See discussions, stats, and author profiles for this publication at: https://www researchgate net/publication/311743641
Single-Valued Neutrosophic Planar Graphs
Article · December 2016
DOI: 10 20454/ijas 2016 1207
CITATIONS 8 READS 89
1 author:
Muhammad Akram University of the Punjab
231 PUBLICATIONS 1,483 CITATIONS
SEE PROFILE
Some of the authors of this publication are also working on these related projects:
Fuzzy grphs View project
Bipolar fuzzy set View project
All content following this page was uploaded by Muhammad Akram on 28 December 2016.

The user has requested enhancement of the downloaded file


InternationalJournalofAlgebraandStatistics
Volume5:2(2016),157-167
DOI:10.20454/ijas.2016.1207
PublishedbyModernSciencePublishers Availableat: http://www.m-sciences.com
Single-ValuedNeutrosophicPlanarGraphs
MuhammadAkrama
aDepartmentofMathematics,UniversityofthePunjab,NewCampus,Lahore,Pakistan (Received:15October2016;Accepted:15December2016)
Abstract.Weapplytheconceptofsingle-valuedneutrosophicsetstomultigraphs,planargraphsanddual graphs.Weintroducethenotionsofsingle-valuedneutrosophicmultigraphs,single-valuedneutrosophic planargraphs,andsingle-valuedneutrosophicdualgraphs.Weillustratetheseconceptswithexamples. Wealsoinvestigatesomeoftheirproperties.
1.Introduction
Zadeh[27]introducedtheconceptoffuzzyset.Attanassov[11]introducedtheintuitionisticfuzzysets whichisageneralizationoffuzzysets.Fuzzysettheoryand intuitionisticfuzzysettheoryareusefulmodels fordealingwithuncertaintyandincompleteinformation.Buttheymaynotbesufficientinmodeling ofindeterminateandinconsistentinformationencounteredinrealworld.Inordertocopewiththis issue,neutrosophicsettheorywasproposedbySmarandache [20]asageneralizationoffuzzysetsand intuitionisticfuzzysets.However,sinceneutrosophicsetsareidentifiedbythreefunctionscalledtruthmembership(T),indeterminacy-membership(I)andfalsity-membership(F)whosevaluesarerealstandard ornon-standardsubsetofunitinterval]0 , 1+[.
Therearesomedifficultiesinmodelingofsomeproblemsinengineeringandsciences.Toovercomethese difficulties,in2010,theconceptofsingle-valuedneutrosophicsetsanditsoperationsweredefinedbyWang etal.[22]asageneralizationofintuitionisticfuzzysets.Yang etal [23]introducedtheconceptofsinglevaluedneutrosophicrelationbasedonsingle-valuedneutrosophicset.Ye[25]introducedamulticriteria decisionmakingmethodusingaggregationoperators.
Rosenfeld[18]describedsomepropertiesoffuzzygraphs.Lateron,Bhattacharya[12]workedonfuzzy graphs.MordesonandNair[16]discussedsomeoperationsonfuzzygraphs.Abdul-jabbar etal. [1] introducedtheconceptofafuzzydualgraphanddiscussedsomeofitsinterestingproperties.Samanta andPal[17, 19]introducedandinvestigatedtheconceptoffuzzyplanargraphsandstudiedseveral properties.Onotherhand,AlshehriandAkram[10]introducedtheconceptofintuitionisticfuzzyplanar graphs.Akrametal.[5]discussedtheconceptofbipolarfuzzyplanargraphs.Dhavaseelanetal.[14] definedstrongneutrosophicgraphs.Broumietal.[13]proposedsingle-valuedneutrosophicgraphs. AkramandShahzadi[6]introducedthenotionsofneutrosophicgraphsandneutrosophicsoftgraphs. Theyalsopresentedapplicationofneutrosophicsoftgraphs.Representationofgraphsusingintuitionistic
2010 MathematicsSubjectClassification.03E72,05C72,05C78,05C99.
Keywords.Single-valuedneutrosophicgraphs,single-valuedneutrosophicmultigraphs,single-valuedneutrosophicplanargraphs, intuitionisticfuzzydualgraphs.
Emailaddress: m.akram@pucit.edu.pk (MuhammadAkram)
M.Akram / Int.J.ofAlgebraandStatistics5(2016),157-167 158
neutrosophicsoftsetswasdiscussedin[7].Akrametal.[8]introducedthenotionofsingle-valued neutrosophichypergraphs.Inthisarticle,weapplytheconceptofsingle-valuedneutrosophicsetsto multigraphs,planargraphsanddualgraphs.Weintroducethenotionsofsingle-valuedneutrosophic multigraphs,single-valuedneutrosophicplanargraphs,single-valuedneutrosophicdualgraphs.We presentsomeoftheirinterestingproperties.Thispaperis acontinuationofAlshehriandAkram’swork [10].
2.Preliminaries
Let X beanonemptyset.A fuzzyset [27] A drawnfrom X isdefinedas A = {< x : µA(x) >: x ∈ X},where µ : X → [0, 1]isthemembershipfunctionofthefuzzyset A.A fuzzybinaryrelation [28]on X isafuzzysubset µ on X × X.Byafuzzyrelation,wemeanafuzzybinaryrelationgivenby µ : X × X → [0, 1].A fuzzygraph [15] G = (V,σ,µ)isanon-emptyset V togetherwithapairoffunctions σ : V → [0, 1]and µ : V × V → [0, 1] suchthatforall x, y ∈ V, µ(x, y) ≤ min(σ(x),σ(y)),where σ(x)and µ(x, y)representthemembershipvalues ofthevertex x andoftheedge(x, y)in G,respectively.Aloopatavertex x inafuzzygraphisrepresented by µ(x, x) 0.Anedgeisnon-trivialif µ(x, y) 0.Let G beafuzzygraphandforacertaingeometric representation,thegraphhasonlyonecrossingbetweentwo fuzzyedges((w, x),µ(w, x))and((y, z),µ(y, z)). If µ(w, x) = 1and µ(y, z) = 0,thenwesaythatthefuzzygraphhasnocrossing.Similarly,if µ(w, x)hasvalue nearto1and µ(y, z)hasvaluenearto0,thecrossingwillnotbeimportantfortheplanarity.If µ(y, z)has valuenearto1and µ(w, x)hasvaluenearto1,thenthecrossingbecomesveryimportantfortheplanarity. Let X beanonemptyset.A fuzzymultiset [24] A drawnfrom X ischaracterizedbyafunction,‘count membership’of A denotedby CMA suchthat CMA : X → Q,where Q isthesetofallcrispmultisetsdrawn fromtheunitinterval[0, 1].Thenforany x ∈ X,thevalue CMA(x)isacrispmultisetdrawnfrom[0, 1]. Foreach x ∈ X,themembershipsequenceisdefinedasthedecreasinglyorderedsequenceofelementsin CMA(x).Itisdenotedby(µ1 A(x),µ2 A(x),µ3 A(x), ··· ,µp A(x))where µ1 A(x) ≥ µ2 A(x) ≥ µ3 A(x) ≥ ... ≥ µp A(x).
Let V beanon-emptysetand σ : V → [0, 1]beamappingandlet µ = {((x, y),µ(x, y)j), j = 1, 2,..., pxy|(x, y) ∈ V × V} beafuzzymulti-setof V × V suchthat µ(x, y)j ≤ min{σ(x),σ(y)} forall j = 1, 2,..., pxy,where pxy = max{ j|µ(x, y)j 0}.Then G = (V,σ,µ)isdenotedas fuzzymultigraph [17]where σ(x)and µ(x, y)j representthemembershipvalueofthevertex x andthemembershipvalueoftheedge(x, y)in G,respectively.
Definition2.1. [20]LetXbeaspaceofpoints(objects).AneutrosophicsetAinX ischaracterizedbyatruthmembershipfunctionTA(x),anindeterminacy-membershipfunctionIA(x) andafalsity-membershipfunctionFA(x) ThefunctionsTA(x),IA(x),andFA(x) arerealstandardornon-standardsubsetsof ]0 , 1+[ .Thatis,TA(x): X → ]0 , 1+[, IA(x): X → ]0 , 1+[ andFA(x): X → ]0 , 1+[ and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+ .
Fromphilosophicalpointofview,theneutrosophicsettakesthevaluefromrealstandardornon-standard subsetsof]0 , 1+[.Inreallifeapplicationsinscientificandengineeringproblems,itisdifficulttouse neutrosophicsetwithvaluefromrealstandardornon-standardsubsetof]0 , 1+[.Toapplyneutrosophic setsinreal-lifeproblemsmoreconveniently,Wangetal.[22]definedsingle-valuedneutrosophicsetswhich takesthevaluefromthesubsetof[0, 1].
Definition2.2. [26]LetXbeanonemptysetwithgenericelementsinXdenotedbyx.AsinglevaluedneutrosophicmultisetAdrawnfromXischaracterizedbythethreefunctions:counttruth-membershipofCTA,count indeterminacy-membershipofCIA,andcountfalsity-membershipofCFA suchthatCTA(
forx ∈ Xandi = 1, 2,..., q.Forconvenience,asinglevaluedneutrosophicmultisetA canbedenotedbythesimplified form: A = { x, TA(x)i, IA(x)i, FA(x)i |x ∈ X, i = 1, 2,..., q}
Definition2.3. [26]LetA = { x, TA(x)i, IA(x)i, FA(x)i |x ∈ X, i = 1, 2, , q} andB = { x, TB(x)i, IB(x)i, FB(x)i |x ∈ X, i = 1, 2, ··· , q} betwosingle-valuedneutrosophicmultisetsinX.Then,therearethefollowingoperations:
(1) A ⊆ BifandonlyifTA(x)i ≤ TB(x)i,IA(x)i ≥ IB(x)i,FA(x)i ≥ FB(x)i fori = 1, 2, 3, , qandx ∈ X;
(2) A = BifandonlyifA ⊆ BandB ⊆ A, (3) Ac = { x, FA(x)i, 1 IA(x)i, TA(x)i |x ∈ X, i = 1, 2, , q}, (4) A B={ x, TA(x)i ∨ TB(x)i, IA(x)i ∧ IB(x)i, FA(x)i ∧ FB(x)i|x ∈ X, i = 1, 2, , q}, (5) A B={ x, TA(x)i ∧ TB(x)i, IA(x)i ∨ IB(x)i, FA(x)i ∨ FB(x)i|x ∈ X, i = 1, 2, , q}.
AkramandShahzadi[6]introducednotionofsingle-valuedneutrosophicsoftgraphs.AkramandShahzadi [9]highlightedsomeflawsinthedefinitionsofBroumietal.[13]andShah-Hussain[21].
Definition2.4. [6, 9]Asingle-valuedneutrosophicgraphisapairG = (A, B),whereA : V → [0, 1] issingle-valued neutrosophicsetinVandB : V × V → [0, 1] issingle-valuedneutrosophicrelationonVsuchthat
TB(xy) ≤ min{TA(x), TA(y)},
IB(xy) ≤ min{IA(x), IA(y)},
FB(xy) ≤ max{FA(x), FA(y)} forallx, y ∈ V.
3.Single-valuedNeutrosophicplanargraphs
Wefirstintroducethenotionofasingle-valuedneutrosophicmultigraphusingtheconceptofasinglevaluedneutrosophicmultiset.
Definition3.1. Let A = (TA, IA, FA)beasingle-valuedneutrosophicseton V andlet B = {(xy, TB(xy)i, IB(xy)i, FB(xy)i), i = 1, 2,..., m|xy ∈ V × V}
beasingle-valuedneutrosophicmultisetof V × V suchthat
TB(xy)i ≤ min{TA(x), TA(y)},
IB(xy)i ≤ min{IA(x), IA(y)}, FB(xy)i ≤ max{FA(x), FA(y)} forall i = 1, 2,..., m.Then G = (A, B)iscalled asingle-valuedneutrosophicmultigraph
Notethattheremaybemorethanoneedgebetweenthevertices x and y TB(xy)i, IB(xy)i, FB(xy)i represent truth-membershipvalue,indeterminacy-membershipvalue andfalsity-membershipvalueoftheedge xy in G,respectively. m denotesthenumberofedgesbetweenthevertices.Insingle-valuedneutrosophic multigraph G, B issaidtobesingle-valuedneutrosophicmultiedgeset.
Example3.2. ConsideramultigraphG∗ = (V, E) suchthatV = {a, b, c, d},E = {ab, ab, ab, bc, bd}.LetA = (TA, IA, FA) beasingle-valuedneutrosophicsetonVandB = (TB, IB, FB) beasingle-valuedneutrosophicmultiedge setonV × VdefinedinTable 1 andTable 2.
Table1:Single-valuedneutrosophicset A A abcd
TA 0 50 40 50 4 IA 0 30 20 40 3 FA 0.30.40.30.4
Table2:single-valuedneutrosophicmultiedgeset B B abababbcbd TB 0 20 10 20 30 1 IB 0 20 10 20 10 2 FB 0.200.20.30.2
(0 2, 0 2, 0 2) (0 1, 0 1, 0) (0.2, 0.2, 0.2)
(0 3, 0 1, 0 3) (0 .1 ,0 .2 ,0 .2)
Byroutinecalculations,itiseasytoseefromFig. 1 thatitisasingle-valuedneutrosophicmultigraph. a(0 5, 0 3, 0 3) b(0 . 4, 0. 2, 0. 4) c(0 5, 0 4, 0 3) d(0 4, 0 3, 0 4)
Figure1:Single-valuedneutrosophicmultigraph.
Definition3.3. LetB = {(xy, TB(xy)i, IB(xy)i, FB(xy)i), i = 1, 2,..., m|xy ∈ V × V} beasingle-valuedneutrosophic multiedgesetinsingle-valuedneutrosophicmultigraphG. Thedegreeofavertexx ∈ Visdenotedby deg(x) andis definedby deg(x) = ( m i=1 TB(xy)i, m i=1 IB(xy)i, m i=1 FB(xy)i) forally ∈ V.
Example3.4. InExample 3.2,thedegreeofverticesa, b, c, darede (a) = (0 5, 0 5, 0 4),de (b) = (0 9, 0 8, 0 9), de (c) = (0 3, 0 1, 0 3) andde (d) = (0 1, 0 2, 0 2)
Definition3.5. LetB = {(xy, TB(xy)i, IB(xy)i, FB(xy)i), i = 1, 2,..., m|xy ∈ V × V} beasingle-valuedneutrosophic multiedgesetinsingle-valuedneutrosophicmultigraphG. AmultiedgexyofGisstrongif 1 2 min{TA(x), TA(y)}≤ TB(xy)i, 1 2 min{IA(x), IA(y)}≤ IB(xy)i, 1 2 max{FA(x), FA(y)}≥ FB(xy)i, foralli = 1, 2,..., m. Definition3.6. LetB = {(xy, TB(xy)i, IB(xy)i, FB(xy)i), i = 1, 2,..., m|xy ∈ V × V} beasingle-valuedneutrosophic multiedgesetinsingle-valuedneutrosophicmultigraphG. Ansingle-valuedneutrosophicmultigraphGiscomplete if min{TA(x), TA(y)} = TB(xy)i, min{IA(x), IA(y)} = IB(xy)i, max{FA(x), FA(y)} = FB(xy)i foralli = 1, 2,..., mandforallx, y ∈ V.
Example3.7. Considerasingle-valuedneutrosophicmultigraphGasshowninFig. ??.Byroutinecalculations,it iseasytoseethatFig. ?? isasingle-valuednutrosophiccompletemultigraph.
a(0 4, 0 3, 0 2) b(0 . 5, 0. 4, 0. 3) c(0 4, 0 4, 0 3)
(0 4, 0 3, 0 3) (0 4, 0 4, 0 3) (0 4, 0 3, 0 3) (0 4, 0 2, 0 3)
Supposethatgeometricinsightforsingle-valuedneutrosophicgraphshasonlyonecrossingbetweensingle valuedneutrosophicedges(ab, TB(ab)i, IB(ab)i, FB(ab)i)and(cd, TB(cd)i, IB(cd)i, FB(cd)i).Wenotethat:
• If(ab, TB(ab)i, IB(ab)i, FB(ab)i) = (1, 1, 1)and(cd, TB(cd)i, IB(cd)i, FB(cd)i) = (0, 0, 0)or(ab, TB(ab)i, IB(ab)i, FB(ab)i) = (0, 0, 0),(cd, TB(cd)i, IB(cd)i, FB(cd)i) = (1, 1, 1),thensingle-valuedneutrosophicgraphhasno crossing,
• If(ab, TB(ab)i, IB(ab)i, FB(ab)i) = (1, 1, 1)and(cd, TB(cd)i, IB(cd)i, FB(cd)i) = (1, 1, 1),thenthereexistsa crossingfortherepresentationofthegraph.
Definition3.8. Thestrengthofthesingle-valuedneutrosophicedgeabcanbemeasuredbythevalue
Sab = ((ST)ab, (SI)ab, (SF)ab) = ( TB(ab)i min(TA(a), TA(b)) , IB(ab)i min(IA(a), IA(b)) , FB(ab)i max(FA(a), FA(b)) ).
Definition3.9. LetGbeasingle-valuedneutrosophicmultigraph.Anedgeab issaidtobeansingle-valued neutrosophicstrongif (ST)ab ≥ 0 5, (SI)ab ≥ 0 5, (SF)ab ≥ 0 5,otherwise,wecallweakedge.
Definition3.10. LetG = (A, B) beasingle-valuedneutrosophicmultigraphsuchthatBcontainstwoedges (ab, TB(ab)i, IB(ab)i, FB(ab)i) and (cd, TB(cd)j, IB(cd)j, FB(cd)j) ,intersectedatapointP,whereiandjarefixed integers.WedefinetheintersectingvalueatthepointPby
SP = ((ST )P, (SI)P, (SF )P) = ( (ST)ab + (ST)cd 2 , (SI)ab + (SI)cd 2 , (SF)ab + (SF)cd 2 )
Ifthenumberofpointofintersectionsinasingle-valuedneutrosophicmultigraphincreases,planarity decreases.Thusforsingle-valuedneutrosophicmultigraph, SP isinverselyproportionaltotheplanarity. Wenowintroducetheconceptofasingle-valuedneutrosophicplanargraph.
Definition3.11. LetGbeasingle-valuedneutrosophicmultigraphandP1, P2,..., Pz bethepointsofintersection betweentheedgesforacertaingeometricalrepresentation,Gissaidtobeasingle-valuedneutrosophicplanargraph withsingle-valuedneutrosophicplanarityvaluef = ( fT , fI, fF),where f = ( fT , fI , fF) = ( 1 1 + {(ST)P1 + (ST)P2 + ... + (ST)Pz } , 1 1
Ifthereisnopointofintersectionforacertaingeometricalrepresentationofasingle-valuedneutrosophic planargraph,thenitssingle-valuedneutrosophicplanarityvalueis(1, 1, 1).Inthiscase,theunderlying crispgraphofthissingle-valuedneutrosophicgraphisthe crispplanargraph.If fT and fI decreaseand fF increases,thenthenumberofpointsofintersectionbetweentheedgesincreasesanddecreases,respectively, andthenatureofplanaritydecreasesandincreases,respectively.Weconcludethateverysingle-valued neutrosophicgraphisasingle-valuedneutrosophicplanar graphwithcertainsingle-valuedneutrosophic planarityvalue.
Example3.12. ConsideramultigraphG∗ = (V, E) suchthatV = {a, b, c, d, e}, E = {ab, ac, ad, ad, bc, bd, cd, ce, ae, de, be}.
LetA = (TA, IA, FA) beasingle-valuedneutrosophicsetofVandletB = (TB, IB, FB) beasingle-valuedneutrosophic multiedgesetofV × VdefinedinTable 3 andTable 4.
Table3:single-valuedneutrosophicset A A abcde
TA 0.50.40.30.60.6 IA 0.50.40.30.60.6 FA 0.20.10.10.20.1
Table4:single-valuedneutrosophicmultiedgeset B B abacadadbcbdcdaecedebe TB 0.20.20.20.30.20.20.20.20.20.20.2 IB 0.20.20.20.30.20.20.20.20.20.20.2 FB 0.10.10.10.10.10.10.10.10.10.10.1
Thesingle-valuedneutrosophicmultigraphasshowninFig. 2 hastwopointofintersectionsP1 andP2.P1 isapoint betweentheedges (ad, 0 2, 0 2, 0 1) and (bc, 0 2, 0 2, 0 1) andP2 isbetween (ad, 0 3, 0 3, 0 1) and (bc, 0 2, 0 2, 0 1).For theedge (ad, 0 2, 0 2, 0 1),Sad = (0 4, 0 4, 0 5),Fortheedge (ad, 0 3, 0 3, 0 1),Sad = (0 6, 0 6, 0 5) andfortheedge (bc, 0 2, 0 2, 0 1),Sbc = (0 6667, 0 6667, 1)
ForthefirstpointofintersectionP1,intersectingvalue SP1 is (0 5334, 0 5334,, 0 75) andthatforthesecondpoint ofintersectionP2, SP2 = (0 63335, 0 63335,, 0 75).Therefore,thesingle-valuedneutrosophicplanarityvalueforthe single-valuedneutrosophicmultigraphshowninFig. 2 is (0 461, 0 461, 0 4)
(0 .3 ,0 .3 ,0 . 1)
(0 2 , 0 . 2 , 0 1) (0. 2, 0. 2, 0. 1) (0 .2 ,0 .2 ,0 .1)
(0 2, 0 2, 0 1) (0 2 , 0 2 , 0 . 1) (0 2, 0 2, 0 1)
(0 .2 ,0 .2 ,0 . 1) (0 . 2, 0. 2, 0. 1) (0. 2, 0. 2, 0. 1) (0 .2 ,0 .2 ,0 .1) P1 P2
a(0 5, 0 5, 0 2) b(0 4, 0 4, 0 1) d(0 6, 0 6, 0 2) c(0 3, 0 3, 0 1) e(0 6, 0 6, 0 1)
Figure2:Single-valuedneutrosophicplanargraph
Theorem3.13. LetGbeasingle-valuedneutrosophiccompletemultigraph. Theplanarityvalue,f = ( fT , fI , fF) of GisgivenbyfT = 1 1+np ,fI = 1 1+np andfF = 1 1+np suchthatfT + fI + fF ≤ 3,wherenp isthenumberofpointof intersectionsbetweentheedgesinG
Definition3.14. Ansingle-valuedneutrosophicplanargraphGiscalledstrongsingle-valuedneutrosophicplanar graphifthesingle-valuedneutrosophicplanarityvaluef = ( fT , fI , fF) ofthegraphisfT ≥ 0 5,fI ≥ 0 5,fF ≤ 0 5
Theorem3.15. LetGbeastrongsingle-valuedneutrosophicplanargraph.Thenumberofpointofintersections betweenstrongedgesinGisatmostone.
Proof. Let G beastrongsingle-valuedneutrosophicplanargraph.Assumethat G hasatleasttwopointof intersections P1 and P2 betweentwostrongedgesin G.Foranystrongedge(ab, TB(ab)i, IB(ab)i, FB(ab)i), TB(ab)i ≥ 1 2 min{TA(a), TA(b)}, IB(ab)i ≥ 1 2 min{IA(a), IA(b)}, FB(ab)i ≤ 1 2 max{FA(a), FA(b)}.
Thisshowsthat(ST )ab ≥ 0 5,(SI)ab ≥ 0 5,(SF)ab ≤ 0 5.Thusfortwointersectingstrongedges(ab, TB (ab)i, IB(ab)i, FB(ab)i) and(cd, TB(cd)j, IB(cd)j, FB(cd)j), (ST)ab + (ST)cd 2 ≥ 0 5, (SI)ab + (SI)cd 2 ≥ 0 5, (SF)ab + (SF)cd 2 ≤ 0 5, thatis,(ST)P1 ≥ 0 5,(SI)P1 ≥ 0 5,(SF)P1 ≤ 0 5.Similarly,(ST)P2 ≥ 0 5,(SI)P2 ≥ 0 5,(SF)P2 ≤ 0 5.Thisimplies that1 + (ST)P1 + (ST)P2 ≥ 2,1 + (SI)P1 + (SI)P2 ≥ 2,1 + (SF)P1 + (SF)P2 ≤ 2.Therefore, fT = 1 1+(ST )P1 +(ST )P2 ≤ 0 5, fI = 1 1+(SI )P1 +(SI )P2 ≤ 0 5, fF = 1 1+(SF )P1 +(SF)P2 ≥ 0 5.Itcontradictsthefactthatthesingle-valuedneutrosophic graphisastrongsingle-valuedneutrosophicplanargraph. Thusnumberofpointofintersectionsbetween strongedgescannotbetwo.Obviously,ifthenumberofpoint ofintersectionsofstrongsingle-valued neutrosophicedgesincreases,thesingle-valuedneutrosophicplanarityvaluedecreases.Similarly,ifthe numberofpointofintersectionofstrongedgesisone,thenthesingle-valuedneutrosophicplanarityvalue fT > 0 5, fI > 0 5, fI > 0 5.Anysingle-valuedneutrosophicplanargraphwithoutany crossingbetween edgesisastrongsingle-valuedneutrosophicplanargraph. Thus,weconcludethatthemaximumnumber ofpointofintersectionsbetweenthestrongedgesin G isone.
Faceofasingle-valuedneutrosophicplanargraphisanimportantparameter.Faceofasingle-valued neutrosophicgraphisaregionboundedbysingle-valuedneutrosophicedges.Everysingle-valuedneutrosophicfaceischaracterizedbysingle-valuedneutrosophicedgesinitsboundary.Ifalltheedgesin theboundaryofasingle-valuedneutrosophicfacehave T, I, F values(1, 1, 1)and(0, 0, 0),respectively,it becomescrispface.Ifoneofsuchedgesisremovedorhas T, I and F values(0, 0, 0)and(1, 1, 1),respectively,thesingle-valuedneutrosophicfacedoesnotexist.Sotheexistenceofasingle-valuedneutrosophic facedependsontheminimumvalueofstrengthofsingle-valuedneutrosophicedgesinitsboundary.A single-valuedneutrosophicfaceandits T, I and F valuesofasingle-valuedneutrosophicgrapharedefined below.
Definition3.16. LetGbeasingle-valuedneutrosophicplanargraphandB = {(xy, TB(xy)i, IB(xy)i, FB(xy)i), i = 1, 2,..., m| xy ∈ V × V}.Asingle-valuedneutrosophicfaceofGisaregion,bounded bythesetofsingle-valued neutrosophicedgesE′ ⊂ E,ofageometricrepresentationofG.Themembershipandnonmembershipvaluesofthe single-valuedneutrosophicfaceare:
min TB(xy)i min{TA(x), TA(y)} , i = 1, 2,..., m| xy ∈ E′ , min IB(xy)i min{IA(x), IA(y)} , i = 1, 2,..., m| xy ∈ E′ , max FB(xy)i max{FA(x), FA(y)} , i = 1, 2,..., m| xy ∈ E′ .
Definition3.17. Ansingle-valuedneutrosophicfaceiscalledstrongsingle-valuedneutrosophicfaceifitstruemembershipvalueisgreaterthan 0 5,indeterminacyvalueisgreaterthan 0 5,false-membershipvalueislesserthan 0.5,andweakfaceotherwise.Everysingle-valuedneutrosophicplanargraphhasaninfiniteregionwhichiscalled outersingle-valuedneutrosophicface.Otherfacesarecalledinnersingle-valuedneutrosophicfaces.
Example3.18. Considerasingle-valuedneutrosophicplanargraphasshowninFig. 3.Thesingle-valuedneutrosophicplanargraphhasthefollowingfaces:
• single-valuedneutrosophicfaceF1 isboundedbytheedges (v1v2, 0.5, 0.5, 0.1), (v2v3, 0.6, 0.6, 0.1), (v1v3, 0.5, 0.5, 0.1).
• outersingle-valuedneutrosophicfaceF2 surroundedbyedges
(v1v3, 0.5, 0.5, 0.1), (v1v4, 0.5, 0.5, 0.1), (v2v4, 0.6, 0.6, 0.1), (v2v3, 0.6, 0.6, 0.1),
• single-valuedneutrosophicfaceF3 isboundedbytheedges
(v1v2, 0.5, 0.5, 0.1), (v2v4, 0.6, 0.6, 0.1), (v1v4, 0.5, 0.5, 0.1).
Clearly,thetruth-membershipvalue,indeterminacy-membershipvalueandfalsity-membershipvalueofasinglevaluedneutrosophicfaceF1 are0.833,0.833and0.333,respectively.Thetruth-membershipvalue,indeterminacymembershipvalueandfalsity-membershipvalueofasingle-valuedneutrosophicfaceF3 arealso0.833,0.833and 0.333,respectively.ThusF1 andF3 arestrongsingle-valuedneutrosophicfaces.
F3
v1(0 6, 0 6, 0 3)
(0 5, 0 5, 0 1) (0 5, 0 5, 0 1)
F1 F2
v2(0 7, 0 7, 0 3)
(0 6 , 0 . 6 , 0 1)
(0 5, 0 5, 0 1) (0 . 6, 0. 6, 0. 1)
v3(0 8, 0 8, 0 1) v4(0 7, 0 7, 0 1)
Figure3:Facesinsingle-valuedneutrosophicplanargraph
Wenowintroducedualofsingle-valuedneutrosophicplanar graph.Insingle-valuedneutrosophicdual graph,verticesarecorrespondingtothestrongsingle-valuedneutrosophicfacesofthesingle-valued neutrosophicplanargraphandeachsingle-valuedneutrosophicedgebetweentwoverticesiscorresponding toeachedgeintheboundarybetweentwofacesofsingle-valuedneutrosophicplanargraph.Theformal definitionisgivenbelow.
Definition3.19. LetGbeasingle-valuedneutrosophicplanargraphandlet
LetF1, F2,..., Fk bethestrongsingle-valuedneutrosophicfacesofG.Thesingle-valuedneutrosophicdualgraphofG isasingle-valuedneutrosophicplanargraphG′ = (V′ , A′ , B′),whereV′ = {xi, i = 1, 2,..., k},andthevertexxi ofG′ isconsideredforthefaceFi ofG.Thetrue-truth-membership,indeterminacyandfalse-truth-membershipvaluesof verticesaregivenbythemappingA′ = (TA′ , IA′ , FA′ ): V′ → [0, 1] × [0, 1] × [0, 1] suchthat TA′ (xi) = max{TB′ (uv)i, i = 1, 2,..., p|uvisanedgeoftheboundaryofthestrongsingle-valuedneutrosophicfaceFi}, IA′ (xi) = max{IB′ (uv)i, i = 1, 2,..., p|uvisanedgeoftheboundaryofthestrongsingle-valuedneutrosophicfaceFi}, FA′ (xi) = min{FB′ (uv)i, i = 1, 2,..., p|uvisanedgeoftheboundaryofthestrongsingle-valuedneutrosophicfaceFi}
Theremayexistmorethanonecommonedgesbetweentwofaces Fi and Fj of G.Thustheremaybe morethanoneedgesbetweentwovertices xi and xj insingle-valuedneutrosophicdualgraph G′.Let Tl B(xixj)denotethetruth-membershipvalueofthe l-thedgebetween xi and xj,and Fl B(xixj)denotethe falsity-membershipvalueofthe l-thedgebetween xi and xj
Thetruth-membership,indeterminacy-membershipandfalsity-membershipvaluesofthesingle-valued neutrosophicedgesofthesingle-valuedneutrosophicdual grapharegivenby TB′ (xixj)l = Tl B(uv)j, IB′ (xixj)l = Il B(uv)j, FB′ (xixj)l = Fl B(uv)j where(uv)l isanedgeintheboundarybetweentwostrongsingle-valued neutrosophicfaces Fi and Fj and l = 1, 2,..., s,where s isthenumberofcommonedgesintheboundary between Fi and Fj orthenumberofedgesbetween xi and xj
Iftherebeanystrongpendantedgeinthesingle-valuedneutrosophicplanargraph,thentherewillbeaself loopin G′ correspondingtothispendantedge.Theedgetruth-membership,indeterminacy-membership andfalsity-membershipvalueoftheselfloopisequaltothe truth-membership,indeterminacy-membership andfalsity-membershipvalueofthependantedge.
Single-valuedneutrosophicdualgraphofsingle-valuedneutrosophicplanargraphdoesnotcontainpoint ofintersectionofedgesforacertainrepresentation,soit issingle-valuedneutrosophicplanargraphwith planarityvalue(1, 1, 1).Thusthesingle-valuedneutrosophicfaceofsingle-valuedneutrosophicdualgraph canbesimilarlydescribedasinsingle-valuedneutrosophicplanargraphs.
Example3.20. Considerasingle-valuedneutrosophicplanargraphG = (V, A, B) asshowninFig. 4 suchthat V = {a, b, c, d},A = (a, 0.6, 0.6, 0.2), (b, 0.7, 0.7, 0.2), (c, 0.8, 0.8, 0.2), (d, 0.9, 0.9, 0.1), and B = {(ab, 0 5, 0 5, 0 01), (ac, 0 4, 0 4, 0 01), (ad, 0 55, 0 55, 0 01), (bc, 0 45, 0 45, 0 01), (bc, 0 6, 0 6, 0 01), (cd, 0 7, 0 7, 0 01)} a b c d
x1 x2 x3 x4
Figure4:Single-valuedneutrosophicdualgraph
Thesingle-valuedneutrosophicplanargraphhasthefollowingfaces:
• single-valuedneutrosophicfaceF1 isboundedby (ab, 0 5, 0 5, 0 01), (ac, 0 4, 0 4, 0 01), (bc, 0 45, 0 45, 0 01),
• single-valuedneutrosophicfaceF2 isboundedby (ad, 0 55, 0 55, 0 01), (cd, 0 7, 0 7, 0 01), (ac, 0 4, 0 4, 0 01),
• single-valuedneutrosophicfaceF3 isboundedby (bc, 0.45, 0.45, 0.01), (bc, 0.6, 0.6, 0.01)and
• outersingle-valuedneutrosophicfaceF4 issurroundedby (ab, 0.5, 0.5, 0.01), (bc, 0.6, 0.6, 0.01), (cd, 0.7, 0.7, 0.01), (ad, 0.55, 0.55, 0.01).
Routinecalculationsshowthatallfacesarestrongsingle-valuedneutrosophicfaces.Foreachstrongsingle-valued neutrosophicface,weconsideravertexforthesingle-valuedneutrosophicdualgraph.SothevertexsetV′ = {x1, x2, x3, x4},wherethevertexxi istakencorrespondingtothestrongsingle-valuedneutrosophicfaceFi,i = 1, 2, 3, 4 Thus
TA′ (x1) = max{0.5, 0.4, 0.45} = 0.5, TA′ (x2) = max{0.55, 0.7, 0.4} = 0.7,
IA′ (x1) = max{0 5, 0 4, 0 45} = 0 5, IA′ (x2) = max{0 55, 0 7, 0 4} = 0 7,
FA′ (x1) = min{0.01, 0.01, 0.01} = 0.01, FA′ (x2) = min{0.01, 0.01, 0.01} = 0.01,
TA′ (x3) = max{0.45, 0.6} = 0.6, TA′ (x4) = max{0.5, 0.6, 0.7, 0.55} = 0.7,
IA′ (x3) = max{0.45, 0.6} = 0.6, IA′ (x4) = max{0.5, 0.6, 0.7, 0.55} = 0.7,
F′ A(x3) = min{0 01, 0 01} = 0 01, FA′ (x4) = min{0 01, 0 01, 0 01, 0 01} = 0 01
TherearetwocommonedgesadandcdbetweenthefacesF2 andF4 inG.Hencebetweentheverticesx2 andx4,there existtwoedgesinthesingle-valuedneutrosophicdualgraphofG.Truth-membership,indeterminacy-membership andfalsity-membershipvaluesoftheseedgesaregivenby
TB′ (x2x4) = TB(cd) = 0.7, TB′ (x2x4) = TB(ad) = 0.55, IB′ (x2x4) = IB(cd) = 0.7, IB′ (x2x4) = IB(ad) = 0.55,
FB′ (x2x4) = FB(cd) = 0 01, FB′ (x2x4) = FB(ad) = 0 01
Thetruth-membership,indeterminacy-membershipandfalsity-membershipvaluesofotheredgesofthesingle-valued neutrosophicdualgrapharecalculatedas
TB′ (x1x3) = TB(bc) = 0.45, TB′ (x1x2) = TB(ac) = 0.4, TB′ (x1x4) = TB(ab) = 0.5, TB′ (x3x4) = T′ B(bc) = 0.6, IB′ (x1x3) = IB(bc) = 0 45, IB′ (x1x2) = IB(ac) = 0 4, IB′ (x1x4) = IB(ab) = 0 5, IB′ (x3x4) = I′ B(bc) = 0 6, F′ B(x1x3) = TB(bc) = 0 01, FB′ (x1x2) = FB(ac) = 0 01, FB′ (x1x4) = FB(ab) = 0 01, F′ B(x3x4) = FB(bc) = 0 01
Thustheedgesetofsingle-valuedneutrosophicdualgraphis
B′ = {(x1x3, 0 45, 0 45, 0 01), (x1x2, 0 4, 0 4, 0 01), (x1x4, 0 5, 0 5, 0 01), (x3x4, 0.6, 0.6, 0.01), (x2x4, 0.7, 0.7, 0.01), (x2x4, 0.55, 0.55, 0.01)}.
InFig. 4,thesingle-valuedneutrosophicdualgraphG′ = (V′ , A′ , B′) ofGisdrawnbydottedline.
Weakedgesinplanargraphsarenotconsideredforanycalculationinsingle-valuedneutrosophicdual graphs.WestatethefollowingTheoremswithouttheirproofs.
Theorem3.21. LetGbeasingle-valuedneutrosophicplanargraphwhosenumberofvertices,numberofsinglevaluedneutrosophicedgesandnumberofstrongfacesaredenotedbyn,p,m,respectively.LetG′ bethesingle-valued neutrosophicdualgraphofG.Then:
(i)thenumberofverticesofG′ isequaltom, (ii)numberofedgesofG′ isequaltop,
(iii)numberofsingle-valuedneutrosophicfacesofG′ isequalton.
Theorem3.22. LetG = (V, A, B) beasingle-valuedneutrosophicplanargraphwithoutweakedgesandthesinglevaluedneutrosophicdualgraphofGbeG′ = (V′ , A′ , B′).Thetruth-membershipindeterminacy-membershipand falsity-membershipvaluesofsingle-valuedneutrosophic edgesofG′ areequaltotruth-membershipindeterminacymembershipandfalsity-membershipvaluesofthesingle-valuedneutrosophicedgesofG.
4.Conclusion
Asingle-valuedneutrosophicgraphisageneralizationofintuitionisticfuzzygraphthatisveryuseful tosolvereallifeproblems.Inthisresearcharticle,wehavepresentedsingle-valuedneutrosophicplanar graphs.Weareextendingourworkto(1)Bipolarneutrosophicplanargraphs,(2)Intuitionisticneutrosophic planargraphs,(3)Interval-valuedneutrosophicgraphs,and(4)single-valuedneutrosophicsoftplanar graphs.
5.Acknowledgment
Theauthorsarethankfultotherefereesfortheirvaluablecommentsandsuggestionsforimprovingthe qualityofourpaper.
References
[1]N.Abdul-Jabbar,J.H.NaoomandandE.H.Ouda,Fuzzydual graph,JournalofAl-NahrainUniversity,12(4)(2009)168-171.
[2]M.AkramandW.A.Dudek,Intuitionisticfuzzyhypergraphswithapplications,InformationSciences,218(2013)182-193.
[3]M.AkramandB.Davvaz,Strongintuitionisticfuzzygraphs,Filomat,26(2012)177-196.
[4]M.AkramandN.O.Al-Shehri,Intuitionisticfuzzycyclesandintuitionisticfuzzytrees,TheScientificWorldJournal,2014(2014) ArticleID305836,11pages.
[5]M.Akram,S.SamantaandM.Pal,Applicationofbipolarfuzzysetsinplanargraphs,InternationalJournalofApplied and ComputationalMathematics,2016,doi:10.1007/s40819-016-0132-4.
[6]M.AkramandS.Shahzadi,Neutrosophicsoftgraphswithapplication,JournalofIntelligentandFuzzySysytems,DOI: 10.3233/JIFS-16090,(2016)1-18.
[7]M.AkramandS.Shahzadi,Representationofgraphsusing intuitionisticneutrosophicsoftsets,JournalofMathematicalAnalysis, 7(6)(2016)1-23.
[8]M.Akram,S.ShahzadiandA.BorumandSaeid,Single-valuedneutrosophichypergraphs,TWMSJournalofAppliedand EngineeringMathematics,2016(Inpress).
[9]M.AkramandG.Shahzadi,Operationsonsingle-valuedneutrosophicgraphs,JournalofUncertainSystem,11(2017)1-26.
[10]N.AlshehriandM.Akram,Intuitionisticfuzzyplanargraphs,DiscreteDynamicsinNatureandSociety,2014(2014),ArticleID 397823,9pages.
[11]K.T.Atanassov,Intuitionisticfuzzysets, VIIITKR’sSession,DeposedinCentralforScience-TechnicalLibraryofBulgarianAcademyof Sciences,1697/84,1983,Sofia,Bulgaria,June,(Bulgarian).
[12]P.Bhattacharya,Someremarksonfuzzygraphs,Pattern RecognitionLetters,6(5))1987)297-302.
[13]S.Broumi,M.Talea,A.BakaliandF.Smarandache,Single-valuedneutrosophicgraphs,JournalofNewTheory,10(2016)86-101.
[14]R.Dhavaseelan,R.VikramaprasadandV.Krishnaraj,Certaintypesofneutrosophicgraphs,InternationalJournal ofMathematical SciencesandApplications,5(2)(2015)333-339.
[15]A.Kauffman, IntroductionalaTheoriedesSous-emsemblesFlous,MassonetCie,Vol.1,1973.
[16]J.M.MordesonandP.Chang-Shyh,Operationsonfuzzygraphs,InformationSciences,79(1994)59-170.
[17]A.Pal,S.SamantaandM.Pal,Conceptoffuzzyplanargraphs,ProceedingsofScienceandInformationConference2013,October 7-9,2013,London,UK,557-563,2013.
[18]A.Rosenfeld,Fuzzygraphs:FuzzySetsandTheirApplications,AcademicPress,NewYork,(1975)77-95.
[19]S.Samanta,M.PalandA.Pal,Newconceptsoffuzzyplanargraph,InternationalJournalofAdvancedResearchinArtificial Intelligence,3(1)(2014)52-59.
[20]F.Smarandache,AUnifyingfieldinlogicsneutrosophy: Neutrosophicprobability,setandlogic,Rehoboth:AmericanResearch Press,1998.
[21]N.ShahandA.Hussain,Neutrosophicsoftgraphs,NeutrosophicSetandSystems,11(2016)31-44.
[22]H.Wang,F.Smarandache,Y.Zhang,andR.Sunderraman,Single-valuedneutrosophicsets,MultispaceandMultistructure, 4(2010)410-413..
[23]H.-L.Yang,Z.-L.Guo,Y.SheandX.Liao,Onsinglevaluedneutrosophicrelations,JournalofIntelligentFuzzySystems, 30(2016)1045-1056.
[24]R.R.Yager,Onthetheoryofbags,Int.J.GeneralSystems,13(1986)23-37.
[25]J.Ye,Amulticriteriadecision-makingmethodusingaggregationoperatorsforsimplifiedneutrosophicsets,JournalofIntelligent &FuzzySystems,26(5)(2014)2459-2466.
[26]S.YeandJ.Ye,Dicesimilaritymeasurebetweensinglevaluedneutrosophicmultisetsanditsapplicationinmedicaldiagnosis, NeutrosophicSetsandSystems,6(2014)48-52.
[27]L.A.Zadeh,Fuzzysets,InformationandControl,8(1965)338-353.
[28]L.A.Zadeh,Similarityrelationsandfuzzyorderings, InformationSciences,3(2)(1971)177-200.