Neutrosophic Axiomatic System

Page 1

Neutrosophic Axiomatic System

1 UniversityofNewMexico 705GurleyAve.,Gallup,NM87301,USA smarand@unm.edu

Abstract

In this paper, we introduce for the first time the notions of Neutrosophic Axiom, Neutrosophic Axiomatic System, Neutrosophic Deducibility and Neutrosophic Inference,NeutrosophicProof,NeutrosophicTautologies,NeutrosophicQuantifiers, Neutrosophic Propositional Logic, Neutrosophic Axiomatic Space, Degree of Contradiction (Dissimilarity) of Two Neutrosophic Axioms, and Neutrosophic Model. A class of neutrosophic implications is also introduced. A comparison between these innovatory neutrosophic notions and their corresponding classical notionsismade.Then,threeconcreteexamplesofneutrosophicaxiomaticsystems, describing the same neutrosophic geometrical model, are presented at the end of thepaper.

Keywords

Neutrosophic logic, Neutrosophic Axiom, Neutrosophic Deducibility, Neutrosophic Inference,NeutrosophicProof,NeutrosophicTautologies,NeutrosophicQuantifiers, NeutrosophicPropositionalLogic,NeutrosophicAxiomaticSpace.

1 Neutrosophic Axiom

A neutrosophic axiom or neutrosophic postulate (α)isapartialpremise,which ist%true(degreeoftruth),i%indeterminate(degreeofindeterminacy),and f% false (degree of falsehood), where <t, i, f> are standard or nonstandard subsetsincludedinthenon-standardunitinterval]-0,1+[.

Thenon-standardsubsetsandnon-standardunitintervalaremostlyusedin philosophyin caseswhereone needstomakedistinction between“absolute truth”(whichisatruthinallpossibleworlds)and“relativetruth”(whichisa truth in at least one world, but not in all possible worlds), and similarly for

5 Critical Review Volume X, 2015

Florentin

Neutrosophic Axiomatic System

distinction between “absolute indeterminacy” and “relative indeterminacy”, and respectively distinction between “absolute falsehood” and “relative falsehood”.

Butforotherscientificandtechnicalapplicationsoneusesstandardsubsets, andthestandardclassicalunitinterval[0,1].

As a particular case of neutrosophic axiom is the classical axiom. In the classicalmathematicsanaxiomissupposed100%true,0%indeterminate,and 0%false.Butthisthingoccursinidealisticsystems,inperfectlyclosedsystems, notinmanyoftherealworldsituations.

Unliketheclassicalaxiomwhichisatotalpremiseofreasoningand without anycontroversy,theneutrosophicaxiomisapartialpremiseofreasoningwith apartialcontroversy.

Theneutrosophicaxiomsserveinapproximatereasoning.

Thepartialtruthofaneutrosophicaxiomissimilarlytakenforgranting.

Theneutrosophicaxioms,andingeneraltheneutrosophicpropositions,deal withapproximateideasorwithprobableideas,andingeneralwithideaswe are not able to measure exactly. That’s why one cannot get 100% true statements(propositions).

Inourlifewedealwithapproximations.Anaxiomisapproximatelytrue, andtheinferenceisapproximatelytrueeither.

Aneutrosophicaxiom isaself-evidentassumption in somedegreesof truth, indeterminacy,andfalsehoodrespectively.

2 Neutrosophic Deducing and Neutrosophic Inference

The neutrosophic axioms are employed in neutrosophic deducing and neutrosophic inference rules,whicharesortofneutrosophicimplications,and similarly they have degrees of truth, indeterminacy, and respectively falsehood.

3 Neutrosophic Proof

Consequently, a neutrosophic proof has also a degree of validity, degree of indeterminacy,anddegreeofinvalidity. Andthisiswhenweworkwithnotwelldeterminateelementsinthespaceornotnot-welldeterminateinference rules.

Critical Review. Volume X, 2015

6
Smarandache

The neutrosophic axioms are at the foundation of various neutrosophic sciences

Theapproximate,indeterminate,incomplete,partiallyunknown,ambiguous, vagueness,imprecision,contradictory,etc.knowledgecanbeneutrosophically axiomized.

4 Neutrosophic Axiomatic System

AsetofneutrosophicaxiomsΩiscalled neutrosophic axiomatic system,where the neutrosophic deducing and the neutrosophic inference (neutrosophic implication)areused.

The neutrosophic axioms are defined on a given space��. The space can be classical(spacewithoutindeterminacy),orneutrosophicspace(spacewhich hassomeindeterminacywithrespecttoitselements).

A neutrosophic space may be, for example, a space that has at least one element which only partially belongs to the space. Let us say the element x <0.5,0.2,0.3>thatbelongsonly50%tothespace,while20%itsappurtenance isindeterminate,and30%itdoesnotbelongtothespace. Therefore,wehavethreetypesofneutrosophicaxiomaticsystems:

[1] Neutrosophicaxiomsdefinedonclassicalspace;

[2] Classicalaxiomsdefinedonneutrosophicspace;

[3] Neutrosophicaxiomsdefinedonneutrosophicspace.

Remark:

The neutrosophic axiomatic system is not unique, in the sense that several differentaxiomaticsystemsmaydescribethesameneutrosophicmodel.This happens because one deals with approximations, and because the neutrosophicaxiomsrepresentpartial(nottotal)truths.

5 Classification of the Neutrosophic Axioms

[1] Neutrosophic Logical Axioms, which are neutrosophic statements whosetruth-valueis<t,i,f>withinthesystemofneutrosophiclogic. Forexample: (��or��)neutrosophicallyimplies��.

Critical Review. Volume X, 2015

7

Neutrosophic Axiomatic System

[2] Neutrosophic Non-Logical Axioms,whichareneutrosophicproperties of the elements of the space. For example: the neutrosophic associativity ��(����)=(����)��, which occurs for some elements, it is unknown(indeterminate)forothers,anddoesnotoccurforothers.

In general, a neutrosophic non-logical axiom is a classical non-logical axiom that works for certain space elements, is indeterminate for others, and does notworkforothers.

6 Neutrosophic Tautologies

A classical tautology is a statement that is universally true [regarded in a larger way, or lato sensu], i.e. true in all possible worlds (according to Leibniz’sdefinitionof“world”).Forexample,“M=M”inallpossibleworlds.

A neutrosophic tautology is a statement that is true in a narrow way [i.e. regardedinstrictosensu],oritis<1,0,0>trueforaclassofcertainparameters and conditions, and <t, i, f> true for another class of certain parameters and conditions,where<t,i,f> ≠ <1,0,0>.I.e.aneutrosophictautologyistruein some worlds, and partially true in other worlds. For example, the previous assertation:“M=M”.

If“M”isanumber[i.e.theparameter=number],thenanumberisalwaysequal toitselfinanynumerationbase.

Butif“M”isaperson[i.e.theparameter=person],callhimMartin,thenMartin attimet1isthesameasMartinattimet1[i.e.ithasbeenconsideredanother parameter = time], but Martin at time t1 is different from Martin at time t2 (meaning for example 20 years ago: hence Martin younger is different from Martin older). Therefore, from the point of view of parameters ‘person’ and ‘time’,“M=M”isnotaclassicaltautology.

Similarly, wemay have apropositionPwhich istrue locally, butit is untrue non-locally.

A neutrosophic logical system is an approximate minimal set of partially true/indeterminate/falsepropositions.

While the classical axioms cannot be deduced from other axioms, there are neutrosophic axioms that can be partially deduced from other neutrosophic axioms.

Critical Review. Volume X, 2015

8 Florentin Smarandache

7 Notations regarding the Classical Logic and Set, Fuzzy Logic

and Set, Intuitionistic Fuzzy Logic and Set, and Neutrosophic Logic and Set

Inordertomakedistinctionbetweenclassical(Boolean)logic/set,fuzzylogic/ set, intuitionistic fuzzy logic/set, and neutrosophic logic/set, we denote their corresponding operators (negation/complement, conjunction/ intersection, disjunction/union, implication/inclusion, and equivalence/equality), as it follows:

[1] Forclassical(Boolean)logicandset: ¬ ∧ ∨ → ↔ (1) [2] Forfuzzylogicandset: ¬ �� ∧ �� ∨ �� → �� ↔ �� (2) [3] Forintuitionisticfuzzylogicandset: ¬ ���� ∧ ���� ∨ ���� → ���� ↔ ���� (3) [4] Forneutrosophiclogicandset: ¬ �� ∧ �� ∨ �� → �� ↔ �� (4)

8 The Classical Quantifiers

Theclassical Existential Quantifier isthefollowingway: ,()xAPx . (5)

Inaneutrosophicwaywecanwriteitas: Thereexist x<1, 0, 0> in A suchthat P(x)<1, 0, 0>,or: 1,0,0,()1,0,0xAPx  . (6)

Theclassical Universal Quantifier isthefollowingway: ,()xAPx (7)

Inaneutrosophicwaywecanwriteitas: Forany x<1, 0, 0> in A onehas P(x)<1, 0, 0>,or: 1,0,0,()1,0,0xAPx  (8)

Critical Review. Volume X, 2015

9

Neutrosophic Axiomatic System

9 The Neutrosophic Quantifiers

The Neutrosophic Existential Quantifier isinthefollowingway: Thereexist x<tx, ix, fx> in A suchthat P(x)<tP, iP, fP>,or: ,,,(),,xxx PPPxtifAPxtif  , (9)

which means that: there exists an element x which belongs to A in a neutrosophic degree <tx, ix, fx>, such that the proposition P has the neutrosophicdegreeoftruth <tP, iP, fP>.

The Neutrosophic Universal Quantifier isthefollowingway: Forany x<tx, ix, fx> in A onehas P(x)<tP, iP, fP>,or: ,,,(),,xxx PPPxtifAPxtif  , (10) whichmeansthat: foranyelementxthatbelongstoAinaneutrosophicdegree <tx, ix, fx>, onehastheproposition P withtheneutrosophicdegreeoftruth <tP, iP, fP>.

10 Neutrosophic Axiom Schema

A neutrosophic axiom schema is a neutrosophic rule for generating infinitely manyneutrosophicaxioms. Examplesofneutrosophicaxiomschema:

[1]

Neutrosophic Axiom Scheme for Universal Instantiation

. LetΦ(x)beaformula,dependingonvariablexdefinedonadomainD,inthe first-orderlanguageL,andlet’ssubstitutexfor aD.Thenthenewformula: ()() N xxa (11) is ,, NNNtif   -neutrosophically[universally]valid.

Thismeansthefollowing: ifoneknowsthataformulaΦ(x)holds<tx,ix,fx>neutrosophicallyforevery x in thedomain D,andfor x = a theformulaΦ(a) holds <ta, ia, fa>-neutrosophically, then the whole new formula (a) holds ,, NNNtif   -neutrosophically,wheret N  meansthetruthdegree,i N  the indeterminacy degree, and f N  the falsehood degree - all resulted from the neutrosophicimplication N  .

Critical Review. Volume X, 2015

10 Florentin Smarandache

Florentin Smarandache

Neutrosophic Axiomatic System

[2] Neutrosophic Axiom Scheme for Existential Generalization.

LetΦ(x) beaformula,dependingonvariable x definedonadomain D,inthe first-orderlanguage L,andlet’ssubstitutexfor aD.Thenthenewformula: ()() N axx (12) is ,, NNNtif   -neutrosophically[universally]valid.

Thismeansthefollowing: ifoneknowsthataformulaΦ(a) holds <ta, ia, fa>neutrosophicallyforagivenx=ainthedomain D,andforevery x inthedomain formulaΦ(x)holds <tx, ix, fx>-neutrosophically,thenthewholenewformula(b) holds ,, NNNtif   -neutrosophically,wheret N  meansthetruthdegree,i N  the indeterminacy degree, and f N  the falsehood degree - all resulted fromtheneutrosophicimplication N  .

These are neutrosophic metatheorems of the mathematical neutrosophic theorywheretheyareemployed.

11 Neutrosophic Propositional Logic

Wehavemanyneutrosophicformulasthatonetakesasneutrosophicaxioms. Forexample,asextensionfromtheclassicallogic,onehasthefollowing. Let P<tP, iP, fP>, Q<tQ, iQ, fQ>, R<tR, iR, fR>, S<tS, iS, fS> beneutrosophicpropositions, where <tP, iP, fP> istheneutrosophic-truthvalueof P,andsimilarlyfor Q, R, and S.Then: a) Neutrosophic modus ponens (neutrosophic implication elimination):

contrapositive

Critical Review. Volume X, 2015

11
()NN PQP  (13) b) Neutrosophic modus tollens (neutrosophic law of
): (())NNNNN PQQP  (14) c) Neutrosophic disjunctive syllogism (neutrosophic disjunction elimination): (())NNNN PQPQ  (15) d) Neutrosophic hypothetical syllogism (neutrosophic chain argument): (()())() NNN NN PQQRPR  (16)

Neutrosophic Axiomatic System

e) Neutrosophic constructive dilemma (neutrosophic disjunctive version of modus ponens): ((()())())() NNNNN NN PQRSPRQS  (17)

f) Neutrosophic distructive dilemma (neutrosophic disjunctive version of modus tollens): ((()()) ( ))( ) NNNN NNNNNNN

PQRS QSPR 

Alltheseneutrosophicformulaealsorunas neutrosophic rules of inference.

These neutrosophic formulas or neutrosophic derivation rules only partially preservethetruth, and dependingontheneutrosophicimplication operator thatisemployedtheindeterminacymayincreaseordecrease.

Thishappensforoneworkingwithapproximations.

Whiletheaboveclassicalformulasinclassicalproportionallogicareclassical tautologies(i.e. froma neutrosophicalpoint ofviewtheyare 100% true, 0% indeterminate,and 0% false),theircorrespondingneutrosophicformulasare neither classical tautologies nor neutrosophical tautologies, but ordinary neutrosophic propositions whose <��,��,��> neutrosophic truth-value is resultedfromthe �� →neutrosophicimplication ��<����,����,���� > �� →��<(����,����,����)>.

12 Classes of Neutrosophic Negation Operators

(19)

Therearedefinedinneutrosophicliteratureclassesofneutrosophicnegation operatorsasfollows:if��(����,����,����),thenitsnegationis: ¬ ����(����,����,����), (20) or ¬ ����(����,1−����,����), (21) ¬ or ����(1−����,1−����,1−����), (22) or ¬ ����(1−����,����,1−����),etc. (23)

Critical Review. Volume X, 2015

12 Florentin Smarandache
 (18)

Florentin

Neutrosophic Axiomatic System

13 Classes of Neutrosophic Conjunctive Operators.

Similarly:if��(����,����,����)and��(����,����,����),then �� �� ∧��=〈���� �� ∧ ����,���� �� ∨ ����,���� �� ∨ ����〉, (24) or�� �� ∧��=〈���� �� ∧ ����,���� �� ∧ ����,���� �� ∨ ����〉, (25) or�� �� ∧��=〈���� �� ∧ ����,���� �� ∧ ����,���� �� ∧ ����〉 (26) or�� �� ∧��=〈���� �� ∧ ����, ����+���� 2 ,���� �� ∨ ����〉, (27) or�� �� ∧��=〈���� �� ∧ ����,1− ����+���� 2 ,���� �� ∨ ����〉, (28) or�� �� ∧��=〈���� �� ∧ ����,|���� −����|,���� �� ∨ ����〉,etc. (29)

14 Classes of Neutrosophic Disjunctive Operators

Andanalogously,thereweredefined: �� �� ∨��=〈���� �� ∨ ����,���� �� ∧ ����,���� �� ∧ ����〉, (30) or�� �� ∨��=〈���� �� ∨ ����,���� �� ∨ ����,���� �� ∧ ����〉, (31) or�� �� ∨��=〈���� �� ∨ ����,���� �� ∨ ����,���� �� ∨ ����〉, (32) or�� �� ∨��=〈���� �� ∨ ����, ����+���� 2 ,���� �� ∧ ����〉, (33) or�� �� ∨��=〈���� �� ∨ ����,1− ����+���� 2 ,���� �� ∧ ����〉, (34) or�� �� ∨��=〈���� �� ∨ ����,|���� −����|,���� �� ∨ ����〉,etc. (35)

15 Fuzzy Operators

Let��,��∈[0,1].

15.1. The Fuzzy Negation hasbeendefinedas ��=1−���� ¬ . (36)

15.2. Whiletheclassof Fuzzy Conjunctions (or t-norm)maybe: ���� ∧��=min{��,��}, (37) or���� ∧��=��∙��, (38) or���� ∧��=max{0,��+��−1},etc. (39)

Critical Review. Volume X, 2015

13
Smarandache

Neutrosophic Axiomatic System

15.3. Andtheclassof Fuzzy Disjunctions (or t-conorm)maybe: ���� ∨��=max{��,��}, (40) or���� ∨��=��+��−����, (41) or���� ∨��=min{1,��+��},etc. (42)

15.4. Examplesof Fuzzy Implications �� �� →��,for��,��∈[0,1],definedbelow:

Fodor(1993):������(��,��)={ 1, if��≤�� max(1−��,��), if��>�� (43)

Weber(1983):������(��,��)={1,if��<�� ��,if��=1 (44)

Yager(1980):������(��,��)={1,if��=0and��=0 ����,if��>0or��>0 (45)

Goguen(1969):������(��,��)={1,if��≤�� �� ��,if��>�� (46)

Rescher(1969):������(��,��)={1,if��≤�� 0,if��>�� (47)

Kleene-Dienes(1938):������(��,��)=max(1−��,��) (48)

Reichenbach(1935):������(��,��)=1−��+���� (49)

Gödel(1932):������(��,��)={1,if��≤�� ��,if��>�� (50)

Lukasiewicz(1923):������(��,��)=min(1,1−��+��), (51) accordingtothelistmadebyMichalBaczyńskiandBalasubramaniamJayaram (2008).

Example

Fuzzy Implication

(1−��

, (52) accordingtoYunhuaXiao,TianyuXue,Zhan’aoXue,andHuiruCheng(2011).

Critical Review. Volume X, 2015

14 Florentin Smarandache
������ =([(1−����)��  ����] F  [(1−����)�� ∨����
���� ∧
16
of Intuitionistic
Exampleof Intuitionistic Fuzzy Implication ��(����,����) ���� →��(����,����)is:
],��
��))

Florentin

17 Classes of Neutrosophic Implication Operators

We now propose for the first time eight new classes of neutrosophic implications andextendaninthonedefinedpreviously: ��(����,����,����) �� →��(����,����,����), inthefollowingways:

17.1-17.2.����1(���� ��/���� ����,���� ���� �� ∧ ,���� ���� �� ∧ ), (53) where ���� ��/���� ���� is any fuzzy implication (from above or others) or any intuitionistic fuzzy implication (from above or others), while is �� ∧ any fuzzy conjunction(fromaboveorothers);

17.3-17.4.����2(���� ��/���� ����,���� ���� �� ∨ ,���� ���� �� ∧ ), (54) where is �� ∨ anyfuzzydisjunction(fromaboveorothers);

17.5-17.6.����3(���� ��/���� ����, ����+���� 2 ,���� ���� �� ∧ ); (55) 17.7-17.8.����4(���� ��/���� ����, ����+���� 2 , ����+���� 2 ). (56)

17.9.Nowweextendanotherneutrosophicimplicationthathasbeendefined byS.Broumi&F.Smarandache(2014)anditwasbasedontheclassicallogical equivalence: (��→��)↔(¬��∨��). (57) Whence,sincethecorrespondingneutrosophiclogicequivalence: (�� �� →��) �� ↔( ���� ¬ �� �� ∨ ) (58) holds,oneobtainsanother Class of Neutrosophic Implication Operators as: ( ���� ¬ �� �� ∨ ) (59) whereonemayuseanyneutrosophicnegation N  (fromaboveorothers),and anyneutrosophicdisjunction N  (fromaboveorothers).

Critical Review. Volume X, 2015

15

Neutrosophic Axiomatic System

18 Example of Neutrosophic Implication

Let’sseean Example of Neutrosophic Implication.

Let’s have two neutrosophic propositions��〈0.3,0.4,0.2〉and��〈0.7,0.1,0.4〉. Then�� �� →��hastheneutrosophictruthvalueof ���� �� ∨ �� ¬ ,i.e.: 〈0.2,0.4,0.3〉〈0.7,0.1,0.4〉 �� ∨ , or〈max{0.2,0.7},min{0.4,0.1},min{0.3,0.4}〉, or〈0.7,0.1,0.3〉, wherewe usedtheneutrosophicoperatorsdefinedabove: 〈��,��,��〉=〈��,��,��〉 �� ¬ for neutrosophic negation, and 〈��1,��1,��1〉〈��2,��2,��2〉 �� ∨ = 〈max{��1,��2},min{��1,��2},min{��1,��2}〉fortheneutrosophicdisjunction. Using different versions of the neutrosophic negation operators and/or different versions of the neutrosophic disjunction operators, one obtains, in general,differentresults.Similarlyasinfuzzylogic.

18.1. Another Example of Neutrosophic Implication

Let �� have the neutrosophic truth-value (����,����,����) , and �� have the neutrosophictruth-value(����,����,����),then: [�� �� →��] �� ↔[( ���� ¬ ) ���� ∨ ], (60) where is �� ¬ any of the above neutrosophic negations, while is �� ∨ any of the aboveneutrosophicdisjunctions.

19 General Definition of Neutrosophic Operators

Weconsiderthatthemostgeneraldefinitionofneutrosophicoperatorsshall bethefollowings: ��(����,����,����) ��(����,����,����)=���� �� ⊕ �� ⊕ 〈��(����,����,����,����,����,����), ��(����,����,����,����,����,����),��(����,����,����,����,����,����)〉 (61) where is �� ⊕ anybinaryneutrosophicoperator,and ��(��1,��2,��3,��4,��5,��6),��(��1,��2,��3,��4,��5,��6), ��(��1,��2,��3,��4,��5,��6):[0,1]6 →[0,1]

Critical Review. Volume X, 2015

16 Florentin Smarandache

Evenmore,theneutrosophiccomponentfunctions��,��,��maydepend,onthe topofthesesixvariables,onhiddenparametersaswell,suchas:ℎ1,ℎ2,…,ℎ��

Foraunaryneutrosophicoperator(forexample,theneutrosophicnegation), similarly: ���� ⌝ (����,����,����)=〈��′(����,����,����),��′(����,����,����),��′(����,����,����)〉,(62) where��′(����,����,����),��′(����,����,����),��′(����,����,����):[0,1]3 →[0,1], and even more��′,��′,��′ may depend, on the top of these three variables, of hiddenparametersaswell,suchas:ℎ1,ℎ2,…,ℎ�� {Similarly there should be for a general definition of fuzzy operators and general definition of intuitionistic fuzzy operators.}

Asanexample,wehavedefined[6]: (63) ��(����,����,����) ��(����,����,����) �� ∧ =〈��������,�������� +�������� +��������,�������� +�������� +�������� +��������〉 theseresultfrommultiplying (���� + ���� +����)⋅(���� +���� +����) (64) andorderinguponthebelowpessimisticorder: truth indeterminacy falsity, meaningthattothe truth onlythetermsof��’sgoes,i.e.��������, to indeterminacy onlythetermsoft’sandi’sgo,i.e.�������� +�������� +��������, andto falsity theothertermsleft,i.e.�������� +�������� +�������� +�������� +��������.

20

Neutrosophic Deductive System

A Neutrosophic Deductive System consists of a setℒ1 of neutrosophic logical axioms, and a set ℒ2 of neutrosophic non-logical axioms, and a set ℛ of neutrosophicrulesofinference alldefinedonaneutrosophicspace��thatis composedofmanyelements.

Aneutrosophicdeductivesystemissaidtobeneutrosophicallycomplete,iffor anyneutrosophicformula��thatisaneutrosophiclogicalconsequenceofℒ1, i.e.ℒ1 �� �� ⊨ ,thereexistsaneutrosophicdeductionof��fromℒ1,i.e.ℒ1 �� �� ⊢ ,where denotes �� ⊨ neutrosophic logical consequence, and denotes �� ⊢ neutrosophic deduction.

Critical Review. Volume X, 2015

17

Neutrosophic Axiomatic System

Actually, everything that is neutrosophically (partially) true [i.e. made neutrosophically (partially) true by the set ℒ1 of neutrosophic axioms] is neutrosophically(partially)provable.

Theneutrosophiccompletenessofsetℒ2 ofneutrosophicnon-logicalaxioms is not the same as the neutrosophic completeness of setℒ1 of neutrosophic logicalaxioms.

21 Neutrosophic Axiomatic Space

The space�� is called neutrosophic space if it has some indeterminacy with respecttooneormoreofthefollowing:

a.Its elements;

1. At least one element �� partially belongs to the set �� , or ��(����,����,����)with(��x,��x,��x)≠(1,0,0);

2. There is at least an element��in��whose appurtenance to��is unknown.

b.Its logical axioms;

1. Atleastalogicalaxiom��ispartiallytrue,or��(����,����,����),where similary(����,����,����)≠(1,0,0);

2. Thereisatleastanaxiomℬwhosetruth-valueisunknown.

c.Its non-logical axioms;

1. At least a non-logical axiom�� is true for some elements, and indeterminateorfalseorotherelements;

2. There is at least a non-logical axiom whose truth-value is unknownforsomeelementsinthespace.

d.There exist at least two neutrosophic logical axioms that have some degreeofcontradiction(strictlygreaterthanzero).

e.There exist at least two neutrosophic non-logical axioms that have somedegreeofcontradiction(strictlygreaterthanzero).

Critical Review. Volume X, 2015

18 Florentin Smarandache

22 Degree of Contradiction (Dissimilarity) of Two Neutrosophic Axioms

Twoneutrosophiclogicalaxioms��1 and��2 arecontradictory(dissimilar)if their semantics (meanings) are contradictory in some degree d1, while their neutrosophic truth values <t1, i1, f1> and <t2, i2, f2> are contradictory in a differentdegree d2 [inotherwords d1 ≠ d2].

As a particular case, if two neutrosophic logical axioms��1 and��2 have the samesemantic(meaning)[inotherwords d1 = 0],buttheirneutrosophictruthvaluesaredifferent[inotherwords d2 > 0],theyarecontradictory.

Anotherparticularcase,iftwoneutrosophicaxioms��1 and��2 havedifferent semantics (meanings) [in other words d1 > 0], but their neutrosophic truth values are the same <t1, i1, f1> = <t2, i2, f2> [in other words d2 = 0], they are contradictory.

If two neutrosophic axioms ��1 and ��2 have the semantic degree of contradiction d1,andtheneutrosophictruthvaluedegreeofcontradiction d2, thenthetotaldegreeofcontradictionofthetwoneutrosophicaxiomsis d = |d1 d2|, where | | meantheabsolutevalue.

We did not manage to design a formula in order to compute the semantic degreeofcontradiction d1 oftwoneutrosophicaxioms.Thereaderisinvited toexploresuchmetric.

Butwecancomputetheneutrosophictruthvaluedegreeofcontradiction d2 If 〈��1,��1,��1〉 is the neutrosophic truth-value of ��1 and 〈��2,��2,��2〉 the neutrosophic truth-value of ��2, where ��1,��1,��1,��2,��2,��2 are single values in [0,1], then the neutrosophic truth value degree of contradiction ��2 of the neutrosophicaxioms��1 and��2 is: ��2 = 1 3(|��1 −��2|+|��1 −��2|+|��1 −��2|), (65)

whence��2 ∈[0,1].

Weget��2 =0 , when ��1 isidenticalwith��2 from the point of view of neutrosophicaltruthvalues,i.e.when��1 =��2,��1 =��2,��1 =��2. Andweget��2 = 1,when〈��1,��1,��1〉and〈��2,��2,��2〉arerespectivelyequalto: 〈1,0,0〉, 〈0,1,1〉; or〈0,1,0〉, 〈1,0,1〉; or〈0,0,1〉, 〈1,1,0〉; or〈0,0,0〉, 〈1,1,1〉.

Critical Review. Volume X, 2015

19

Neutrosophic Axiomatic System

23 Neutrosophic Axiomatic System

The neutrosophic axioms are used, in neutrosophic conjunction, in order to deriveneutrosophictheorems.

A neutrosophic mathematical theory may consist of a neutrosophic space where a neutrosophic axiomatic system acts and produces all neutrosophic theoremswithinthetheory.

Yet,ina neutrosophic formal system,ingeneral,themorerecurrencesaredone themoreisincreasedtheindeterminacyanddecreasedtheaccuracy.

24 Properties of the Neutrosophic Axiomatic System

[1] While in classical mathematics an axiomatic system is consistent, in a neutrosophic axiomatic system it happens to have partially inconsistent (contradictory) axioms.

[2] Similarly,whileinclassicalmathematicstheaxiomsareindependent,ina neutrosophicaxiomaticsystemtheymaybe dependent in certain degree.

[3] Inclassicalmathematicsifanaxiomisdependentfromotheraxioms,itcan beremoved,withoutaffectingtheaxiomaticsystem.

[4] However, if a neutrosophic axiom is partially dependent from other neutrosophicaxioms,byremovingittheneutrosophicaxiomaticsystemis affected.

[5] While, again, in classical mathematics an axiomatic system has to be complete (meaning that each statement or its negation is derivable), a neutrosophic axiomatic system is partially complete and partially incomplete. It is partially incomplete because one can add extra partially independentneutrosophicaxioms.

[6] The neutrosophic relative consistency ofanaxiomaticsystemisreferredto the neutrosophically (partially) undefined terms of a first neutrosophic axiomaticsystemthatareassignedneutrosophicdefinitionsfromanother neutrosophic axiomatic system in a way that, with respect to both neutrosophicaxiomaticsystems,isneutrosophicallyconsistent.

Critical Review. Volume X, 2015

20
Smarandache
Florentin

25 Neutrosophic Model

A Neutrosophic Model is a model that assigns neutrosophic meaning to the neutrosophically(un)definedtermsofaneutrosophicaxiomaticsystem.

Similarlytotheclassicalmodel,wehavethefollowingclassification:

[1] Neutrosophic Abstract Model, which is a neutrosophic model based on anotherneutrosophicaxiomaticsystem.

[2] Neutrosophic Concrete Model,whichisaneutrosophicmodelbasedonreal world,i.e.usingrealobjectsandrealrelationsbetweentheobjects.

Ingeneral,aneutrosophicmodelisa <t, i, f>-approximation,i.e. T% ofaccuracy, I% indeterminacy,and F% inaccuracy,ofaneutrosophicaxiomaticsystem.

26 Neutrosophically Isomorphic Models

Further, two neutrosophic models are neutrosophically isomorphic ifthereisa neutrosophic one-to-one correspondence between their neutrosophic elementssuchthattheirneutrosophicrelationshipshold.

A neutrosophic axiomatic system is called neutrosophically categorial (or categorical) is any two of its neutrosophic models are neutrosophically isomorphic.

27 Neutrosophic Infinite Regressions

There may be situations of neutrosophic axiomatic systems that generate neutrosophicinfiniteregressions,unliketheclassicalaxiomaticsystems.

28 Neutrosophic Axiomatization

A Neutrosophic Axiomatization isreferredtoanapproximateformulationofa set of neutrosophic statements, about a number of neutrosophic primitive terms, such that by the neutrosophic deduction one obtains various neutrosophicpropositions(theorems).

Critical Review. Volume X, 2015

21

Neutrosophic Axiomatic System

29 Example of Neutrosophic Axiomatic System

Let’s consider two neighboring countries �� and �� that have a disputed frontierzone��:

Let’sconsidertheuniverseofdiscourse U = M  Z  N; thisisa neutrosophic space sinceithasanindeterminatepart(thedisputedfrontier).

The neutrosophic primitive notions in this example are: neutrosophic point, neutrosophicline,andneutrosophicplane(space).

And the neutrosophic primitive relations are: neutrosophic incidence, and neutrosophicparallel.

Thefourboundaryedgesofrectangle Z belongto Z (or Z isaclosedset).While onlythreeboundaryedgesof M (exceptthefourthonewhichiscommonwith Z)belongto M,andsimilarlyonlythreeboundariesof N (exceptthefourthone whichiscommonwith Z)belongto N. Therefore M and N areneitherclosed noropensets.

Takingaclassicalpoint P in U,onehasthreepossibilities:

[1] P M (membershipwithrespecttocountry M);

[2] P  Z (indeterminate membership with respect to both countries);

[3] or P N (nonmembershipwithrespecttocountry M).

Suchpoints,thatcanbeindeterminateaswell,arecalled neutrosophic points.

A neutrosophic line isaclassicalsegmentoflinethatunitestwoneutrosophic pointslyingonoppositeedgesoftheuniverseofdiscourse U. Wemayhave:

[1] determinateline(withrespecttocountry M),thatiscompletely intothedeterminatepart M {forexample(L1)};

[2] indeterminateline,thatiscompletelyintothefrontierzone {for example (L2)};

[3] determinateline(withrespecttocountry N),thatiscompletely intothedeterminatepart N {forexample (L3)};

Critical Review. Volume X, 2015

22
Smarandache
Florentin

[4] or mixed, i.e. either two or three of the following: partially determinate with respect to M, partially indeterminate with respecttobothcountries,andpartiallydeterminatewithrespectto N {forexampletheredline (L4)}.

Throughtwoneutrosophicpointstheremaybepassing:

[1] onlyoneneutrosophicline{forexample,through G and H passes onlyoneneutrosophicline(L4)};

[2] no neutrosophic line {for example, through A and B passes no neutrosophic line, since the classical segment of line AB does not unitepointsofoppositeedgesoftheuniverseofdiscourse U}.

Two neutrosophic lines are parallel is they have no common neutrosophic points.

Throughaneutrosophicpointoutsideofaneutrosophicline,onecandraw:

[1] infinitelymanyneutrosophicparallels{forexample,throughthe neutrosophic point C one can draw infinitely many neutrosophic parallelstotheneutrosophicline (L1)};

[2] only one neutrosophic parallel {for example, through the neutrosophicpoint H thatbelongstotheedge (V1V2) onecandraw onlyoneneutrosophicparallel(i.e.V1V2)totheneutrosophicline (L1)};

[3] no neutrosophic parallel {for example, through the neutrosophic point H there is no neutrosophic parallel to the neutrosophicline (L3)}.

For example, the neutrosophic lines (L1), (L2) and (L3) are parallel. But the neutrosophicline (L4) isnotparallelwith (L1), norwith (L2) or (L3).

A neutrosophic polygon is a classical polygon which has one or more of the followingindeterminacies:

[1] indeterminatevertex;

[2] partiallyortotallyindeterminateedge;

[3] partially or totally indeterminate region in the interior of the polygon.

Wemayconstructseveralneutrosophicaxiomaticsystems,forthisexample, referringtoincidenceandparallel.

a)First neutrosophic axiomatic system

α1) Through two distinct neutrosophic points there is passing a single neutrosophicline.

Critical Review. Volume X, 2015

23

Neutrosophic Axiomatic System

{Accordingtoseveralexperts,theneutrosophictruth-valueofthis axiomis<0.6, 0.1, 0.2>, meaningthathavingtwogivenneutrosophic points, the chance that only one line (that do not intersect the indeterminatezone Z)passesthroughthemis 0.6, thechancethat linethatpassesthroughthemintersectstheindeterminatezone Z) is 0.1, and the chance that no line (that does not intersect the indeterminatezone Z)passesthroughthemis 0.2.}

α2) Through a neutrosophic point exterior to a neutrosophic line there is passing either one neutrosophic parallel or infinitely many neutrosophic parallels.

{Accordingtoseveralexperts,theneutrosophictruth-valueofthis axiom is <0.7, 0.2, 0.3>, meaning that having a given neutrosophic line and a given exterior neutrosophic point, the chance that infinitelymanyparallelspassthroughthisexteriorpointis 0.7,the chance that the parallels passing through this exterior point intersect the indeterminate zone Z is 0.2, and the chance that no parallelpassesthroughthispointis 0.3.}

Now,let’sapplyafirstneutrosophicdeducibility.

Supposeonehasthreenon-collinearneutrosophic(distinct)points P, Q, and R (meaningpointsnotonthesameline,alikeinclassicalgeometry).According totheneutrosophicaxiom (α1), through P, Q passesonlyoneneutrosophicline {let’scallit (PQ)},withaneutrosophictruthvalue (0.6, 0.1, 0.2). Now,according toaxiom (α2), throughtheneutrosophicpoint R, whichdoesnot lie on (PQ), there is passing either only one neutrosophic parallel or infinitely many neutrosophicparallelstotheneutrosophicline(PQ),withaneutrosophictruth value (0.7, 0.2, 0.3).

Therefore, (α1) ∧ �� (α2) = <0.6, 0.1, 0.2> ∧ �� <0.7, 0.2, 0.3> = <min{0.6, 0.7}, max{0.1, 0.2}, max{0.2, 0.3}>= <0.6, 0.2, 0.3>, (66) which means the following: the chance that through the two distinct given neutrosophicpoints P and Q passesonlyoneneutrosophicline,andthrough the exterior neutrosophic point R passese either only one neutrosophic parallelor infinitelymanyparallelsto (PQ) is (0.6, 0.2, 0.3), i.e. 60% true, 20% indeterminate,and 30% false.

Hereinwehaveusedthesimplestneutrosophicconjunctionoperator ∧ ��ofthe form <min, max, max>, but other neutrosophic conjunction operator can be usedaswell.

Critical Review. Volume X, 2015

24 Florentin Smarandache

Asecondneutrosophicdeducibility:

Again,supposeonehasthreenon-collinearneutrosophic(distinct)points P, Q, and R (meaningpointsnotonthesameline,asinclassicalgeometry).

Now, let’s compute the neutrosophic truth value that through P and Q is passingoneneutrosophicline,butthrough Q thereisnoneutrosophicparallel to (PQ). α1∧ ��( ¬ ����2)=<0.6, 0.1, 0.2>∧ ��( ¬ ��<0.7, 0.2, 0.3>) =<0.6, 0.1, 0.2>∧ ��<0.3, 0.2, 0.7> = <0.3, 0.2, 0.7>. (67)

b) Second neutrosophic axiomatic system

β1)Throughtwodistinctneutrosophicpointsthereispassingeitherasingle neutrosophiclineornoneutrosophicline.{Withtheneutrosophictruth-value <0.8, 0.1, 0.0>}.

β2) Through a neutrosophic point exterior to a neutrosophic line there is passing either one neutrosophic parallel, or infinitely many neutrosophic parallels,ornoneutrosophicparallel.{Withtheneutrosophictruth-value <1.0, 0.2, 0.0>}.

InthisneutrosophicaxiomaticsystemtheabovepropositionsW1andW2:

W1: Through two given neutrosophic points there is passing only one neutrosophic line, and through a neutrosophic point exterior to this neutrosophiclinethereispassingeitheroneneutrosophicparallelorinfinitely manyneutrosophicparallelstothegivenneutrosophicline;andW2:Through twogivenneutrosophicpointsthereispassingonlyoneneutrosophicline,and throughaneutrosophicpointexteriortothisneutrosophiclinethereispassing noneutrosophicparalleltotheline;arenotdeducible.

c) Third neutrosophic axiomatic system

γ1) Through two distinct neutrosophic points there is passing a single neutrosophicline.

{Withtheneutrosophictruth-value <0.6, 0.1, 0.2>}.

γ2)Throughtwodistinctneutrosophicpointsthereispassingnoneutrosophic line.

{Withtheneutrosophictruth-value <0.2, 0.1, 0.6>}.

δ1) Through a neutrosophic point exterior to a neutrosophic line there is passingonlyoneneutrosophicparallel.

Critical Review. Volume X, 2015

25

Neutrosophic Axiomatic System

{Withtheneutrosophictruth-value <0.1, 0.2, 0.9>}.

δ2) Through a neutrosophic point exterior to a neutrosophic line there are passinginfinitelymanyneutrosophicparallels.

{Withtheneutrosophictruth-value <0.6, 0.2, 0.4>}.

δ3) Through a neutrosophic point exterior to a neutrosophic line there is passingnoneutrosophicparallel.

{Withtheneutrosophictruth-value <0.3, 0.2, 0.7>}.

Inthisneutrosophicaxiomaticsystemwehavecontradictoryaxioms: (γ1) isin 100% degreeofcontradictionwith (γ2); and similarly (δ3) is in 100% degree of contradiction with [(δ1) togetherwith (δ2)].

Totally or partially contradictory axioms are allowed in a neutrosophic axiomaticsystems,sincetheyarepartofourimperfectworldandsincethey approximatelydescribemodelsthatare-ingeneral-partiallytrue.

Regardingtheprevioustwoneutrosophicdeducibilitiesonehas: (68) γ1 ∧ �� (δ1 ∨ �� δ2)= <0.6, 0.1, 0.2> ∧ ��(<0.1,0.2,0.9> ∨ �� < 0.6,0.2,0.4>)=<0.6,0.1,0.2> ∧ �� <max{0.1, 0.6}, min{0.2, 0.2}, min{0.9, 0.4}> =<0.6,0.1,0.2> ∧ �� <0.6,0.2,0.4>= <0.6,0.2,0.4>, whichisslightlydifferentfromtheresultwegotusingthefirstneutrosophic axiomaticsystem <0.6, 0.2, 0.3>, andrespectively: γ1∧ �� δ3= <0.6, 0.1, 0.2>∧ �� <0.3,0.2,0.7>=<0.3, 0.2, 0.7>, (69) whichisthesameastheresultwegotusingthefirstneutrosophicaxiomatic system.

The third neutrosophic axiomatic system is a refinement of the first and secondneutrosophicaxiomaticsystems.Fromadeducibilitypointofviewitis betterandeasiertoworkwitharefinedsystemthanwitharoughsystem.

Critical Review. Volume X, 2015

26 Florentin Smarandache

30 Conclusion

Thispaperproposesanewframeworktomodelinterdependenciesinproject portfolio.NCMrepresentationmodelisusedformodelingrelationamongrisks.

Inmanyrealworldsituations,thespacesandlawsarenotexact,notperfect. Theyareinter-dependent. Thismeansthat inmostcasesthey arenot 100% true,i.e.notuniversal.Forexample,manyphysicallawsarevalidinidealand perfectlyclosedsystems.However,perfectlyclosedsystemsdonotexistinour heterogeneousworldwherewemostlydealwithapproximations.Also,since intherealworldthereisnotasinglehomogenousspace,wehavetousethe multispaceforanyattempttounifyvarioustheories.

Wedonothaveperfectspacesandperfectsystemsinreality.Therefore,many physical laws function approximatively (see [5]). The physical constants are not universaltoo;variations oftheirvaluesdependfromaspacetoanother, from a system to another. A physical constant is t% true, i% indeterminate, andf%falseinagivenspacewithacertaincomposition,andithasadifferent neutrosophical truth value <t’, i’, f’> in another space with another composition.

Aneutrosophicaxiomaticsystemmaybedynamic:newaxiomscanbeadded andothersexcluded.

The neutrosophic axiomatic systems are formed by axioms than can be partially dependent (redundant), partially contradictory (inconsistent), partiallyincomplete,andreflectingapartialtruth(andconsequentlyapartial indeterminacyandapartialfalsehood)-sincetheydealwithapproximations ofreality.

6 References

[1] A.G.Dragalin(originator), Proof theory.EncyclopediaofMathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Proof_ theory&oldid=16742.

[2] S. C. Kleene, Introduction to metamathematics, North-Holland (1959), Chapt.XIV.

[3] Said Broumi, Florentin Smarandache, On Neutrosophic Implication, in “NeutrosophicSetsandSystems”,pp.9-17,Vol.2,2014.

[4] P. S. Novikov (originator), Axiomatic method. Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/ index.php?title=Axiomatic_method&oldid=17770.

Critical Review. Volume X, 2015

27

Florentin

Neutrosophic Axiomatic System

[5] Pierre Marie Robitaille and Stephen J. Crothers, The Theory of Heat Radiation Revisited: A Commentary on the Validity of Kirchhoff’s Law of Thermal Emission and Max Planck’s Claim of Universality, in“Progress inPhysics”,Volume11(2015),120 132.

[6] F. Smarandache, V. Christianto, n ary Fuzzy Logic and Neutrosophic Logic Operators,in“Studiesin LogicGrammarandRhetoric”, Belarus, 17(30)(2009),1 16

Critical Review. Volume X, 2015

28
Smarandache

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.