Applied Mechanics and Materials
Submitted: 2016-07-21
ISSN: 1662-7482, Vol. 859, pp 129-143 Revised: 2016-08-22 doi:10.4028/www.scientific.net/AMM.859.129
Accepted: 2016-08-23
© 2017 Trans Tech Publications, Switzerland Online: 2016-12-01
Applied Mechanics and Materials
Submitted: 2016-07-21
ISSN: 1662-7482, Vol. 859, pp 129-143 Revised: 2016-08-22 doi:10.4028/www.scientific.net/AMM.859.129
Accepted: 2016-08-23
© 2017 Trans Tech Publications, Switzerland Online: 2016-12-01
IlanthenralKandasamy1,a andFlorentinSmarandache2,b∗
1 SchoolofComputerScienceandEngineeringVITUniversity,Vellore,India632014 2DepartmentofMathematics,UniversityofNewMexico,USA ailanthenral.k@vit.ac.in, bfsmarandache@gmail.com *correspondingauthor
Keywords: Neutrosophicset,DoubleRefinedIndeterminacyNeutrosophicSet(DRINS),SingleValuedNeutrosophicSet(SVNS),Crossentropy,Multicriteriadecisionmaking.
Abstract.DoubleRefinedIndeterminacyNeutrosophicSet(DRINS)isaninclusivecaseoftherefined neutrosophicset,definedbySmarandache[1],whichprovidestheadditionalpossibilitytorepresent withsensitivityandaccuracytheuncertain,imprecise,incomplete,andinconsistentinformationwhich areavailableinrealworld.Moreprecisionisprovidedinhandlingindeterminacy;byclassifyingindeterminacy(I)intotwo,basedonmembership;asindeterminacyleaningtowardstruthmembership (IT )andindeterminacyleaningtowardsfalsemembership(IF ).ThiskindofclassificationofindeterminacyisnotfeasiblewiththeexistingSingleValuedNeutrosophicSet(SVNS),butitisaparticular caseoftherefinedneutrosophicset(whereeach T , I, F canberefinedinto T1, T2,…; I1, I2,…; F1, F2,…).DRINSisbetterequippedatdealingindeterminateandinconsistentinformation,withmore accuracythanSVNS,whichfuzzysetsandIntuitionisticFuzzySets(IFS)areincapableof.Basedon thecrossentropyofneutrosophicsets,thecrossentropyofDRINSs,knownasdoublerefinedIndeterminacyneutrosophiccrossentropy,isproposedinthispaper.Thisproposedcrossentropyisused foramulticriteriadecision-makingproblem,wherethecriteriavaluesforalternativesareconsidered underaDRINSenvironment.Similarly,anindeterminacybasedcrossentropyusingDRINSisalso proposed.ThedoublerefinedIndeterminacyneutrosophicweightedcrossentropyandindeterminacy basedcrossentropybetweentheidealalternativeandanalternativeisobtainedandutilizedtorankthe alternativescorrespondingtothecrossentropyvalues.Themostdesirableone(s)indecisionmaking processisselected.Anillustrativeexampleisprovidedtodemonstratetheapplicationoftheproposed method.Abriefcomparisonoftheproposedmethodwiththeexistingmethodsiscarriedout.
FuzzysettheoryintroducedbyZadeh(1965)[2]providesaconstructiveanalytictoolforsoftdivision ofsets.Zadeh’sfuzzysettheory[2]wasextendedtointuitionisticfuzzyset(A-IFS),inwhicheach elementisassignedamembershipdegreeandanon-membershipdegreebyAtanassov(1986)[3]. A-IFSismoresuitableindealingwithdatathathasfuzzinessanduncertaintythanfuzzyset.A-IFS wasfurthergeneralizedintothenotionofintervalvaluedintuitionisticfuzzyset(IVIFS)byAtanassov andGargov(1989)[4].
Entropyisanessentialconceptformeasuringuncertaininformation.Zadehintroducedtheconcept offuzzyentropy[5].Thebeginningforthecrossentropyapproachwasfoundedininformationtheory byShannon[6].Ameasureofthecrossentropydistancebetweentwoprobabilitydistributionswas putforwardbyKullback-Leibler[7],lateramodifiedcrossentropymeasurewasproposedbyLin[8]. Afuzzycrossentropymeasureandasymmetricdiscriminationinformationmeasurebetweenfuzzy setswasproposedbyShangandJiang[9].Sinceintuitionisticfuzzysetisageneralizationofafuzzy set,anextensionoftheDe-Luca-Termininonprobabilisticentropy[10]knownasintuitionisticfuzzy cross-entropywasproposedbyVlachosandSergiadis[11]anditwasappliedtopatternrecognition, imagesegmentationandalsotomedicaldiagnosis.Vaguecross-entropybetweenVagueSets(VSs)by
All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans Tech Publications, www.ttp.net. (#71046128-04/11/16,08:41:06)
equivalencewiththecrossentropyofprobabilitydistributionswasdefinedbyZhangandJiang[12] anditsapplicationtothepatternrecognitionandmedicaldiagnosiswascarriedout.
ThefaultdiagnosisproblemofturbineusingthecrossentropyofVagueSetswasinvestigatedbyYe [13].Intuitionisticfuzzycrossentropywasappliedtomulticriteriafuzzydecision-makingproblems byYe[14].Aninterval-valuedintuitionisticfuzzycross-entropybasedonthegeneralizationofthe vaguecross-entropywasproposedandappliedtomulticriteriadecision-makingproblemsbyYe[15].
Torepresentuncertain,imprecise,incomplete,andinconsistentinformationthatarepresentinreal world,theconceptofaneutrosophicsetfromphilosophicalpointofviewwasproposedbySmarandache[16].Theneutrosophicsetisaprevailingframeworkthatgeneralizestheconceptoftheclassic set,fuzzyset,intuitionisticfuzzyset,intervalvaluedfuzzyset,intervalvaluedintuitionisticfuzzyset, paraconsistentset,paradoxistset,andtautologicalset.Truthmembership,indeterminacymembership,andfalsitymembershiparerepresentedindependentlyintheneutrosophicset.However,the neutrosophicsetgeneralizestheabovementionedsetsfromthephilosophicalpointofview,and itsfunctions TA(x),IA(x),and FA(x) arerealstandardornonstandardsubsetsof ] 0, 1+[,thatis, TA(x): X →] 0, 1+[,IA(x): X →] 0, 1+[, and FA(x): X →] 0, 1+[, respectivelywiththe condition 0 ≤ supTA(x)+ supIA(x)+ supFA(x) ≤ 3+
Itisdifficulttoapplyneutrosophicsetinthisforminrealscientificandengineeringareas.Toovercomethisdifficulty,Wangetal.[17]introducedaSingleValuedNeutrosophicSet(SVNS),which isaninstanceofaneutrosophicset.SVNScandealwithindeterminateandinconsistentinformation, whichfuzzysetsandintuitionisticfuzzysetsareincapableof.Ye[18,19,20]presentedthecorrelation coefficientofSVNSsanditscross-entropymeasureandappliedthemtosingle-valuedneutrosophic decision-makingproblems.Recently,Ye[21]hadproposedaSingleValuedNeutrosophiccrossentropytododecisionmakinginmulticriteriadecisionmakingproblemswiththedatarepresentedby SVNSs.
Owingtothefuzziness,uncertaintyandindeterminatenatureofmanypracticalproblemsinthereal world,neutrosophyhasfoundapplicationinmanyfieldsincludingSocialNetworkAnalysis(Salama etal[22]),ImageProcessing(ChengandGuo[23],SengurandGuo[24],Zhangetal[25]),Social problems(VasanthaandSmarandache[26],[27])etc.
Toprovidemoreaccuracyandprecisiontoindeterminacy,theindeterminacyvaluepresentinthe neutrosophicsethasbeenclassifiedintotwo;basedonmembership;asindeterminacyleaningtowards truthmembershipandasindeterminacyleaningtowardsfalsemembership.Whentheindeterminacy I canbeidentifiedasindeterminacywhichismoreoftruthvaluethanfalsevalue,butitcannotbe classifiedastruthitisconsideredtobeindeterminacyleaningtowardstruth (IT ).Whentheindeterminacycanbeidentifiedtobeindeterminacywhichismoreofthefalsevaluethanthetruthvalue, butitcannotbeclassifiedasfalseitisconsideredtobeindeterminacyleaningtowardsfalse (IF ). Indeterminacyleaningtowardstruthandindeterminacyleaningtowardsfalsitymakestheindeterminacyinvolvedinthescenariotobemoreaccurateandprecise.Thismodifiedrefinedneutrosophic setwasdefinedasDoubleRefinedIndeterminacyNeutrosophicSet(DRINS)aliasdoublerefined IndeterminacyNeutrosophicSet(DVNS)byKandasamy[28].
ToprovideaillustrationofrealworldproblemwhereDRINScanbeusedtorepresenttheproblem; thefollowingscenariosaregiven:Considerthescenariowheretheexpert’sopinionisrequestedabout aparticularstatement,he/shemaystatethatthepossibilityinwhichthestatementistrueis0.6and thestatementisfalseis0.5,thedegreeinwhichhe/sheisnotsurebutthinksitistrueis0.2andthe degreeinwhichhe/sheisnotsurebutthinksitisfalseis0.1.UsingadoublerefinedIndeterminacy neutrosophicnotationordoublerefinedIndeterminacyneutrosophicrepresentationitcanbeexpressed as x(0.6,0.2,0.1,0.5).
Assumeanotherexample,supposethereare10votersduringavotingprocess.Twopeoplevote yes,twopeoplevoteno,threepeopleareforyesbutstillundecidedandtwopeoplearefavouring towardsanobutstillundecided.UsingadoublerefinedIndeterminacyneutrosophicnotation,itcan beexpressedas x(0.2,0.3,0.3,0.2).However,theseexpressionsarebeyondthescopeofrepresentation
130 Advanced Research in Area of Materials, Aerospace, Robotics and Modern Manufacturing SystemsusingtheexistingSVNS.Therefore,thenotionofaDoubleRefinedIndeterminacyneutrosophicset ismoregeneralanditovercomestheaforementionedissues.
Thispaperisorganisedintosevensections:Sectiononeisintroductoryinnature.Thebasicconceptsrelatedtothepaperisgiveninsectiontwo.Sectionthreeofthepaperintroducesanddefines thecrossentropyofDoubleRefinedIndeterminacyNeutrosophicSet(DRINS).Sectionfourdeals withthesolvingmulticriteriadecisionmakingproblemsusingthecrossentropyofDRINSundera DRINSbasedenvironment.Illustrativeexamplesareprovidedtodemonstratetheproposedapproach insectionfive.Sectionsixprovidesabriefcomparisonoftheproposedapproachwiththeexisting approach.Conclusionsandfuturedirectionofworkisgiveninthelastsection.
NeutrosophyandSingleValuedNeutrosophicSet(SVNS). Neutrosophyisabranchofphilosophy, introducedbySmarandache[16],whichstudiestheorigin,nature,andscopeofneutralities,aswellas theirinteractionswithdifferentideationalspectra.Itconsidersaproposition,concept,theory,event, orentity,“A”inrelationtoitsopposite,“Anti-A”andthatwhichisnot A,“Non-A”,andthatwhich isneither“A”nor“Anti-A”,denotedby“Neut-A”.Neutrosophyisthebasisofneutrosophiclogic, neutrosophicprobability,neutrosophicset,andneutrosophicstatistics.
Theconceptofaneutrosophicsetfromphilosophicalpointofview,introducedbySmarandache [16],isasfollows.
Definition1. [16]Let X beaspaceofpoints(objects),withagenericelementin X denotedby x. Aneutrosophicset A in X ischaracterizedbyatruthmembershipfunction TA(x),anindeterminacy membershipfunction IA(x),andafalsitymembershipfunction FA(x).Thefunctions TA(x), IA(x), and FA(x) arerealstandardornonstandardsubsetsof ] 0, 1+[,thatis, TA(x): X →] 0, 1+[,IA(x): X →] 0, 1+[, and FA(x): X →] 0, 1+[, withthecondition 0 ≤ supTA(x)+supIA(x)+supFA(x) ≤ 3+
Thisdefinitionofneutrosophicsetisdifficulttoapplyinrealworldapplicationofscientificand engineeringfields.Therefore,theconceptofSingleValuedNeutrosophicSet(SVNS),whichisan instanceofaneutrosophicsetwasintroducedbyWangetal.[17].
Definition2. [17]Let X beaspaceofpoints(objects)withgenericelementsin X denotedby x.An SingleValuedNeutrosophicSet(SVNS) A in X ischaracterizedbytruthmembershipfunction TA(x), indeterminacymembershipfunction IA(x),andfalsitymembershipfunction FA(x).Foreachpoint x in X,thereare TA(x),IA(x),FA(x) ∈ [0, 1],and 0 ≤ TA(x)+ IA(x)+ FA(x) ≤ 3.Therefore,an SVNSAcanberepresentedby A = {⟨x,TA(x),IA(x),FA(x)⟩| x ∈ X} Thefollowingexpressions aredefinedin[17]forSVNSs A,B: • A ∈ B ifandonlyif TA(x) ≤ TB(x),IA(x) ≥ IB(x),FA(x) ≥ FB(x) forany x in X • A = B ifandonlyif A ⊆
Therefinedneutrosophiclogicdefinedby[1]isasfollows: Definition3. Tcanbesplitintomanytypesoftruths: T1,T2,...,Tp, and I intomanytypesofindeterminacies: I1, I2, ...,Ir, and F intomanytypesoffalsities: F1,F2,...,Fs, whereall p,r,s ≥ 1 areintegers,and p + r + s = n.Inthesameway,butallsubcomponents Tj ,Ik,Fl arenotsymbols, butsubsetsof[0,1],forall j ∈{1, 2,...,p} all k ∈{1, 2,...,r} andall l ∈{1, 2,...,s}.Ifall sourcesofinformationthatseparatelyprovideneutrosophicvaluesforaspecificsubcomponentare independentsources,theninthegeneralcaseweconsiderthateachofthesubcomponents Tj ,Ik,Fl is independentwithrespecttotheothersanditisinthenon-standardset ] 0, 1+[.
CrossEntropyofSVNSsandMulticriteriaDecisionMaking.
Theconceptsofcross-entropyandsymmetricdiscriminationinformationmeasuresbetweentwo fuzzysetsproposedbyShangandJiang[9]andbetweentwoSVNSswasproposedbyYe[20].
Definition4. Assumethat A =(A(x1),A(x2),...,A(xn)) and B =(B(x1),B(x2),...,B(xn)) are twofuzzysetsintheuniverseofdiscourse X = x1, x2,...,xn.Thefuzzycrossentropyof A from B isdefinedasfollows: H(A,B)= n ∑ i=1 {A(xi)log2 A(xi) 1 2 (A(xi)+ B(xi)) +(1 A(xi))log2 (1 A(xi)) 1 1 2 (A(xi)+ B(xi))} (1)
whichindicatesthedegreeofdiscriminationof A from B.
ShangandJiang[9]proposedasymmetricdiscriminationinformationmeasure
I(A,B)= H(A,B)+ H(B,A) since H(A,B) isnotsymmetricwithrespecttoitsarguments.Moreover,thereare I(A,B) ≥ 0and I(A,B)=0 ifandonlyif A = B.Thecrossentropyandsymmetric discriminationinformationmeasuresbetweentwofuzzysetswasextendedtoSVNSsbyYe[20].
Let A and B betwoSVNSsinauniverseofdiscourse X = {xl,x2,...,xn},whicharedenoted by A = {⟨xi,TA(xi),IA(xi),FA(xi)⟩| xi ∈ X} and B = {⟨xi,TB(xi),IB(xi),FB(xi)⟩| xi ∈ X}, where TA(xi),IA(xi),FA(xi),TB(xi),IB(xi),FB(xi) ∈ [0, 1] forevery xi ∈ X.
Theinformationcarriedbythetruth,indeterminacyandfalsitymembershipsinSVNSs, A and B isconsideredasfuzzyspaceswiththreeelements.BasedonEquation 1,theamountofinformation fordiscriminationof TA(xi) from TB(xi) (i =1,2, ...,n)isgivenas
ET (A,B; xi)= TA(xi)log2 TA(xi) TB(xi) +(1 TA(xi))log2 1 TA(xi) 1 1 2 (TA(xi)+ TB(xi))
Theexpectedinformationbasedonthesinglemembershipfordiscriminationof A against B is
ET (A,B)= n ∑ i=1 {TA(xi)log2 TA(xi) TB(xi) +(1 TA(xi))log2 1 TA(xi) 1 1 2 (TA(xi)+ TB(xi))}
Similarly,theindeterminacyandthefalsitymembershipfunction,havethefollowingamountsofinformation:
EI (A,B)= n ∑ i=1 {IA(xi)log2 IA(xi) IB(xi) +(1 IA(xi))log2 1 IA(xi) 1 1 2 (IA(xi)+ IB(xi))}
EF (A,B)= n ∑ i=1 {FA(xi)log2 FA(xi) FB(xi) +(1 FA(xi))log2
1 FA(xi) 1 1 2 (FA(xi)+ FB(xi))}
Thesinglevaluedneutrosophiccrossentropymeasurebetween A and B isobtainedasthesumof thethreemeasures:
E(A,B)= ET (A,B)+ EI (A,B)+ EF (A,B)
E(A,B) alsoindicatesdiscriminationdegreeof A from B. AccordingtoShannon’sinequality[6],itisseenthat E(A,B) ≥ 0,and E(A,B)=0 ifandonly if TA(xi)= TB(xi), IA(xi)= IB(xi), and FA(xi)= FB(xi) forany xi ∈ X.Moreover,itisseen that E(Ac,Bc)= E(A,B),where Ac and Bc arethecomplementofSVNSsof A and B,respectively.Then, E(A,B) isnotsymmetric,i.e., E(B,A) = E(A,B),soitismodifiedtoasymmetric discriminationinformationmeasureforSVNSsas
D(A,B)= E(A,B)+ E(B,A).
Thelargerthedifferencebetween A and B is,thelarger D(A,B) is.ThecrossentropyofSVNSwas usedtohandlethemulticriteriadecisionmakingproblemundersinglevaluedneutrosophicenvironmentbymeansofthecrossentropymeasureofSVNSs. Theweightedcrossentropybetweenanalternative Ai andtheidealalternative A∗ iscalculatedas D(A∗,Ai)= n ∑ i=1 wj {log2 1 1 2 (1+ Tij ) + log2 1 1+ 1 2 (Iij ) + log2 1 1+ 1 2 (Fij )} + n ∑ i=1 wj {Tij log2 Tij 1 2 (1+ Tij ) +(1 Tij )log2 1 Tij 1 1 2 (1+ Tij )} + n ∑ i=1 wj {Iij +(1 Iij )log2 1 Iij 1 1 2 (Iij )} + n ∑ i=1 wj {Fij +(1 Fij )log2 1 Fij 1 1 2 (Fij )} .
Basedonthecrossentropyvaluetherankingiscarriedout.Thebestalternativeisselectedbased intherankingofthecrossentropyvalues.
DoubleRefinedIndeterminacyNeutrosophicSets(DRINSs)andTheirProperties.
Indeterminacydealswithuncertaintythatisfacedineverysphereoflifebyeveryone.Itmakes research/sciencemorerealisticandsensitivebyintroducingtheindeterminateaspectoflifeasaconcept.Therearetimesinrealworldwheretheindeterminacy I canbeidentifiedtobeindeterminacy whichhasmoreoftruthvaluethanfalsevalue,butitcannotbeclassifiedastruth.Similarlyinsome casestheindeterminacycanbeidentifiedtobeindeterminacywhichhasmoreoffalsevaluethantruth value,butitcannotbeclassifiedasfalse.Toprovidemoresensitivitytoindeterminacy,thiskindof indeterminacyisclassifiedintotwo.Whentheindeterminacy I canbeidentifiedasindeterminacy whichismoreoftruthvaluethanfalsevalue,butitcannotbeclassifiedastruth,itisconsideredtobe indeterminacyleaningtowardstruth (IT ).Whereasincasetheindeterminacycanbeidentifiedtobe indeterminacywhichismoreoffalsevaluethantruthvalue,butitcannotbeclassifiedasfalse,itis consideredtobeindeterminacyleaningtowardsfalse (IF ).
Indeterminacyleaningtowardstruthandindeterminacyleaningtowardsfalsitymakethehandling oftheindeterminacyinvolvedinthescenariotobemoremeaningful,logical,accurateandprecise.It providesabetteranddetailedviewoftheexistingindeterminacy. ThedefinitionofDoubleRefinedIndeterminacyNeutrosophicSet(DRINS)[28]isasfollows:
when X iscontinuous.Itisrepresentedas
A = n ∑ i=1 {⟨T (xi),IT (xi),IF (xi),F (xi)⟩| xi,xi ∈ X} when X isdiscrete.
ToillustratetheapplicationofDRINSintherealworldcondsiderparametersthatarecommonly usedtodefinequalityofserviceofsemanticwebserviceslikecapability,trustworthinessandprice forillustrativepurpose.Theevaluationofqualityofserviceofsemanticwebservices[29]isusedto illustratesettheoreticoperationonDoubleRefinedIndeterminacyNeutrosophicSets(DRINSs).
Definition6. ThecomplementofaDRINS A denotedby c(A) isdefinedas Tc(A)(x)= FA(x), ITc(A)(x)=1 ITA(x), IFc(A)(x)=1 IFA(x) and Fc(A)(x)= TA(x) forall x in X.
Definition7. ADRINS A iscontainedintheotherDRINS B,thatis A ⊆ B,ifandonlyif TA(x) ≤ TB(x), ITA(x) ≤ ITB (x), IFA(x) ≤ IFB(x) and FA(x) ≥ FB(x) ∀x in X
Notethatbythedefinitionofcontainmentrelation, X isapartiallyorderedsetandnotatotally orderedset.
Definition8. TwoDRINSs A and B areequal,denotedas A = B,ifandonlyif A ⊆ B and B ⊆ A.
TheunionoftwoDRINSs A and B isaDRINS C,denotedas C = A ∪ B,,theintersectionoftwo DRINSs A and B isaDRINS C,denotedas C = A ∩ B,andthedifferenceoftwoDRINSs A and B is D,writtenas D = A \ B,wasdefinedin[28].Threeoperatorscalledastruthfavourite(△),falsity favourite(▽)andindeterminacyneutral(∇)aredefinedoverDRINSs.Twooperatorstruthfavourite (△)andfalsityfavourite(▽)aredefinedtoremovetheindeterminacyintheDRINSsandtransform itintointuitionisticfuzzysetsorparaconsistentsets.SimilarlytheDRINScanbetransformedintoa SVNSbyapplyingindeterminacyneutral(∇)operatorthatcombinestheindeterminacyvaluesofthe DRINS.ThesethreeoperatorsareuniqueonDRINSs.
Definition9. ThetruthfavouriteofaDRINS A,writtenas B = △A,whosetruthmembershipand falsitymembershipfunctionsarerelatedtothoseofAby TB(x)= min(TA(x)+ITA(x), 1), ITB (x)= 0, IFB(x)=0 and FB(x)= FA(x) forall x in X
Definition10. ThefalsityfavouriteofaDRINS A,writtenas B = ▽A,whosetruthmembershipand falsitymembershipfunctionsarerelatedtothoseof A by TB(x)= TA(x), ITB(x)=0, IFB(x)=0 and FB(x)= min(FA(x)+ IFA(x), 1) forall x in X.
Definition11. TheindeterminacyneutralofaDRINS A,writtenas B = ∇A,whosetruthmembership,indeterminatemembershipandfalsitymembershipfunctionsarerelatedtothoseof A by TB(x)= TA(x), ITB (x)= min(ITA(x)+ ITB (x), 1), IFB(x)=0 and FB(x)= FA(x) forall x in X
Allsettheoreticoperatorslikecommutativity,Associativity,Distributivity,Idempotency,AbsorptionandtheDeMorgan’sLawsweredefinedoverDRINSs[28].Thedefinitionofcomplement,union andintersectionofDRINSsandDRINSsitselfsatisfiesmostpropertiesoftheclassicalset,fuzzyset, intuitionisticfuzzysetandSNVS.Similartofuzzyset,intuitionisticfuzzysetandSNVS,itdoesnot satisfytheprincipleofmiddleexclude.
ConsidertwoDRINSs A and B inauniverseofdiscourse X = xl,x2,...,xn,whicharedenotedby A = {⟨xi,TA(xi),ITA(xi),IFA(xi),FA(xi)⟩| xi ∈ X} and B = {⟨xi,TB(xi),ITB (xi),IFB(xi),FB(xi)⟩| xi ∈ X}, where TA(xi),ITA(xi),IFA(xi),FA(xi),TB(xi),ITB(xi),IFB(xi),FB(xi) ∈ [0, 1] forevery xi ∈ X.
Theinformationcarriedbythetruthmembership,indeterminacyleaningtowardstruthmembership,indeterminacyleaningtowardsfalsitymembership,andthefalsitymembershipinDRINSs A and B areconsideredasfuzzyspaceswithfourelements.ThusbasedonEquation 1,theamountof informationfordiscriminationof TA(xi) from TB(xi) (i =1,2, ...,n)canbegivenby
ET (A,B; xi)= TA(xi)log2 TA(xi) TB(xi) +(1 TA(xi))log2
1 TA(xi) 1 1 2 (TA(xi)+ TB(xi))
Therefore,theexpectedinformationbasedonthesinglemembershipfordiscriminationofAagainst Bisexpressedby
ET (A,B)= n ∑ i=1 {TA(xi)log2 TA(xi) TB(xi)++(1 TA(xi))log2 1 TA(xi) 1 1 2 (TA(xi)+ TB(xi))}
Similarly,consideringtheindeterminacyleaningtowardstruthmembershipfunction,indeterminacyleaningtowardsfalsitymembershipfunctionandfalsitymembershipfunctionthefollowing amountsofinformationisgiven:
EIT (A,B)= n ∑ i=1 {ITA(xi)log2
ITA(xi) ITB (xi)+(1 ITA(xi))log2 1 ITA(xi) 1 1 2 (ITA(xi)+ ITB (xi))} ,
EIF (A,B)= n ∑ i=1 {IFA(xi)log2 IFA(xi) IFB(xi)+(1 IFA(xi))log2 1 IFA(xi) 1 1 2 (IFA(xi)+ IFB(xi))} ,
EF (A,B)= n ∑ i=1 {FA(xi)log2 FA(xi) FB(xi) +(1 FA(xi))log2 1 FA(xi) 1 1 2 (FA(xi)+ FB(xi))} .
TheDoubleRefinedIndeterminacyneutrosophiccrossentropymeasurebetween A and B isobtained asthesumofthefourmeasures: E(A,B)= ET (A,B)+ EIT (A,B)+ EIF (A,B)+ EF (A,B)
E(A,B) alsoindicatesdiscriminationdegreeof A from B.AccordingtoShannon’sinequality[5],it canbeeasilyprovedthat E(A,B) ≥ 0,and E(A,B)=0 ifandonlyif TA(xi)= TB(xi), ITA(xi)= ITB (xi),IFA(xi)= IFB(xi), and FA(xi)= FB(xi) forany xi ∈ X.Iteasilyseenthat E(Ac,Bc)= E(A,B),where Ac and Bc arethecomplementofDRINSs A and B,respectively.Since E(A,B) is notsymmetricitismodifiedtoasymmetricdiscriminationinformationmeasureforDRINSsas
D(A,B)= E(A,B)+ E(B,A) (2)
Thelarger D(A,B) is,thelargerthedifferencebetween A and B is.
Acrossentropymeasurebasedonlyontheindeterminacyinvolvedinthescenarioisintroduced inthispaper.Indeterminacybasedcrossentropyisdefinedasthesumofinformationofindeterminacyleaningtowardsfalsitymembershipandinformationofindeterminacyleaningtowardstruth
membership.Theindeterminacybasedcrossentropy IE(A,B) istheDoubleRefinedIndeterminacy neutrosophiccrossentropymeasurebasedonindeterminacybetween A and B;isobtainedasthesum ofthetwomeasures:
IE(A,B)= n ∑ i=1
{ITA(xi)log2 ITA(xi) ITB (xi)+(1 ITA(xi))log2 1 ITA(xi) 1 1 2 (ITA(xi)+ ITB (xi))} + n ∑ i=1 {IFA(xi)log2 IFA(xi) IFB(xi)+(1 IFA(xi))log2 1 IFA(xi) 1 1 2 (IFA(xi)+ IFB(xi))}
Itindicatesthediscriminationdegreeofindeterminacyof A from B.AccordingtoShannon’s inequality[5],itcanbeeasilyprovedthat IE(A,B) ≥ 0,and IE(A,B)=0 ifandonlyif TA(xi)= TB(xi), ITA(xi)= ITB(xi),IFA(xi)= IFB(xi), and FA(xi)= FB(xi) forany xi ∈ X.Itiseasilyseen that IE(Ac,Bc)= IE(A,B),where Ac and Bc arethecomplementofDRINSs A and B,respectively. Since IE(A,B) isnotsymmetric,itismodifiedtoasymmetricdiscriminationinformationmeasure forDRINSsas
ID(A,B)= IE(A,B)+ IE(B,A) (3) Thelargerthedifferenceinindeterminacybetween A and B is,thelarger ID(A,B) is.
Inamulticriteriadecisionmakingproblemallthealternativesareevaluateddependingonanumberof criteriaorsomeattributes,andthebestalternativeisselectedfromallthepossiblealternatives.Mostly multicriteriadecisionmakingproblemhavetobeinclusiveofuncertain,imprecise,incomplete,and inconsistentinformationthatarepresentinrealworldtomakeitmorerealistic.DRINScanbeusedto representthisinformationwithaccuracyandprecision.Inthissection,bymeansofutilizingthecross entropymeasureofDRINSsandindeterminacybasedcrossentropyamethodforsolvingthemulticriteriadecisionmakingproblemwhenconsideredinaDoubleRefinedIndeterminacyneutrosophic environment,isproposed.
Let A = {A1,A2,...,Am} beasetoffeasiblealternativesand C = {C1,C2,...,Cn} bethe setofcriteriaunderconsideration.Theweightofthecriterion Cj (j =1, 2,...,n), providedbythe decisionmaker,is wj , wj ∈ [0, 1] and ∑n i=1wi =1 Thecharacteristicofthealternative Ai(i = 1, 2,...,m) isgivenbyDRINS Ai = {⟨Cj ,TAi (Cj ),ITAi (Cj ),IFAi (Cj ),FAi (Cj )⟩| Cj ∈ C} where TAi (Cj ),ITAi (Cj ),IFAi (Cj ),FAi (Cj ) ∈ [0, 1], j =1, 2,...,n and i =1, 2,...,m. Now, TAi (Cj ) specifiesthedegreetowhichthealternative Ai fulfilsthecriterion Cj , ITAi (Cj ) specifiestheindeterminacyleaningtowardstruthdegreetowhichthealternative Ai fulfilsordoesnot fulfilthecriterion Cj .Similarly IFAi (Cj ) specifiestheindeterminacyleaningtowardsfalsedegree(or falseleaningindeterminacy)towhichthealternative Ai fulfilsordoesnotfulfilthecriterion Cj ,and FAi (Cj ) specifiesthedegreetowhichthealternative Ai doesnotfulfilthecriterion Cj Acriterionvalueisgenerallyobtainedfromthecalculationofanalternative Ai withrespectto acriteria Cj bymeansofascorelawanddataprocessinginpractice[12,17].Itisrepresentedas ⟨Cj ,TAi (Cj ),ITAi (Cj ),IFAi (Cj ),FAi (Cj )⟩ in Ai,isdenotedbythesymbol aij = ⟨Tij ,ITij ,IFij ,Fij ⟩ (j =1, 2,...,n, and i =1, 2,...,m), Therefore,aDoubleRefinedIndeterminacyneutrosophicdecisionmatrix A =(aij )m×n isobtained.
a11 a12 ...a1n a21 a22 ...a2n . . . am1 am2 ...amn
Theconceptofidealpointisutilizedtoaidtheidentificationofthebestalternativeinthedecision set,inmulticriteriadecisionmakingenvironments.Itisknownthatanidealalternativecannotexist intherealworld;butitdoesservesasausefultheoreticalconstructagainstwhichalternativescanbe evaluated[12].
Thereforeanidealcriterionvalue a∗ j = ⟨T ∗ j ,I∗ Tj ,I∗ Fj ,F ∗ j ⟩ = ⟨1, 0, 0, 0⟩(j =1, 2,...,n) isdefined intheidealalternative A∗.ByapplyingEquation 2 theweightedcrossentropybetweenanalternative Ai andidealalternative A∗ isobtainedtobe D(A∗,Ai)= n ∑ j=1 wj {log2 1 1 2 (1+ Tij ) + log2 1 1 1 2 (ITij ) +log2 1 1 1 2 (IFij ) + log2 1 1 1 2 (Fij )} + n ∑ j=1 wj {Tij log2 Tij 1 2 (1+ Tij ) +(1 Tij )log2 1 Tij 1 1 2 (1+ Tij )} + n ∑ j=1 wj {ITij +(1 ITij )log2 1 ITij 1 1 2 (ITij )} + n ∑ j=1 wj {IFij +(1 IFij )log2 1 IFij 1 1 2 (IFij )} + n ∑ j=1 wj {Fij +(1 Fij )log2 1 Fij 1 1 2 (Fij )} . (4)
Thesmallerthevalueof Di(A∗,Ai) is,thebetterthealternative Ai is,itimpliesthatthealternative Ai isclosetotheidealalternative A∗.Therankingorderofallalternativesisdeterminedandthebest oneisidentified,throughthecalculationoftheweightedcrossentropy Di(A∗,Ai)(i =1, 2,...,m) betweeneachalternativeandtheidealalternative.
Forcalculatingtheindeterminatebasedcrossentropymeasure IT D betweenalternative A and theindeterminateidealalternative A∗ IT theindeterminateidealalternative A∗ IT isdefinedasanideal criterionvalue a ∗ j = ⟨T ∗ j ,I∗ Tj ,I∗ Fj ,F
Calculatingtheindeterminatebasedcrossentropymeasure IF D betweenalternative A andthe indeterminateidealalternative A∗ IF
IF D(A∗ IF ,Ai)= n ∑ i=1 wj {log2 1 1 2 (1+ IFij ) + log2 1 1 1 2 (ITij )} + n ∑ i=1 wj {IFij log2 IFij 1 2 (1+ IFij ) +(1 IFij )log2 1 IFij 1 1 2 (1+ IFij )} + n ∑ i=1 wj {ITij +(1 ITij )log2 1 ITij 1 1 2 (ITij )} (6)
Theaverageof IT D(A∗ IT ,Ai) and IF D(A∗ IF ,Ai) istakenas ID(A∗ I ,Ai) ID(A∗,Ai)= IT D(A∗ IT ,Ai)+ IF D(A∗ IF ,Ai) 2 (7)
Thelargerthevalueof ID(A∗,Ai) is,thebetterthealternative Ai is,itimpliesthatthealternative Ai is farthertotheidealalternative A∗.Therankingorderofallalternativesisdeterminedandthebestone isidentified,throughthecalculationoftheindeterminacybasedweightedcrossentropy ID(A∗,Ai) (i =1, 2,...,m) betweeneachalternativeandtheidealalternative.
Toillustratetheapplicationoftheproposedmethod,themulticriteriadecisionmakingproblemfrom TanandChen[30]andYe[19]isadapted.Itisrelatedwithamanufacturingcompanythatwantsto selectthebestglobalsupplieraccordingtothecorecompetenciesofsuppliers.Supposethatthere arefoursuppliers A = A1,A2,A3,A4 enlisted;whosecorecompetenciesareevaluatedbasedofthe followingfourcriteria (C1,C2,C3,C4):
Theweightvectorrelatedtothefourcriteriais w =(0.3,0.25,0.25,0.2).
Theproposedmulticriteriadecisionmakingapproachisappliedtoselectthebestsupplier.From thequestionnaireofadomainexpert,theevaluationofanalternative Ai (i =1,2,3,4)withrespect toacriterion Cj (j =1,2,3,4),isobtained.Forinstance,whentheopinionofanexpertaboutan alternative A1 withrespecttoacriterion C1 isasked,heorshemaysaythatthepossibilityinwhich thestatementistrueis0.5,thedegreeinwhichheorshefeelsittruebutisnotsureis0.07,thedegree inwhichheorshefeelsitisfalsebutisnotsureis0.03andthepossibilitythestatementisfalseis0.3. Itcanbeexpressedas a11 = ⟨0 5, 0 07, 0 03, 0 2⟩,usingtheneutrosophicexpressionofDRINS.The possiblealternativeswithrespecttothegivenfourcriteriaisevaluatedbythesimilarmethodfromthe expert,thefollowingDoubleRefinedIndeterminacyneutrosophicdecisionmatrixAisobtained.
, 0.16, 0.4⟩⟨0.9, 0.06, 0.04, 0.1⟩⟨0.5, 0.1, 0.1, 0.2⟩ ⟨0.4, 0.17, 0.03, 0.1⟩⟨0.5, 0.18, 0.02, 0.3⟩⟨0.5, 0.06, 0.04, 0.4⟩⟨0.6, 0.14, 0.06, 0.1⟩ ⟨0.6, 0.07, 0.03, 0.2⟩⟨0.2, 0.15, 0.05, 0.5⟩⟨0.4, 0.16, 0.04, 0.2⟩⟨0.7, 0.11, 0.09, 0.1⟩
Thecrossentropyvaluesbetweenanalternative Ai (i =1,2,3,4)andtheidealalternative A∗ is obtainedbyapplyingEquation 4 is D(A∗,A1) =1.5054, D(A∗,A2) =1.1056, D(A∗,A3) =1.0821 and D(A∗,A4) =1.1849.Therankingorderofthefoursuppliersaccordingtothecrossentropyvalues is D(A∗,A1) ≤ D(A∗,A3) ≤ D(A∗,A2) ≤ D(A∗,A4)
Thetruth-indeterminacybasedcrossentropyvaluesbetweenanalternative Ai (i =1,2,3,4)andthe idealalternative A∗ IT isobtainedbyapplyingEquation 5,are IT D(A∗,A1) =1.5054, IT D(A∗,A2) =1.6920, IT D(A∗,A3) =1.4392and IT D(A∗,A4) =1.5067.Thefalse-indeterminacybasedcross entropyvaluesbetweenanalternative Ai (i =1,2,3,4)andtheidealalternative A∗ IF isobtained byapplyingEquation 6,are IF D(A∗,A1) =1.9000, IF D(A∗,A2) =1.6348, IF D(A∗,A3) =1.9256 and IF D(A∗,A4) =1.8447.TheindeterminacybasedcrossentropyvaluesbasedonEquation 7are ID(A∗,A1) =1.7027, ID(A∗,A2) =1.6634, ID(A∗,A3) =1.6824and ID(A∗,A4) =1.6757. Therankingorderofthefoursuppliersaccordingtothecrossentropyvaluesis ID(A∗,A1) ≥ ID(A∗,A3) ≥ ID(A∗,A4) ≥ ID(A∗,A2)
TheDRINScrossentropyandindeterminacybasedcrossentropyresultsofthedifferentalternatives andtheidealalternativesaretabulatedinTable1.
Table1: DRINCrossEntropyandindeterminacybasedCrossEntropyResults CrossEntropyValueDRINCrossEntropyIndeterminatebasedcrossentropy Ai D(A∗,Ai) ID(A∗ I ,Ai) A1 1.0793 1.7027 A2 1.1056 1.6634 A3 1.0821 1.6824 A4 1.1845 1.6757 Result A1 A1
AnalternativeisconsideredtobebestifithastheleastDRINcrossentropyvalueandthemaximum indeterminatebasedDRINcrossentropy.Thereforeitisseenthat A1 isthebestsupplier.
ItisclearlyseenthattheproposedDoubleRefinedIndeterminacyneutrosophicmulticriteriadecisionmakingmethodismorepreferableandsuitableforrealscientificandengineeringapplications becauseitcanhandlenotonlyincompleteinformationbutalsotheindeterminateinformationand inconsistentinformationwhichexistcommonlyinrealsituationsmorelogicallywithmuchmoreaccuracyandprecisionthatSVNSareincapableofdealing.
ThispaperproposesatechniquethatextendsexistingSVNSandfuzzydecisionmakingmethodsand providesanimprovementindealingindeterminateandinconsistentinformationwithaccuracywhich isnewfordecisionmakingproblems.Forcomparativepurpose,theresultsofcrossentropyofSVNS [20]andtheproposedmethodaregiveninTable 2
FromTable 2,itisseenthattheresultsarequitedifferent.Theimportantreasoncanbeobtained bythefollowingcomparativeanalysisofthemethodsandtheircapacitytodealindeterminate,inconsistentandincompleteinformation.
DoubleRefinedIndeterminacyneutrosophicinformationisageneralizationofneutrosophicinformation.Itisobservedthatneutrosophicinformation/singlevaluedneutrosophicinformationis
Table2: CrossEntropyresultsofdifferentcrossentropybetweenidealalternativeandalternative CrossEntropySVNcrossEntropyDRINCrossEntropyIndeterminatebasedcrossentropy Value Di(A∗,Ai) D(A∗,Ai) ID(A∗ I ,Ai)
A1 1.1101 1.0793 1.7027 A2 1.1801 1.1056 1.6634 A3 0.9962 1.0821 1.6824 A4 1.2406 1.1850 1.6757 Result A3 A1 A1 generalizationofintuitionisticfuzzyinformation,andintuitionisticfuzzyinformationisitselfageneralizationoffuzzyinformation.
DRINSisaninstanceofaneutrosophicset,whichapproachestheproblemmorelogicallywith accuracyandprecisiontorepresenttheexistinguncertainty,imprecise,incomplete,andinconsistent information.Ithastheadditionalfeatureofbeingabletodescribewithmoresensitivitytheindeterminateandinconsistentinformation.While,theSVNScanhandleindeterminateinformationand inconsistentinformation,itiscannotdescribewithaccuracyabouttheexistingindeterminacy.
Itisknownthattheconnectorinfuzzysetisdefinedwithrespectto T (membershiponly)sothe informationofindeterminacyandnonmembershipislost.Theconnectorsinintuitionisticfuzzyset aredefinedwithrespecttotruthmembershipandfalsemembershiponly;heretheindeterminacyis takenaswhatisleftafterthetruthandfalsemembership.
Theintuitionisticfuzzysetcannotdealwiththeindeterminateandinconsistentinformationbut ithasprovisionstodescribeanddealwithincompleteinformation.InSVNS,truth,indeterminacy andfalsitymembershiparerepresentedindependently,andtheycanalsobedefinedwithrespectto anyofthem(norestriction)andtheapproachismorelogical.ThismakesSVNSequippedtodeal informationbetterthanIFS,whereasinDRINS,morescopeisgiventodescribeanddealwiththe existingindeterminateandinconsistentinformationbecausetheindeterminacyconceptisclassified astwodistinctvalues.ThisprovidesmoreaccuracyandprecisiontoindeterminacyinDRINS,than SVNS.
ItisclearlynotedthatinthecaseoftheSVNcrossentropybasedmulticriteriadecisionmaking methodthatwasproposedin[20],thattheindeterminacyconcept/valueisnotclassifiedintotwo,but itisrepresentedasasinglevaluedneutrosophicdataleadingtoalossofaccuracyoftheindeterminacy. SVNSareincapableofgivingthisamountoflogicalapproachwithaccuracyorprecisionaboutthe indeterminacyconcept.Similarlywhentheintuitionisticfuzzycrossentropywasconsidered,itwas notpossibletodealwiththeindeterminacymembershipfunctionindependentlyasitisdealtinSVN orDRINcrossentropybasedmulticriteriadecisionmakingmethod,leadingtoalossofinformation abouttheexistingindeterminacy.Inthefuzzycrossentropy,onlythemembershipdegreeisconsidered, detailsofnonmembershipandindeterminacyarecompletelylost.ItisclearlyobservedthattheDRINs representationandtheDRIN-crossentropybasedmulticriteriadecision-makingmethodarebetter logicallyequippedtodealwithindeterminate,inconsistentandincompleteinformation.
Inthispaperaspecialcaseofrefinedneutrosophicset,calledasDoubleRefinedIndeterminacyNeutrosophicSet(DRINS),withtwodistinctindeterminatevalueswasutilizedinmulticriteriadecision makingproblem.Betterlogicalapproachandprecisionisprovidedtoindeterminacysincetheindeterminateconcept/valueisclassifiedintotwobasedonmembership:oneasindeterminacyleaning towardstruthmembershipandanotherasindeterminacyleaningtowardsfalsemembership.Thiskind
ofclassificationofindeterminacyisnotfeasiblewithSVNS.DRINSisbetterequippedatdealing indeterminateandinconsistentinformation,withmoreaccuracythanSingleValuedNeutrosophicSet (SVNS),whichfuzzysetsandIntuitionisticFuzzysetsareincapableof.
InthispaperthecrossentropyofDRINSwasdefinedanditwasappliedsolvethemulticriteria decisionmakingproblem,thisapproachiscalledasDRINcrossentropybasedmulticriteriadecisionmakingmethod.ThroughtheillustrativecomputationalsampleoftheDRINcrossentropybasedmulticriteriadecision-makingmethodandothermethods,theresultshaveshownthattheDRIN-cross entropybasedmulticriteriadecision-makingmethodismoregeneralandmorereasonablethanthe others.Furthermore,insituationsthatarerepresentedbyindeterminateinformationandinconsistent information,theDRINcrossentropybasedmulticriteriadecision-makingmethodexhibitsitsgreat superiorityinclusteringthoseDoubleRefinedIndeterminacyneutrosophicdatabecausetheDRINSs areapowerfultooltodealwithuncertain,imprecise,incomplete,andinconsistentinformationwith accuracy.Inthefuture,DRINSsetsandtheDRINcrossentropybasedmulticriteriadecision-making methodcanbeappliedtomanyareassuchasonlinesocialnetworks,informationretrieval,investment decisionmaking,anddataminingwherefuzzytheoryhasbeenused.
[1] F.Smarandache,”n-valuedrefinedneutrosophiclogicanditsapplicationsinphysics,” Progress inPhysics,vol.4,pp.143–146,2013.
[2] L.A.Zadeh,”Fuzzysets,” Informationandcontrol,vol.8,no.3,pp.338–353,1965.
[3] K.T.Atanassov,”Intuitionisticfuzzysets,” FuzzysetsandSystems,vol.20,no.1,pp.87–96, 1986.
[4] K.AtanassovandG.Gargov,“Intervalvaluedintuitionisticfuzzysets,” Fuzzysetsandsystems, vol.31,no.3,pp.343–349,1989.
[5] L.A.Zadeh,”Probabilitymeasuresoffuzzyevents,” Journalofmathematicalanalysisandapplications,vol.23,no.2,pp.421–427,1968.
[6] C.E.Shannon,”Amathematicaltheoryofcommunication,” ACMSIGMOBILEMobileComputingandCommunicationsReview,vol.5,no.1,pp.3–55,2001.
[7] S.KullbackandR.A.Leibler,”Oninformationandsufficiency,” Theannalsofmathematical statistics,vol.22,no.1,pp.79–86,1951.
[8] J.Lin,“Divergencemeasuresbasedontheshannonentropy,” IEEETransactionsonInformation theory,vol.37,no.1,pp.145–151,1991.
[9] X.G.ShangandW.S.Jiang,”Anoteonfuzzyinformationmeasures,” PatternRecognitionLetters,vol.18,no.5,pp.425–432,1997.
[10] A.DeLucaandS.Termini,”Adefinitionofanonprobabilisticentropyinthesettingoffuzzy setstheory,” Informationandcontrol,vol.20,no.4,pp.301–312,1972.
[11] I.K.VlachosandG.D.Sergiadis,”Intuitionisticfuzzyinformation–applicationstopattern recognition,” PatternRecognitionLetters,vol.28,no.2,pp.197–206,2007.
[12] Q.S.ZhangandS.Y.Jiang,”Anoteoninformationentropymeasuresforvaguesetsandits applications,” InformationSciences,vol.178,no.21,pp.4184–4191,2008.
[13] J.Ye,”Faultdiagnosisofturbinebasedonfuzzycrossentropyofvaguesets,” ExpertSystems withApplications,vol.36,no.4,pp.8103–8106,2009.
[14] J.Ye,”Multicriteriafuzzydecision-makingmethodbasedontheintuitionisticfuzzycrossentropy,”in IntelligentHuman-MachineSystemsandCybernetics,2009.IHMSC’09.InternationalConferenceon,vol.1.IEEE,2009,pp.59–61.
[15] J.Ye,”Fuzzycrossentropyofinterval-valuedintuitionisticfuzzysetsanditsoptimaldecisionmakingmethodbasedontheweightsofalternatives,” ExpertSystemswithApplications,vol.38, no.5,pp.6179–6183,2011.
[16] F.Smarandache, AUnifyingFieldinLogics:NeutrosophicLogic.Neutrosophy,Neutrosophic Set,Probability,andStatistics.AmericanResearchPress,Rehoboth,2000.
[17] H.Wang,F.Smarandache,Y.Zhang,andR.Sunderraman,”Singlevaluedneutrosophicsets,” Review,p.10,2010.
[18] J.Ye,”Multicriteriadecision-makingmethodusingthecorrelationcoefficientundersinglevaluedneutrosophicenvironment,” InternationalJournalofGeneralSystems,vol.42,no.4,pp. 386–394,2013.
[19] J.Ye,“Amulticriteriadecision-makingmethodusingaggregationoperatorsforsimplifiedneutrosophicsets,” JournalofIntelligent&FuzzySystems,vol.26,no.5,pp.2459–2466,2014.
[20] J.Ye,”Singlevaluedneutrosophiccross-entropyformulticriteriadecisionmakingproblems,” AppliedMathematicalModelling,vol.38,no.3,pp.1170–1175,2014.
[21] J.Ye,”Similaritymeasuresbetweenintervalneutrosophicsetsandtheirapplicationsinmulticriteriadecision-making,” JournalofIntelligent&FuzzySystems,vol.26,no.1,pp.165–172, 2014.
[22] A.Salama,A.Haitham,A.Manie,andM.Lotfy,”Utilizingneutrosophicsetinsocialnetwork analysise-learningsystems,” InternationalJournalofInformationScienceandIntelligentSystem,vol.3,no.2,2014.
[23] H.D.ChengandY.Guo,”Anewneutrosophicapproachtoimagethresholding,” NewMathematicsandNaturalComputation,vol.4,no.03,pp.291–308,2008.
[24] A.SengurandY.Guo,”Colortextureimagesegmentationbasedonneutrosophicsetandwavelet transformation,” ComputerVisionandImageUnderstanding,vol.115,no.8,pp.1134–1144, 2011.
[25] M.Zhang,L.Zhang,andH.Cheng,”Aneutrosophicapproachtoimagesegmentationbasedon watershedmethod,” SignalProcessing,vol.90,no.5,pp.1510–1517,2010.
[26] W.VasanthaandF.Smarandache, Fuzzycognitivemapsandneutrosophiccognitivemaps.InfiniteStudy,2003.
[27] W.VasanthaandF.Smarandache,”Analysisofsocialaspectsofmigrantlabourerslivingwith hiv/aidsusingfuzzytheoryandneutrosophiccognitivemaps:Withspecialreferencetoruraltamil naduinindia,” arXivpreprintmath/0406304,2004.
[28] I.Kandasamy,”DoubleValuedneutrosophicsetsanditsapplicationstoclustering,”2016, manuscriptsubmittedforpublication.
[29] H.Wang,Y.-Q.Zhang,andR.Sunderraman,”Softsemanticwebservicesagent,”in FuzzyInformation,2004.ProcessingNAFIPS’04.IEEEAnnualMeetingofthe,vol.1.IEEE,2004,pp. 126–129.
[30] C.TanandX.Chen,”Intuitionisticfuzzychoquetintegraloperatorformulti-criteriadecision making,” ExpertSystemswithApplications,vol.37,no.1,pp.149–157,2010.