H

TX(Q1)(vi vjk )<TICONNH (vi, vk ), TX(Q1)(vi vjk )<TICONNH (vi, vk ), IX(Q1)(vi vjk ) >IICONNH (vi, vk ), IX(Q1)(vi vjk ) >IICONNH (vi, vk ), FX(Q1)(vi vjk )>FICONNH (vi, vk ), FX(Q1)(vi vjk )>FICONNH (vi, vk )

Definition32. Asoftroughneutrosophicinfluencegraphisatreeifandonlyifeachsupportingapproximation graphisatree.Asoftroughneutrosophicinfluencegraph G=(SN1,RM1,XQ1) isasoftroughneutrosophictree ifandonlyifthereexistasoftroughneutrosophicspanningsubgraph H=(SN1,RM2,XQ2) isatreesuchthat vij ∈G H

TR(M1)(vij )<TCONNH (vi, vj ), IR(M1)(vij )>ICONNH (vi, vj ), FR(M1)(vij ) >FCONNH (vi, vj ),

TR(M1)(vij )<TCONNH (vi, vj ), IR(M1)(vij )>ICONNH (vi, vj ), FR(M1)(vij ) >FCONNH (vi, vj ).

Asoftroughneutrosophicinfluencegraph G=(SN1,RM1,XQ1) isasoftroughneutrosophicinfluencetree ifandonlyifthereexistasoftroughneutrosophicspanningsubgraph H=(SN1,RM1,XQ2) isatreesuchthat vi vjk ∈G H

TX(Q1)(vi vjk )<TICONNH (vi, vk ), TX(Q1)(vi vjk )<TICONNH (vi, vk ), IX(Q1)(vi vjk ) >IICONNH (vi, vk ), IX(Q1)(vi vjk ) >IICONNH (vi, vk ), FX(Q1)(vi vjk )>FICONNH (vi, vk ), FX(Q1)(vi vjk )>FICONNH (vi, vk )

Definition33. Let G=(SN,RM,XQ) beasoftroughneutrosophicinfluencegraph,anedge vij isabridgeif edge vij isabridgeinbothunderlyinggraphsof G and G.Let G=(SN,RM,XQ) beasoftroughneutrosophic influencegraph,anedgevij isasoftroughneutrosophicbridgeifvlm ∈G

Mathematics 2018, 6,125 22of37

TCONNG vij (vl , vm )<TCONNG (vl , vm ), TCONNG vij (vl , vm )<TCONNG (vl , vm ),

ICONNG vij (vl , vm ) >ICONNG (vl , vm ), ICONNG vij (vl , vm ) >ICONNG (vl , vm ),

FCONNG vij (vl , vm )>FCONNG (vl , vm ), FCONNG vij (vl , vm )>FCONNG (vl , vm ),

Let G=(SN,RM,XQ) beasoftroughneutrosophicinfluencegraph,anedge vij isansoftrough neutrosophicinfluencebridgeifvlm ∈G

TICONNG vij (vl , vm )<TICONNG (vl , vm ), TICONNG vij (vl , vm )<TICONNG (vl , vm ),

IICONNG vij (vl , vm ) >IICONNG (vl , vm ),;IICONNG vij (vl , vm ) >IICONNG (vl , vm ), FICONNG vij (vl , vm )>FICONNG (vl , vm ), FICONNG vij (vl , vm )>FICONNG (vl , vm ),

Definition34. Let G=(SN,RM,XQ) beasoftroughneutrosophicinfluencegraph,avertexisacutnodeifa vertex vi isacutnodeinunderlyinggraphsof G and G.Let G=(SN,RM,XQ) beasoftroughneutrosophic influencegraphthenavertex vi in G isasoftroughneutrosophiccutnodeifthedeletionof vi from G reducesthe strengthoftheconnectednessfromnodesvj →vk ∈V∗,V∗

TCONNG vi (vj, vk )<TCONNG (vj, vk ), TCONNG vi (vj, vk )<TCONNG (vj, vk ),

ICONNG vi (vj, vk ) >ICONNG (vj, vk ), ICONNG vi (vj, vk ) >ICONNG (vj, vk ),

FCONNG vi (vj, vk )>FCONNG (vj, vk ), FCONNG vi (vj, vk )>FCONNG (vj, vk )

Let G=(SN,RM,XQ) beasoftroughneutrosophicinfluencegraphthenavertex vi in G isanneutrosophic influencecutnodeifthedeletionof vi from G reducestheinfluencestrengthoftheconnectednessfrom vj →vk ∈V∗,V∗

TICONNG vi (vj, vk )<TICONNG (vj, vk ), TICONNG vi (vj, vk )<TICONNG (vj, vk ),

IICONNG vi (vj, vk ) >IICONNG (vj, vk ), IICONNG vi (vj, vk ) >IICONNG (vj, vk ),

FICONNG vi (vj, vk )>FICONNG (vj, vk ), FICONNG vi (vj, vk )>FICONNG (vj, vk ),

Definition35. Let G=(SN,RM,XQ) beasoftroughneutrosophicinfluencegraph.Apair vi vjk iscalleda cutpairifandonlyif vi vjk isacutpairinbothsupportinginfluencegraphof G and G.Thatisafterremovingthe pair vi vjk thereisnopathfrom vi to vk inbothsupportinginfluencegraphof G and G.Let G=(SN,RM,XQ) beasoftroughneutrosophicinfluencegraph.Apair vi vjk iscalledasoftroughneutrosophiccutpairifand onlyififdeletingthepairvi vjk reducestheconnectednessfromvi tovk inbothgraph G and G.Thatis,

TCONNG vi vjk (vi, vk )<TCONNG (vi, vk ), TICONNG vi vjk (vi, vk )<TICONNG (vi, vk ),

ICONNG vi vjk (vi, vk ) >ICONNG (vi, vk ), IICONNG vi vjk (vi, vk ) >IICONNG (vi, vk ),

FCONNG vi vjk (vi, vk )>FCONNG (vi, vk ), FICONNG vi vjk (vi, vk )>FICONNG (vi, vk ),

Mathematics 2018, 6,125 23of37

Asoftroughneutrosophicinfluencecutpair vi vjk isapairinasoftroughneutrosophicinfluencegraph G=(SN,RM,XQ) ifthereisspanninginfluencesubgraph H = G vi vjk reducesthestrengthoftheinfluence connectednessfromvi tovk.Thatis,

TICONNG vi vjk (vi, vk )<TICONNG (vi, vk ), TICONNG vi vjk (vi, vk )<TICONNG (vi, vk ),

IICONNG vi vjk (vi, vk ) >IICONNG (vi, vk ), IICONNG vi vjk (vi, vk ) >IICONNG (vi, vk ), FICONNG vi vjk (vi, vk )>FICONNG (vi, vk ), FICONNG vi vjk (vi, vk )>FICONNG (vi, vk ),

Definition36. Anedge vij insoftroughneutrosophicinfluencegraph G iscalledstrongsoftroughneutrosophic edgeif

TR(M)(vij )≥TCONNG vij (vi, vj ), TR(M)(vij ) ≥TCONNG vij (vi, vj ),

IR(M)(vij ) ≤ICONNG vij (vi, vj ) , IR(M)(vij ) ≤ ICONNG vij (vi, vj ),

FR(M)(vij )≤FCONNG vij (vi, vj ), FR(M)(vij ) ≤ FCONNG vij (vi, vj ).

Apairvi vjk insoftroughneutrosophicinfluencegraph G iscalledstrongpairif

TX(Q)(vi vjk )≥TICONNG vi vjk (vi, vk ), TX(Q)(vi vjk ) ≥TICONNG vi vjk (vi, vk ),

IX(Q)(vi vjk ) ≤IICONNG vi vjk (vi, vk ) , IX(Q)(vi vjk ) ≤ IICONNG vi vjk (vi, vk ),

FX(Q)(vi vjk )≤FICONNG vi vjk (vi, vk ), FX(Q)(vi vjk ) ≤ FICONNG vi vjk (vi, vk )

Definition37. Anedge vij insoftroughneutrosophicinfluencegraph G iscalled α strongsoftrough neutrosophicedgeif

TR(M)(vij )>TCONNG vij (vi, vj ), TR(M)(vij ) >TCONNG vij (vi, vj ),

IR(M)(vij ) <ICONNG vij (vi, vj ) , IR(M)(vij ) < ICONNG vij (vi, vj ), FR(M)(vij )<FCONNG vij (vi, vj ), FR(M)(vij ) < FCONNG vij (vi, vj )

Apairvi vjk insoftroughneutrosophicinfluencegraph G iscalled α strongpairif

TX(Q)(vi vjk )>TICONNG vi vjk (vi, vk ), TX(Q)(vi vjk ) >TICONNG vi vjk (vi, vk ),

IX(Q)(vi vjk ) <IICONNG vi vjk (vi, vk ) , IX(Q)(vi vjk ) < IICONNG vi vjk (vi, vk ),

FX(Q)(vi vjk )<FICONNG vi vjk (vi, vk ), FX(Q)(vi vjk ) < FICONNG vi vjk (vi, vk )

Definition38. Anedge vij insoftroughneutrosophicinfluencegraph G iscalled β strongsoftrough neutrosophicedgeif

TR(M)(vij )=TCONNG vij (vi, vj ), TR(M)(vij )=TCONNG vij (vi, vj ),

IR(M)(vij )=ICONNG vij (vi, vj ) , IR(M)(vij )= ICONNG vij (vi, vj ),

FR(M)(vij )=FCONNG vij (vi, vj ), FR(M)(vij )= FCONNG vij (vi, vj )

Mathematics 2018, 6,125 24of37

Apairvi vjk insoftroughneutrosophicinfluencegraph G iscalled β strongpairif

TX(Q)(vi vjk )=TICONNG vi vjk (vi, vk ), TX(Q)(vi vjk )=TICONNG vi vjk (vi, vk ),

IX(Q)(vi vjk )=IICONNG vi vjk (vi, vk ) , IX(Q)(vi vjk )= IICONNG vi vjk (vi, vk ),

FX(Q)(vi vjk )=FICONNG vi vjk (vi, vk ), FX(Q)(vi vjk )= FICONNG vi vjk (vi, vk )

Definition39. Anedge vij insoftroughneutrosophicinfluencegraph G iscalled δ strongsoftrough neutrosophicedgeif

TR(M)(vij )<TCONNG vij (vi, vj ), TR(M)(vij ) <TCONNG vij (vi, vj ),

IR(M)(vij ) >ICONNG vij (vi, vj ) , IR(M)(vij ) > ICONNG vij (vi, vj ),

FR(M)(vij )>FCONNG vij (vi, vj ), FR(M)(vij ) > FCONNG vij (vi, vj )

Apairvi vjk insoftroughneutrosophicinfluencegraph G iscalled δ strongpairif

TX(Q)(vi vjk )<TICONNG vi vjk (vi, vk ), TX(Q)(vi vjk ) <TICONNG vi vjk (vi, vk ),

IX(Q)(vi vjk ) >IICONNG vi vjk (vi, vk ) , IX(Q)(vi vjk ) > IICONNG vi vjk (vi, vk ),

FX(Q)(vi vjk )>FICONNG vi vjk (vi, vk ), FX(Q)(vi vjk ) > FICONNG vi vjk (vi, vk ).

Definition40. A δ strongsoftroughneutrosophicedge vij iscalleda δ∗ strongsoftroughneutrosophic edgeif

TR(M)(vij )> vlm ∈E∗

TR(M)(vlm ), TR(M)(vij )> vlm ∈E∗ TR(M)(vlm ),

IR(M)(vij ) < vlm ∈E∗ IR(M)(vlm ), IR(M)(vij ) < vlm ∈E∗ IR(M)(vlm ),

FR(M)(vij )< vlm ∈E∗ FR(M)(vlm ), FR(M)(vij )< vlm ∈E∗ FR(M)(vlm )

A δ strongpairvi vjk iscalleda δ∗ strongpairif

TR(M)(vij )> vlm ∈E∗ TR(M)(vlm ), TR(M)(vij )> vlm ∈E∗ TR(M)(vlm ), IR(M)(vij ) < vlm ∈E∗ IR(M)(vlm ), IR(M)(vij ) < vlm ∈E∗ IR(M)(vlm ), FR(M)(vij )< vlm ∈E∗ FR(M)(vlm ), FR(M)(vij )< vlm ∈E∗ FR(M)(vlm ).

A δ strongpairvi vjk iscalleda δ∗ strongpairifvi vjk =vl vmn TX(Q)(vi vjk )> vl vmn ∈I∗ TX(Q)(vl vmn ), TX(Q)(vi vjk )> vl vmn ∈I∗ TX(Q)(vl vmn ), IX(Q)(vi vjk ) < vl vmn ∈I∗ IX(Q)(vl vmn ), IX(Q)(vi vjk ) < vl vmn ∈I∗ IX(Q)(vl vmn ), FX(Q)(vi vjk )< vl vmn ∈I∗ FX(Q)(vl vmn ), FX(Q)(vi vjk )< vl vmn ∈I∗ FX(Q)(vl vmn )

Mathematics 2018, 6,125 25of37

Definition41. Asoftroughneutrosophicinfluencegraphissaidtobeasoftroughneutrosophicinfluenceblock ifithasnosoftroughneutrosophicinfluencecutnodes.

Example8. ConsiderExample 5 LetI={v1v32,v1v43,v2v13,v3v32,v4v13}⊆ ˆ VandP={a1a34,a3a24,a4a12}⊆ ˆ A. ThenafullsoftsetXonI(fromPtoI)canbedefinedinTable 15 asfollows:

Table15. Fullsoftset X. Xv1v32 v1v43 v2v13 v3v32 v4v13 a1 a34 01101 a3 a24 01000 a4 a12 10010

Let Q={(vv32,0.3,0.0,0.0),(vv43,0.2,0.0,0.0),(v2v13,0.1,0.0,0.0),(v3v32,0.2,0.0,0.0),(v4v13,0.3,0.0,0.0} beaneutrosophicsetonI.ThenfromEquation(3)ofDefinition 4,wehave

X(Q)={(v1v32,0.3,0.0,0.0), (v1v43,0.2,0.0,0.0), (v2v13,0.3,0.0,0.0), (v3v32,0.3,0.0,0.0), (v4v13,0.3,0.0,0.0)},

X(Q)={(v1v32,0.2,0.0,0.0), (v1v43,0.2,0.0,0.0), (v2v13,0.1,0.0,0.0), (v3v32,0.2,0.0,0.0), (v4v13,0.1,0.0,0.0)}

X (Q)={(v1 v32, 0 2, 0 0, 0 0), (v1v43 , 0 2, 0 0, 0 0), (v2v13, 0 1, 0 0, 0 0), (v3v32 , 0 2, 0 0, 0 0), (v4v13 , 0.1, 0.0, 0.0)}.

Thus, G=(S(N),R(M),X(Q)) and G=(S(N),R(M),X(Q)) areLSRNIAGandUSRNIAG,respectively, asshowninFigure 8.Hence, G=(G,G) isSRNIG.Hence G isatree, v3 isacutvertex, v13 isabridge, v3v32 isacutpair.

Thus,G=(S(N ),R(M ),X(Q))and G=(S(N ),R(M ),X(Q))areLSRNIAGandUSRNIAG,respectively, asshowninFigure8.Hence,G=(G,G)isSRNIG.HenceGisatree, v3 isacutvertex, v13 isabridge, v3 (0 3, 0 6, 0 6)

v1 (0 3, 0 6, 0 6) v2 (0 4, 0 5, 0 1) v4(0.4,0.5,0. )

(0.3,0.2,0.1) (0.3,0.0,0.1) (0.3,0.2,0.1) G =(S(N ),R(M ),X(Q))

(0.3,0.0,0.0) (0.2,0.0,0.0) (0.3,0.0,0.0) (0.3,0.0,0.0)(0.3,0.0,0.0)

(0.2,0.0,0.0) (0.2,0.0,0.0) (0.1,0.0,0.0) (0.3,0.0,0.0)(0.1,0.0,0.0) v3(0 9, 0 4, 0 4)

(0.3,0.2,0.0) (0.3,0.0,0.0) (0.3,0.2,0.1) G=(S(N ), R(M ), X(Q))

v1(0 9, 0 4, 0 4) v2(0 9, 0 4, 0 4) v4(0.9,0.4,0. 4)

Figure8. SoftroughneutrosophicinfluencegraphG =(G, G)

Figure8:SoftroughneutrosophicinfluencegraphG=(G, G)

isacutpair Theorem3.1. G isasoftroughneutrosophicinfluenceforestifandonlyifin anycycleof G,thereisa pair vivjk suchthat

Mathematics
26of37
2018, 6,125
v3v32

Theorem4. G isasoftroughneutrosophicinfluenceforestifandonlyifinanycycleof G,thereisapair vi vjk suchthat

TX(Q)(vi vjk )<TICONNG vi vjk (vi, vk ), TX(Q)(vi vjk ) <TICONNG vi vjk (vi, vk ),

IX(Q)(vi vjk ) >IICONNG vi vjk (vi, vk ) , IX(Q)(vi vjk ) > IICONNG vi vjk (vi, vk ),

FX(Q)(vi vjk )>FICONNG vi vjk (vi, vk ), FX(Q)(vi vjk ) > FICONNG vi vjk (vi, vk ).

Proof. Theproofisobvious.

Theorem5. Asoftroughneutrosophicgraph G isasoftroughneutrosophicinfluenceforestifthereisatmost onepathwiththemostinfluencestrength.

Proof. Let G benotasoftroughneutrosophicinfluenceforest.ThenbyTheorem 4,thereexistacycle C inGsuchthat

TX(Q)(vi vjk )≥TICONNG vi vjk (vi, vk ), TX(Q)(vi vjk ) ≥TICONNG vi vjk (vi, vk ),

IX(Q)(vi vjk ) ≤IICONNG vi vjk (vi, vk ) , IX(Q)(vi vjk ) ≤ IICONNG vi vjk (vi, vk ),

FX(Q)(vi vjk )≤FICONNG vi vjk (vi, vk ), FX(Q)(vi vjk ) ≤ FICONNG vi vjk (vi, vk ),

foreverypair vi vjk of C Therefore, vi vjk isthepathwithinthemostinfluencestrengthfrom vi to vk.Let vi vjk beapair suchthat

TX(Q)(vi vjk )> vl vmn ∈I∗

IX(Q)(vi vjk ) < vl vmn ∈I∗

TX(Q)(vl vmn ), TX(Q)(vi vjk )> vl vmn ∈I∗ TX(Q)(vl vmn ),

IX(Q)(vl vmn ), IX(Q)(vi vjk ) < vl vmn ∈I∗ IX(Q)(vl vmn ),

FX(Q)(vi vjk )< vl vmn ∈I∗ FX(Q)(vl vmn ), FX(Q)(vi vjk )< vl vmn ∈I∗ FX(Q)(vl vmn ),

in C.Thenremainingpartof C isapathwiththemostinfluencestrengthfrom vi to vjk.Thisisa contradictiontothethefactthereisatmostonepathwiththemostinfluencestrength.Hence, G isa softroughneutrosophicinfluenceforest.

Theorem6. Assumethat G isacycle.Then G isnotasoftroughneutrosophicinfluencetreeifandonlyif G isasoftroughneutrosophicinfluencecycle.

Proof. Let G=(SN,RM,XQ1) beasoftroughneutrosophicinfluencecycle.Thenthereexistatleast twodistinctedgeandtwodistinctpairsuchthat

Mathematics 2018, 6,125 27of37

R(M)(vij )= vlm ∈E∗ vij

R(M)(vij )= vlm ∈E∗ vij

TR(M)(vlm ), vlm ∈E∗ vij

TR(M)(vlm ), vlm ∈E∗ vij

X(Q)(vi vjk )= vl vmn ∈I∗ vi vjk

X(Q)(vi vjk )= vl vmn ∈I∗ vi vjk

IR(M)(vlm ), vlm ∈E∗ vij

IR(M)(vlm ), vlm ∈E∗ vij

TX(Q)(vl vmn ), vl vmn ∈I∗ vi vjk

TX(Q)(vl vmn ), vl vmn ∈I∗ vi vjk

FR(M)(vlm ) ,

FR(M)(vlm ) ,

IX(Q)(vl vmn ), vl vmn ∈I∗ vi vjk

IX(Q)(vl vmn ), vl vmn ∈I∗ vi vjk

FX(Q)(vl vmn ) ,

FX(Q)(vl vmn )

Let H=(SN,RM,XQ2) beaspanningsoftroughneutrosophicinfluencetreein G.Thenthere existsapathfrom vi to vk notinvolving vi vjk suchthat E∗ 1 E∗ 2 ={(vi vjk )}.Hencetheredoesnotexista pathinHfrom vi to vk suchthat

TX(Q2)(vi vjk )≤TICONNG (vi, vk ), TX(Q2)(vi vjk ) ≤TICONNG (vi, vk ), IX(Q2)(vi vjk ) ≥IICONNG (vi, vk ) , IX(Q2)(vi vjk ) ≥ IICONNG (vi, vk ),

FX(Q2)(vi vjk )≥FICONNG (vi, vk ), FX(Q2)(vi vjk ) ≥ FICONNG (vi, vk ).

ThusGisnotasoftroughneutrosophicinfluencetree.

Conversely,supposethat G isnotasoftroughneutrosophicinfluencetree.Since, G isasoft roughneutrosophicinfluencecycle.Soforall vi vjk ∈I∗ and vi vjk ∈I∗,wehaveasoftroughneutrosophic spanninginfluencesubrgraph H=(SN,RM,XQ2) whichistreeand X(Q2)(vi vjk )=0, X(Q2)(vi vjk )=0 suchthat ∀vi vlm = vl vmn

TX(Q2)(vi vjk )≤TICONNH (vi, vk ), TX(Q2)(vi vjk ) ≤TICONNG (vi, vk ), IX(Q2)(vi vjk ) ≥IICONNG (vi, vk ) , IX(Q2)(vi vjk ) ≥ IICONNG (vi, vk ), FX(Q2)(vi vjk )≥FICONNG (vi, vk ) , FX(Q2)(vi vjk ) ≥ FICONNG (vi, vk ), ∀vl vmn ∈ I∗ vi vjk and vl vmn ∈ I∗ vi vjk

TX(Q2)(vi vjk )= vl vmn ∈I∗

TX(Q1)(vl vmn ), TX(Q2)(vi vjk )= vl vmn ∈I∗

TX(Q1)(vl vmn ), IX(Q2)(vi vjk )= vl vmn ∈I∗

IX(Q1)(vl vmn ), IX(Q2)(vi vjk )= vl vmn ∈I∗ IX(Q1)(vl vmn ), FX(Q2)(vi vjk )= vl vmn ∈I∗

Therefore, X(Q)(vi vjk )= vl vmn ∈I∗ vi vjk

FX(Q1)(vl vmn ), FX(Q2)(vi vjk )= vl vmn ∈I∗

FX(Q1)(vl vmn )

TX(Q)(vl vmn ), vl vmn ∈I∗ vi vjk

IX(Q)(vl vmn ), vl vmn ∈I∗ vi vjk

FX(Q)(vl vmn ) , X(Q)(vi vjk )= vl vmn ∈I∗ vi vjk

TX(Q)(vl vmn ), vl vmn ∈I∗ vi vjk

IX(Q)(vl vmn ), vl vmn ∈I∗ vi vjk

FX(Q)(vl vmn ) where vi vjk = vl vmn notuniquely.ThereforeGisasoftroughneutrosophicinfluencecycle.

Mathematics 2018, 6,125 28of37

Theorem7. If

TX(Q)(vi vjk )>TICONNG vi vjk (vi, vk ), TX(Q)(vi vjk ) >TICONNG vi vjk (vi, vk ),

IX(Q)(vi vjk ) <IICONNG vi vjk (vi, vk ) , IX(Q)(vi vjk ) < IICONNG vi vjk (vi, vk ),

FX(Q)(vi vjk )<FICONNG vi vjk (vi, vk ), FX(Q)(vi vjk ) < FICONNG vi vjk (vi, vk ), inasoftroughneutrosophicgraph.Thenvi vjk isacutpairinsoftroughneutrosophicinfluencegraph G Proof. Suppose vi vjk isnotacutapirinsoftroughneutrosophicinfluencegraph,then TICONNG vi ,vk (vi, vk )=TICONNG (vi, vk ), TICONNG vi ,vk (vi, vk )=TICONNG (vl vmn ), IICONNG vi ,vk (vi, vk )=IICONNG (vi, vk ), IICONNG vi ,vk (vi, vk )=IICONNG (vl vmn ), FICONNG vi ,vk (vi, vk )=FICONNG (vi, vk ), FICONNG vi ,vk (vi, vk )=FICONNG (vl vmn )

Since, TX(Q)(vi, vk )≤TICONNG (vi, vk ), TX(Q)(vi, vk )≤TICONNG (vl vmn ), IX(Q)(vi, vk ) ≥IICONNG (vi, vk ), IX(Q)(vi, vk ) ≥IICONNG (vl vmn ), FX(Q)(vi, vk )≥FICONNG (vi, vk ), FX(Q)(vi, vk )≥FICONNG (vl vmn )

Therefore, TICONNG vi ,vk (vi, vk )≥TX(Q)(vi, vk ), TICONNG vi ,vk (vi, vk )≥TX(Q)((vi, vk )), IICONNG vi vk (vi, vk ) ≤IX(Q)(vi, vk ), IICONNG vi ,vk (vi, vk ) ≤IX(Q)((vi, vk )), FICONNG vi ,vk (vi, vk )≤FX(Q)(vi, vk ), FICONNG vi ,vk (vi, vk )≤FX(Q)((vi, vk )), whichisacontradiction.Hence,itisproved. Theorem8. If

TX(Q)(vi vjk )>TX(Q)(vl vmn ), TX(Q)(vi vjk ) >TX(Q)(vl vmn ), IX(Q)(vi vjk ) <IX(Q)(vl vmn ) , IX(Q)(vi vjk ) < IX(Q)(vl vmn ), FX(Q)(vi vjk )<FX(Q)(vl vmn ), FX(Q)(vi vjk ) < FX(Q)(vl vmn ), forsomevi vjk amongallcyclesinsoftroughneutrosophicinfluencegraph G.Then

TX(Q)(vi vjk )>TICONNG vi vjk (vi, vk ), TX(Q)(vi vjk ) >TICONNG vi vjk (vi, vk ), IX(Q)(vi vjk ) <IICONNG vi vjk (vi, vk ) , IX(Q)(vi vjk ) < IICONNG vi vjk (vi, vk ), FX(Q)(vi vjk )<FICONNG vi vjk (vi, vk ), FX(Q)(vi vjk ) < FICONNG vi vjk (vi, vk )

Mathematics 2018, 6,125 29of37

Proof. Since

TICONNG vi vjk (vi vjk )≥TICONNG (vi vjk ), TICONNG vi vjk (vi vjk )≥TICONNG ((vi vjk )),

IICONNG vi vjk (vi vjk ) ≤IICONNG (vi vjk ), IICONNG vi vjk (vi vjk ) ≤IICONNG ((vi vjk )),

FICONNG vi vjk (vi vjk )≤FICONNG (vi vjk ), FICONNG vi vjk (vi vjk )≤FICONNG ((vi vjk )).

Therefore,thereexistsapathfrom vi to vk notinvolving (vi vjk ) suchthat

TICONNG vi vjk (vi vjk )≥TX(Q)(vi vjk ), TICONNG vi vjk (vi vjk )≥TX(Q)((vi vjk )),

IICONNG vi vjk (vi vjk ) ≤IX(Q)(vi vjk ), IICONNG vi vjk (vi vjk ) ≤IX(Q)((vi vjk )),

FICONNG vi vjk (vi vjk )≤FX(Q)(vi vjk ), FICONNG vi vjk (vi vjk )≤FX(Q)((vi vjk )),

Thisalongwith vi vjk isacycleand vi vjk isleastvalue.

Theorem9. If vi vjk isasoftroughneutrosophicinfluencecutpairinsoftroughneutrosophicinfluence graph G.Then

TX(Q)(vi vjk )>TX(Q)(vl vmn ), TX(Q)(vi vjk ) >TX(Q)(vl vmn ),

IX(Q)(vi vjk ) <IX(Q)(vl vmn ) , IX(Q)(vi vjk ) < IX(Q)(vl vmn ), FX(Q)(vi vjk )<FX(Q)(vl vmn ), FX(Q)(vi vjk ) < FX(Q)(vl vmn ), forsomevi vjk amongallcyclesof G. Proof. Supposeoncontraryinacycle,we

TX(Q)(vi vjk )>TX(Q)(vl vmn ), TX(Q)(vi vjk ) >TX(Q)(vl vmn ), IX(Q)(vi vjk ) <IX(Q)(vl vmn ) , IX(Q)(vi vjk ) < IX(Q)(vl vmn ), FX(Q)(vi vjk )<FX(Q)(vl vmn ), FX(Q)(vi vjk ) < FX(Q)(vl vmn ).

Thenanypathinvolvingitcanbeconvertedintoapathnotinvolvingitwithinfluencestrength greaterthanandequaltothevalueof XQ forpreviouslydeletedpairs.So vi vjk isnotacutpair.Thisisa contradictiontoourassumption.Hence vi vjk isnotapairwiththeleastvalueamongallcycle.

Theorem10. If G=(SN1,RM1,XQ1) isasoftroughneutrosophicforest,thenthepairsofneutrosophic spanningsubgraphH=(SN1,RM1,XQ2) suchthat TX(Q1)(vi vjk )<TICONNH (vi, vk ), TX(Q1)(vi vjk )<TICONNH (vi, vk ), IX(Q1)(vi vjk ) >IICONNH (vi, vk ), IX(Q1)(vi vjk ) >IICONNH (vi, vk ), FX(Q1)(vi vjk )>FICONNH (vi, vk ), FX(Q1)(vi vjk )>FICONNH (vi, vk ),

areexactlythecutpairsof G

Theorem11. Asoftroughneutrosophicinfluencegraph G isacycle.Thenanedge vjk isasoftrough neutrosophicinfluencebridgeifandonlyifitisanedgecommontoatmosttwocutpair.

Theorem12. Let G beasoftroughneutrosophicinfluencegraph.Thenthefollowingconditionsareequivalent.

Mathematics 2018, 6,125 30of37

1. Forapairvi vjk ∈I∗ ∩ I∗ TX(Q)(vi vjk )>TICONNG vi vjk (vi, vk ), TX(Q)(vi vjk ) >TICONNG vi vjk (vi, vk ), IX(Q)(vi vjk ) <IICONNG vi vjk (vi, vk ) , IX(Q)(vi vjk ) < IICONNG vi vjk (vi, vk ), FX(Q)(vi vjk )<FICONNG vi vjk (vi, vk ), FX(Q)(vi vjk ) < FICONNG vi vjk (vi, vk ) 2.

4.ApplicationtoDecision-Making

Decisionmakingisaprocessthatplaysanimportantroleinourdailylives.Decisionmaking processcanhelpusmakemorepurposeful,thoughtfuldecisionsbysystemizingrelevantinformation stepbystep.Theprocessofdecisionmakinginvolvesmakingachoiceamongdifferentalternatives, itstartswhenwedonotknowwhattodo.

Theselectionoftherightpathfortransferringgoodsfromonestatetoanotherstatesillegally. Everystatehasdifferentpoliceswithinoroutsidethestate,thereareseveralfactorstotakeinto considerationforselectingtherightpath.Whethertheeconomyofacountryisgood,havingjob opportunityorasafety.

Supposeatraderwantstoextendhisbusinesstothecountries C1,C2,C3,C4,C5 and C6.Initially, hetakes C1 andextendshisbusinessonebyone.Assume A issetoftheparameters,consistingof element a1 = job, a2 = economyaboveaverage, a3 = safety, a4 = other. Let S beafullsoftsetfrom A toparameterset V,asshowninTable 16.

Table16. SoftNeutrosophicSet S SC1 C2 C3 C4 C5 C6 a1 111011 a2 001111 a3 111001 a3 111111

Suppose N={(C1,0.8,0.6,0.7),(C2,0.9,0.5,0.65),(C3,0.75,0.6,0.65),(C4,1.0,0.55,0.85),(C5,0.95,0.63,0.8), (C6,0.85,0.65,0.95)} ismostfavorableobjectdescribesmembershipofsuitablecountriesforeignpolices correspondingtothebooleanset V,whichisaneutrosophicsetontheset V underconsideration. SN =(S(N), S(N)) isafullsoftroughsetinfullsoftapproximationspace (V, S) where S(N)={(C1,0.90,0.50,0.65), (C2,0.90,0.50,0.65), (C3,0.90,0.55,0.65), (C4,1.00,0.55,0.65), (C5,0.95,0.55,0.65), (C6,0.9,0.55,0.65)}, S(N)={(C1,0.75,0.65,0.95), (C2,0.75,0.65,0.95), (C3,0.75,0.65,0.95), (C4,0.75,0.65,0.95), (C5,0.75,0.65,0.95), (C6,0.75,0.65,0.95)} .

Mathematics 2018, 6,125 31of37
vi vjk isaninfluencecutpair
Let E={C12,C14,C15,C23,C26,C34,C35,C45,C46,C56}⊆ ˜ V = V × V and L={a14, a21, a34, a42}⊆A = A × A
R on E
RC12 C14 C15 C23 C26 C34 C35 C45 C46 C56 a14 1111111001 a21 0000001111 a34 1111111000 a42 0111111111
Afullsoftrelation
(from L to E)canbedefinedasshowninTable 17 Table17. Fullsoftset R

Let M={(C12,0.74,0.5,0.62),(C14,0.75,0.45,0.63),(C15,0.74,0.54,0.61),(C23,0.72,0.48,0.65),(C26,0.71, 0.49,0.64),(C34,0.72,0.53,0.64),(C35,0.73,0.52,0.63),(C45,0.7,0.51,0.61),(C46,0.74,0.55,0.6),(C56,0.73,0.47, 0.64)} bemostfavorableobjectdescribesmembershipofcountriesforeignpolicestoward otherscountriescorrespondingtothebooleanset E,whichisaneutrosophicsetontheset V underconsideration.

RM =(RM, RM) isasoftneutrosophicroughrelation,where

RM={(C12,0.75,0.45,0.61), (C14,0.75,0.45,0.61), (C15,0.75,0.45,0.61), (C23,0.75,0.45,0.61), (C26,0.75,0.45,0.61), (C34,0.75,0.45,0.61), (C35,0.74,0.47,0.61), (C45,0.74,0.47,0.6), (C46,0.74,0.47,0.6), (C56,0.74,0.47,0.61)},

RM={(C12,0.71,0.54,0.65), (C14,0.71,0.54,0.65), (C15,0.71,0.54,0.65), (C23,0.71,0.54,0.65), (C26,0.71,0.54,0.65), (C34,0.71,0.54,0.65), (C35,0.71,0.54,0.64), (C45,0.70,0.55,0.64), (C46,0.70,0.55,0.64), (C56,0.71,0.54,0.64)} Let

15

e1e42 11111110 0011101 e2e14 00001100 0011011 e2e34 00000001 0000000 e3e34 11111100 0000011 e4e21 00100010 1100100 e4e42 11111110 1111101

Let Q = {(C1C15,0.7,0.43,0.58), (C1C23,0.65,0.39,0.54), (C1C35,0.66,0.37,0.56), (C2C34,0.68,0.38, 0.59), (C3C14,0.6,0.4,0.6), (C3C26,0.62,0.42,0.58), (C3C45,0.64,0.45,0.54), (C4C23,0.7,0.45,0.60), (C4C45, 0.7,0.36,0.48), (C4C46,0.68,0.35,0.5), (C5C23,0.69,0.45,0.54), (C5C34,0.65,0.42,0.58), (C5C46,0.64,0.41, 0.59), (C6C12,0.63,0.4,0.6), (C6C15,0.62,0.39,0.5)} bemostfavorableobjectdescribesmembershipof countriesimpacttowardotherscountriesregardingtradecorrespondingtothebooleanset I,whichis aneutrosophicsetontheset I underconsideration.

XQ =(XQ, XQ) isasoftneutrosophicroughinfluence,where

Mathematics 2018, 6,125 32of37
{C1C15,C1C23,C1C35,C2C34,C3C14,C3C26,C3C45,C4C23,C4C45,C4C46,C5C23,C5C34, C5C46
,
6C15}⊆ ˆ V = V × E and F=
a1 a42,a
I=
, C6C12
C
{
2 a14,a3 a34,a4 a21,a4 a42}⊆ ˆ A = A × L. Afullsoftrelation X on I (from F to I)canbedefinedinTable 18 asfollows: Table18. Fullsoftset X X C1C15 C1C23 C1C35 C2C34 C3C14 C3C26 C3C45, C4C23 C4C45 C4C46 C5C23 C5C34 C5C46 C6C12 C6C

XQ={(C1C15,0.70,0.37,0.50), (C1C23,0.70,0.37,0.50), (C1C35,0.70,0.37,0.50), (C2C34,0.70,0.37,0.50), (C3C14,0.69,0.39,0.50), (C3C26,0.69,0.39,0.50), (C3C45,0.70,0.37,0.50), (C4C23,0.7,0.45,0.60), (C4C45,0.70,0.35,0.48), (C4C46,0.70,0.35,0.48), (C5C23,0.69,0.39,0.50), (C5C34,0.69,0.39,0.50), (C5C46,0.70,0.37,0.50), (C6C12,0.69,0.39,0.50), (C6C15,0.69,0.39,0.50)},

XQ={(C1C15,0.60,0.43,0.60), (C1C23,0.60,0.43,0.60), (C1C35,0.64,0.43,0.59), (C2C34,0.60,0.43,0.60), (C3C14,0.60,0.43,0.60), (C3C26,0.60,0.43,0.60), (C3C45,0.64,0.45,0.59), (C4C23,0.7,0.45,0.60), (C4C45,0.64,0.45,0.59), (C4C46,0.64,0.45,0.59), (C5C23,0.60,0.45,0.60), (C5C34,0.60,0.45,0.60), (C5C46,0.64,0.45,0.59), (C6C12,0.60,0.43,0.60), (C6C15,0.60,0.43,0.60)}

Thus, G =(G, G) isasoftneutrosophicroughinfluencegraphasshowninFigure 9.Hefindsthe strengthofeachpathfrom C1 to C6.Thepathsare

P1 : C1, C5, C2, C3, C6, P2 : C1, C4, C5, C6,

C3(0 75, 0 65, 0 95) (0. 71, 0. 54, 065) (0 .71 ,0 .55 ,0 . 64)

(06 ,0 .43 ,0 .6) (06,0 43,0 6) (064, 0.43, 059)

(0 .71 ,0 .54 ,0 . 65) (0 . 71, 0. 54, 0. 65)

(071, 055, 064) (071 ,054 ,0 .65) (071,0. 54,0. 65)

(064 ,0 .45 ,0 .59) (0 64 , 0 45 , 0 59)

(0 .71 , 0 .54 , 0 65)

(0.6,0.43,06) (0 .6 ,0 .43 ,0 .6) (0 . 64, 0. 45, 0. 59)

(0 71, 0 54, 0 65) (0 . 71, 0. 54, 0. 65)

(0 . 6, 0. 43, 0. 6) (0 .6 ,0 .45 ,0 . 6)

(0 .64 , 0 45 , 0 . 59) (0 .6 ,0 .45 ,0 .6)

P3 : C1, C3, C5, C2, C6 withtheirinfluencestrengthas (0.6,0.45,0.5),respectively. C 1 (0 75 , 0 65 , 0 95) C 6 (0 75 , 0 65 , 0 95) C4(075, 0. 65, 0. 95) C2(0 75, 0 65, 0 95) C5(0 75, 0 65, 0 95)

(06,0 43,0 6) (0 .7 ,0 .45 ,0 . 6)

(0 .6 ,0 .45 ,0 . 6) (0. 6, 0. 43, 0. 6) G =(S(N),R(M),X(Q)) C 1 (0 . 9, 0 5, 0 65)

(0. 75, 0. 45, 0. 61)

(0 . 7, 0 . 37, 0 . 5) (0 .7 ,0.37 ,0.5)

(0. 7, 037, 05) (0.7,0.37,05) (0 . 7, 0. 37, 0. 5) (0 . 7, 0. 45, 0. 6) (0 7, 0 35, 0 48)

(0. 69,0. 39,0. 5) (0 .69 ,0 .39 ,0 . 5)

C2(0 9, 0 5, 0 65) C3(0 9, 0 55, 0 65) C4(1 0, 0 55, 0 65)

(069,0 39,05) (0. 69, 0. 39, 0. 5)

(0 .69 ,0 .39 ,0 . 5)

(0.7,035,048) (0 . 7, 0. 37, 0. 5)

(0 75, 0 45, 0 61) (075, 045, 061) (0 .75 ,0 .45 ,0 . 61) (0 .75 ,045 ,0 .61) (0 . 75, 0. 45, 0. 61) (0 75, 0 45, 0 61)

(0 . 75 , 0 45 , 0 61) (0. 75, 0. 45, 0. 61)

(0.69, 0 39, 05)

(0.75,045,0.61)

C5(0 95,0 55,0 65)

C 6 (0 9 , 0 55 , 0 65) G=(S(N), R(M), X(Q))

Figure9. SoftroughneutrosophicinfluencegraphG =(G, G)

Figure9:SoftroughneutrosophicinfluencegraphG=(G, G) withtheirinfluencestrengthas(0 6,0 45,0 5),respectively. Since,thereismorethanonepath,therefore,thetradercalculatesthescorefunctionwhichisformulated inequation4.1:

ScoreFunction(Ci)= TS(N )(Ci)+ TS(N )(Ci)+ TR(M)(Cij )+ TR(M)(Cij )+ TX(Q)(CiCjk)+

Mathematics 2018, 6,125 33of37

Since,thereismorethanonepath,therefore,thetradercalculatesthescorefunctionwhichis formulatedinEquation(4):

ScoreFunction(Ci )= TS(N)(Ci )+ TS(N)(Ci )+ TR(M)(Cij )+ TR(M)(Cij )+ TX(Q)(Ci Cjk )+ TX(Q)(Ci Cjk ), IS(N)(Ci )IS(N)(Ci )+ IR(M)(Cij )IR(M)(Cij )+ (4) IX(Q)(Ci Cjk )IX(Q)(Ci Cjk ), FS(N)(Ci )FS(N)(Ci )+ FR(M)(Cij )FR(M)(Cij )+ FX(Q)(Ci Cjk )FX(Q)(Ci Cjk ) .

Foreach Ci,thescorevaluesof Ci iscalculateddirectlyandasshowninTable 19. Table19. ScoreFunction. V ScoreValues

C1 (9.97,1.054,2.702) C2 (5.87,1.2979,1.7105) C3 (8.48,1.3562,2.2994) C4 (6.73,1.392,2.3119) C5 (7.07,1.3673,1.9029) C6 (4.23,0.6929,1.2175)

So,hechoosesthepath P3:C1,C3,C5,C2,C6.TheAlgorithm 1 oftheapplicationisalsobegivenin Algorithm1.TheflowchartisgiveninFigure 10.

Algorithm1: Influencestrengthofeachpathinroughneutrosophicinfluencegraph

1.Inputtheuniversalsets C and P

2.Inputthefullsoftset S andneutrosophicset N on V

3.CalculatetheSoftroughneutrosophicsetson V

4.Inputtheuniversalsets E and L

5.Inputthefullsoftset R andneutrosophicset M on E.

6.CalculatetheSoftroughneutrosophicsetson E

7.Inputtheuniversalsets I and F

8.Inputthefullsoftset X andneutrosophicset Q on I

9.CalculatetheSoftroughneutrosophicsetson I

10.Findthenumberofpathandcalculatetheirinfluencestrengthof eachpathfrom C1 to Cn

11.Choosethatpathwhichhasmaximummembership,minimum indeterminacyandfalsityvalue.If i > 1,thancalculatethe scorevaluesofeach Ci,choosethat Ci whichhasmaximum membershipandcomeimmediatelyafter C1 inoneofthepaths.

5.Conclusions

Graphtheoryhasbeenappliedwidelyinvariousareasofengineering,computerscience,database theory,expertsystems,neuralnetworks,artificialintelligence,signalprocessing,patternrecognition, robotics,computernetworks,andmedicaldiagnosis.Presentresearchhasshownthattwoormore theoriescanbecombinedintoamoreflexibleandexpressiveframeworkformodelingandprocessing incompleteinformationininformationsystems.Variousmathematicalmodelsthatcombineroughsets, softsetsandneutrosophicsetshavebeenintroduced.Asoftroughneutrosophicsetisahybridtoolfor handlingindeterminate,inconsistentanduncertaininformationthatexistinreallife.Wehaveapplied thisconcepttographtheory.Wehavepresentedcertainconcepts,includingsoftroughneutrosophic graphs,softroughneutrosophicinfluencegraphs,softroughneutrosophicinfluencecycles,softrough

Mathematics 2018, 6,125 34of37

neutrosophicinfluencetrees.Wealsohaveconsideredanapplicationofsoftroughneutrosophic influencegraphindecision-makingtoillustratethebestpathinthebusiness.Inthefuture,we willstudy,(1)Neutrosophicroughhypergraphs,(2)Bipolarneutrosophicroughhypergraphs,(3) Neutrosophicsoftroughhypergraphs,(4)Decisionsupportsystemsbasedonsoftroughneutrosophic information.

Start

Input C,P ,S,N

TS(N )(b)= b∈Ss(a) t∈Ss(a) TN (t),

TS(N )(b)= b∈Ss(a) t∈Ss(a) TN (t),

IS(N )(b)= b∈Ss(a) t∈Ss(a) IN (t),

IS(N )(b)= b∈Ss(a) t∈Ss(a) IN (t),

FS(N )(b)= b∈Ss(a) t∈Ss(a) FN (t), FS(N )(b)= b∈Ss(a) t∈Ss(a) FN (t)

If S(N ) = S(N )

Yes

Input E,L,R,M

TR(M )(bij )= bij ∈R (alm) tij ∈R (alm) TM (tij ), TR(M )(bij )= bij ∈R (alm) tij ∈R (alm) TM (tij ), IR(M )(bij )= bij ∈Rs(alm) tij ∈Rs(alm) IM (tij ), IR(M )(bij )= bij ∈R (alm) tij ∈R (alm) IM (tij ), FR(M )(bij )= bij ∈Rs(alm) tij ∈Rs(alm) FM (tij ), FR(M )(bij )= bij ∈Rs(alm) tij ∈Rs(alm) FM (tij )

If R(M ) = R(M ) Input I,F ,X,Q

If X(Q) X( Yes

Q) CalculatetheinfluencestrengthInstren ofeachpathfrom C1 to Cn

Mathematics 2018, 6,125 35of37
ifthereismore Calculatethescorevalueofeach Ci Chooseanypath Stop
Yes Yes No
thanonepath after C1 andisinthepaths
thanone Ci
Ci’swhichhasmaximiummembershipvalue Yes
TX(Q)(bibjk)= bibjk∈X (ala ) titjk ∈X (ala ) TQ(titjk), TX(Q)(bibjk)= bibjk ∈Xs(alamn) titjk∈Xs(alamn) TQ(titjk), IX(Q)(bibjk)= bibjk∈Xs(alamn) titjk∈Xs(alamn) IQ(titjk), IX(Q)(bibjk)= bibjk∈Xs(alamn) titjk∈Xs(alamn) IQ(titjk), FX(Q)(bibjk)= bibjk ∈Xs(alamn) titjk∈Xs(alamn) FQ(titjk), FX(Q)(bibjk)= bibjk ∈Xs(alamn) titjk∈Xs(alamn) FQ(titjk) No No
Takethatpathwhichhas maximiuminfluencestrength
ifthereismore
Choosethat
No No
33
Figure10:Theflowchartoftheapplication
Figure10. Theflowchartoftheapplication.

AuthorContributions: H.M.M.,M.A.andF.S.conceivedanddesignedtheexperiments;M.A.andF.S.analyzed thedata;H.M.M.wrotethepaper.

ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.

References

1. Smarandache,F. NeutrosophyNeutrosophicProbability,Set,andLogic;AmerResPress:Rehoboth,MA, USA,1998.

2. Wang,H.;Smarandache,F.;Zhang,Y.;Sunderraman,R.Single-valuedneutrosophicsets. Multispace Multistruct. 2010, 4,410–413.

3. Ye,J.Multicriteriadecision-makingmethodusingthecorrelationcoefficientundersingle-valued neutrosophicenvironment. Int.J.Gen.Syst. 2013, 42,386–394.

4. Ye,J.ImprovedcorrelationcoefficientsofsinglevaluedNSsandintervalNSsformultipleattributedecision making. J.Intell.FuzzySyst. 2014, 27,2453–2462.

5. Qeng,J.J.;Wang,J.Q.;Zhang,H.Y.;Chen,X.H.Anoutrankingapproachformulti-criteriadecision-making problemswithsimplifiedneutrosophicsets. Appl.SoftComput. 2014, 25,336–346.

6. Molodtsov,D.A.Softsettheory-firstresults. Comput.Math.Appl. 1999, 37,19–31.

7. Babitha,K.V.;Sunil,J.J.Softsetrelationsandfunctions. Comput.Math.Appl. 2010, 60,1840–1849.

8. Pawlak,Z.Roughsets. Int.J.Comput.Inf.Sci. 1982, 11,341–356.

9. Pawlak,Z. RoughSets-TheoreticalAspectstoReasoningaboutData;KluwerAcademicPublisher:Boston,MA, USA,1991.

10. Pawlak,Z.;Skowron,A.Rudimentsofroughsets. Inf.Sci. 2007, 177,3–27.

11. Pawlak,Z.;Skowron,A.Roughsets:Someextensions. Inf.Sci. 2007, 177,28–40.

12. Pawlak,Z.;Skowron,A.RoughsetsandBooleanreasoning. Inf.Sci. 2007, 177,41–73.

13. Biswas,R.;Nanda,S.Roughgroupsandroughsubgroups. Bull.PolishAcad.Sci. 2000, 42,247–251.

14. Davvaz,B.Roughnessinrings. Inf.Sci. 2004, 164,147–163.

15. Kuroki,N.Roughidealinsemigroup. Inf.Sci. 1997, 100,139–163.

16. Shahzamanian,M.H.;Shirmohammadi,M.;Davvaz,B.RoughnessinCayleygraphs. Inf.Sci. 2010, 180, 3362–3372.

17. Dubios,D.;Prade,H.Roughfuzzy,fuzzyroughsets. Int.J.Gen.Syst. 1990, 17,191–209.

18. Feng,F.;Li,C.;Davvaz,B.;Ali,M.I.Softsetscombinedwithfuzzysetsandroughsets:Atentativeapproach. SoftComput. 2010, 14,899–911.

19. Meng,D.;Zhang,X.;Qin,K.Softroughfuzzysetsandsoftfuzzyroughsets. Comput.Math.Appl. 2011, 62, 4635–4645.

20. Broumi,S.;Smarandache,F.;Dhar,M.Roughneutrosophicsets. NeutrosophicSetsSyst. 2014, 3,62–67.

21. Yang,H.L.;Zhang,C.L.;Guo,Z.L.;Liu,Y.L.;Liao,X.Ahybridmodelofsinglevaluedneutrosophic setsandroughsets:Singlevaluedneutrosophicroughsetmodel. SoftComput. 2016, 21,6253–6267, doi:10.1007/s00500-016-2356-y.

22. Kauffmann,A. IntroductionalaTheorieDesSous-EmsemblesFlous;MassonetCie:Paris,France,1973; Volume1 23. Rosenfeld,A.Fuzzygraphs.In FuzzySetsandTheirApplications;Zadeh,L.A.,Fu,K.S.,Shimura,M.,Eds.; Elsevier:NewYork,NY,USA,1975;pp.77–95. 24. Mordeson,J.N.;Peng,C.S.Operationsonfuzzygraphs. Inf.Sci. 1994, 79,159–170. 25. Mathew,S.;Sunitha,M.Typesofarcsinafuzzygraph. Inf.Sci. 2009, 179,1760–1768.

26. Mathew,S.;Sunitha,M.Strongeststrongcycles,fuzzygraphs. IEEETrans.FuzzySyst. 2013, 21,1096–1104.

27.

Gani,A.N.;Latha,S.R.Onirregularfuzzygraphs. Appl.Math.Sci. 2012, 6,517–523.

28. Gani,A.N.;Radha,K.Onregularfuzzygraphs. J.Phys.Sci. 2008, 12,33–40.

29. Gani,A.N.;Radha,K.Thedegreeofavertexinsomefuzzygraphs. Int.J.AlgorithmsComput.Math. 2009, 2, 107–116.

30. Gani,A.N.;Begum,S.S.Degree,order,sizeinintuitionisticfuzzygraphs. Int.J.AlgorithmsComput.Math. 2010, 3,11–16.

31. Parvathi,R.;Karunambigai,M.G.;Atanassov,K.T.Operationsonintuitionisticfuzzygraphs. InProceedingsoftheFUZZ-IEEE2009IEEEInternationalConferenceonFuzzySystems,JejuIsland,Korea, 20–24August2009.

36of37
Mathematics 2018, 6,125

32.

Akram,M.;Ashraf,A.;Sarwar,M.Novelapplicationsofintuitionisticfuzzydigraphsindecisionsupport systems. Sci.WorldJ. 2014,doi:10.1155/2014/904606. 33. Akram,M.;Nawaz,S.Fuzzysoftgraphswithapplications. J.Intell.FuzzySyst. 2016, 30,3619–3632. 34.

Akram,M.;Shahzadi,S.Novelintuitionisticfuzzysoftmultiple-attributedecision-makingmethods. NeuralComput.Appl. 2016,doi:10.1007/s00521-016-2543-x. 35.

Akram,M.;Alshehri,N.;Davvaz,B.;Ashraf,A.Bipolarfuzzydigraphsindecisionsupportsystems. J.Multiple-ValuedLogicSoftComput. 2016, 27,531–551. 36.

Akram,M.;Dudek,W.A.Regularbipolarfuzzygraphs. NeuralComput.Appl. 2012, 21,197–205. 37.

Dinesh,T.Fuzzyincidencegraphandintroduction. Adv.FuzzySetsSyst. 2016, 21,33–48. 38. Mordeson,J.N.Fuzzyincidencegraphs. Adv.FuzzySetsSyst. 2016, 21,1–13. 39. Mathew,S.;Mordeson,J.N.Fuzzyinfluencegraphs. NewMath.Nat.Comput. 2017, 13,311–325 40. Zafar,F.;Akram,M.Anoveldecision-makingmethodbasedonroughfuzzyinformation. Int.J.FuzzySyst. 2018, 20,1000–1014.

41. Akram,M.;Zafar,F.Roughfuzzydigraphswithapplication. J.Appl.Math.Comput. 2018, doi:10.1007s12190-018-1171-2.

42. Akram,M.;Shumaiza;Arshad,M.Anewapproachbasedonfuzzyroughdigraphsfordecision-making. J.Intell.FuzzySyst. 2018,doi:10.3233/JIFS-172069.

43. Malik,H.M.;Akram,M.Anewapproachbasedonintuitionisticfuzzyroughgraphsfordecision-making. J.Intell.FuzzySyst. 2018, 34,2325–2342.

44. Zhan,J.;Malik,H.M.;Akram,M.Noveldecision-makingalgorithmsbasedonintuitionisticfuzzyrough environment. Int.J.Mach.Learn.Cybern. 2018,doi:10.1007/s13042-018-0827-4.

45. Ishfaq,N.;Sayed,S.;Akram,M.;Smarandache,F.Notionsofroughneutrosophicdigraphs. Mathematics 2018, 6,doi:10.3390/math6020018.

46. Akram,M.;Malik,H.M.;Shahzadi,S.;Smarandache,F.Neutrosophicsoftroughgraphswithapplication. Axioms 2018, 7,14,doi:10.3390/axioms7010014.

47. Zhang,X.;Dai,J.;Yu,Y.Ontheunionandintersectionoperationsofroughsetsbasedonvarious approximationspaces. Inf.Sci. 2015, 292,214–229.

48. Bao,Y.L.;Yang,H.L.Onsinglevaluedneutrosophicrefinedroughsetmodelanditsapplication. J.Intell. FuzzySyst. 2017, 33,1235–1248,doi:10.3233/JIFS-17094.

49. Maji,Q.K.Neutrosophicsoftset. Ann.FuzzyMath.Inform. 2013, 5,157–168.

50. Broumi,S.;Smarandache,F.Interval-valuedneutrosophicsoftroughsets. Int.J.Comput.Math. 2015, doi:10.1155/2015/232919.

51. Akram,M.;Shahzadi,S.;Smarandache,F.Multi-attributedecision-makingmethodbasedonneutrosophic softroughinformation. Axioms 2018, 7,19.

c 2018bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution (CCBY)license(http://creativecommons.org/licenses/by/4.0/).

Mathematics
37of37
2018, 6,125

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.