Introduction to NeutroGroups

Page 1

IntroductiontoNeutroGroups

Agboola1 A.A.A. DepartmentofMathematics,FederalUniversityofAgriculture,Abeokuta,Nigeria. agboolaaaa@funaab.edu.ng

Abstract

TheobjectiveofthispaperistoformallypresenttheconceptofNeutroGroupsbyconsideringthreeNeutroAxioms(NeutroAssociativity,existenceofNeutroNeutralelementandexistenceofNeutroInverseelement).SeveralinterestingresultsandexamplesofNeutroGroups,NeutroSubgroups,NeutroCyclicGroups,NeutroQuotientGroupsandNeutroGroupHomomorphismsarepresented.Itisshownthatgenerally,Lagrange’stheorem and1stisomorphismtheoremoftheclassicalgroupsdonotholdintheclassofNeutroGroups.

Keywords: Neutrosophy,NeutroGroup,NeutroSubgroup,NeutroCyclicGroup,NeutroQuotientGroupand NeutroGroupHomomorphism.

1Introduction

In2019,FlorentinSmarandache2 introducednewfieldsofresearchinneutrosophywhichhecalledNeutroStructuresandAntiStructuresrespectively.TheconceptsofNeutroAlgebrasandAntiAlgebraswererecentlyintroducedbySmarandachein.3 Smarandachein4 revisitedthenotionsofNeutroAlgebrasandAntiAlgebraswherehestudiedPartialAlgebras,UniversalAlgebras,EffectAlgebrasandBoole’sPartialAlgebras andshowedthatNeutroAlgebrasaregeneralizationofPartialAlgebras.In,1 AgboolaetalexaminedNeutroAlgebrasandAntiAlgebrasviz-a-viztheclassicalnumbersystems N, Z, Q, R and C.ThementionofNeutroGroupbySmarandachein2 motivatedustowritethepresentpaper.TheconceptofNeutroGroupisformally presentedinthispaperbyconsideringthreeNeutroAxioms(NeutroAssociativity,existenceofNeutroNeutral elementandexistenceofNeutroInverseelement).WestudyNeutroSubgroups,NeutroCyclicGroups,NeutroQuotientGroupsandNeutroGroupHomomorphisms.Wepresentseveralinterestingresultsandexamples.Itis shownthatgenerally,Lagrange’stheoremand1stisomorphismtheoremoftheclassicalgroupsdonotholdin theclassofNeutroGroups.

FormoredetailsaboutNeutroAlgebras,AntiAlgebras,NeutroAlgebraicStructuresandAntiAlgebraic Structures,thereadersshouldsee.1–4

2FormalPresentationofNeutroGroupandProperties

Inthissection,weformallypresenttheconceptofaNeutroGroupbyconsideringthreeNeutroAxioms(NeutroAssociativity,existenceofNeutroNeutralelementandexistenceofNeutroInverseelement)andwepresent itsbasicproperties.

InternationalJournalofNeutrosophicScience(IJNS)Vol.6,No.1,PP.41-47,2020
(i) ∗
(
) ∈
a ∗ (b ∗ c)=(a ∗ b) ∗ c
x
∗ z
Definition2.1. Let G beanonemptysetandlet ∗ : G × G → G beabinaryoperationon G.Thecouple (G, ∗) iscalledaNeutroGroupifthefollowingconditionsaresatisfied:
isNeutroAssociativethatisthereexitsatleastonetriplet
a,b,c
G suchthat
(1) andthereexistsatleastonetriplet (x,y,z) ∈ G suchthat
∗ (y
) =(x ∗ y)
z. (2) 1Correspondence:aaaola2003@yahoo.com Doi:10.5281/zenodo.384076141

(ii) ThereexistsaNeutroNeutralelementin G thatisthereexistsatleastanelement a ∈ G thathasasingle neutralelementthatiswehave e ∈ G suchthat

a ∗ e = e ∗ a = a (3) andfor b ∈ G theredoesnotexist e ∈ G suchthat b ∗ e = e ∗ b = b (4) orthereexist e1,e2 ∈ G suchthat b ∗ e1 = e1 ∗ b = b or (5) b ∗ e2 = e2 ∗ b = b with e1 = e2 (6)

(iii) ThereexistsaNeutroInverseelementthatisthereexistsanelement a ∈ G thathasaninverse b ∈ G withrespecttoaunitelement e ∈ G thatis

a ∗ b = b ∗ a = e (7) orthereexistsatleastoneelement b ∈ G thathastwoormoreinverses c,d ∈ G withrespecttosome unitelement u ∈ G thatis

b ∗ c = c ∗ b = u (8) b ∗ d = d ∗ b = u. (9)

Inaddition,if ∗ isNeutroCommutativethatisthereexistsatleastaduplet (a,b) ∈ G suchthat a ∗ b = b ∗ a (10) andthereexistsatleastaduplet (c,d) ∈ G suchthat c ∗ d = d ∗ c, (11) then (G, ∗) iscalledaNeutroCommutativeGrouporaNeutroAbelianGroup. Ifonlycondition(i)issatisfied,then (G, ∗) iscalledaNeutroSemiGroupandifonlyconditions(i)and(ii) aresatisfied,then (G, ∗) iscalledaNeutroMonoid.

Definition2.2. Let (G, ∗) beaNeutroGroup. G issaidtobefiniteoforder n ifthecardinalityof G is n that is o(G)= n.Otherwise, G iscalledaninfiniteNeutroGroupandwewrite o(G)= ∞ Example2.3. Let U = {a,b,c,d,e,f } beauniverseofdiscourseandlet G = {a,b,c,d} beasubsetof U Let ∗ beabinaryoperationdefinedon G asshownintheCayleytablebelow: ∗ a b c d a b c d a b c d a c c d a b d d a b c a

Itisclearfromthetablethat: a ∗ (b ∗ c)=(a ∗ b) ∗ c = d, b ∗ (d ∗ c)= a, but (b ∗ d) ∗ c = b.

Thisshowsthat ∗ isNeutroAssociativeandhence (G, ∗) isaNeutroSemiGroup. Next,let Nx and Ix representtheneutralelementandtheinverseelementrespectivelywithrespecttoany element x ∈ G.Then

Na = d, Ia = c, Nb,Nc,Nd donotexist, Ib,Ic,Id donotexist

Thisinadditionto (G, ∗) beingaNeutroSemiGroupimpliesthat (G, ∗) isaNeutroGroup. Itisalsoclearfromthetablethat ∗ isNeutroCommutative.Hence, (G, ∗) isaNeutroAbelianGroup.

Doi:10.5281/zenodo.384076142

InternationalJournalofNeutrosophicScience(IJNS)Vol.6,No.1,PP.41-47,2020

Example2.4. Let G = Z10 andlet ∗ beabinaryoperationon G definedby x ∗ y = x +2y forall x,y ∈ G where + isadditionmodulo10.Then (G, ∗) isaNeutroAbeliaGroup.Toseethis,for x,y,z ∈ G,wehave x ∗ (y ∗ z)= x +2y +4z, (12) (x ∗ y) ∗ z = x +2y +2z. (13)

Equating(16)and(17)weobtain z =0, 5.Henceonlythetriplets (x,y, 0), (x,y, 5) canverifyassociativityof ∗ andnotanyothertriplet (x,y,z) ∈ G.Hence, ∗ isNeutroAssociativeandtherefore, (G, ∗) isa NeutroSemigroup.

Next,let e ∈ G suchthat x ∗ e = x +2e = x and e ∗ x = e +2x.Then, x +2e = e +2x fromwhichwe obtain e = x.Butthen,only 5 ∗ 5=5 in G.Thisshowsthat G hasaNeutroNeutralelement.Itcanalsobe shownthat G hasaNeutroInverseelement.Hence,(G, ∗) isaNeutroGroup.

Lastly, x ∗ y = x +2y, (14) y ∗ x = y +2x. (15)

Equating(18)and(19),weobtain x = y.Henceonlytheduplet (x,x) ∈ G canverifycommutativityof ∗ and notanyotherduplet (x,y) ∈ G.Hence, ∗ isNeutroCommutativeandthus (G, ∗) isaNeutroAbelianGroup.

Remark2.5. GeneralNeutroGroupisaparticularcaseofgeneralNeutroAlgebrawhichisanalgebrawhich hasatleastoneNeutroOperationoroneNeutroAxiom(axiomthatistrueforsomeelements,indeterminate forotherelements,andfalsefortheotherelements).Therefore,aNeutroGroupisagroupthathaseitherone NeutroOperation(partiallywell-defined,partiallyindeterminate,andpartiallyouter-defined),oratleastone NeutroAxiom(NeutroAssociativity,NeutroElement,orNeutroInverse).

ItispossibletodefineNeutroGroupinanotherwaybyconsideringonlyoneNeutroAxiomorbyconsideringtwoNeutroAxioms.

Theorem2.6. Let (Gi, ∗),i =1, 2, ,n beafamilyofNeutroGroups.Then

(i) G = n i=1 Gi isaNeutroGroup. (ii) G = n i=1 Gi isaNeutroGroup.

Proof. Obvious.

Definition2.7. Let (G, ∗) beaNeutroGroup.Anonemptysubset H of G iscalledaNeutroSubgroupof G if (H, ∗) isalsoaNeutroGroup.

TheonlytrivialNeutroSubgroupof G is G Example2.8. Let (G, ∗) betheNeutroGroupof Example2.3 andlet H = {a,c,d}.Thecompositionsof elementsof H aregivenintheCayleytablebelow. ∗ a c d a b d a c d b d d a c a

.

Itisclearfromthetablethat: a ∗ (c ∗ d)=(a ∗ c) ∗ d = a, d ∗ (c ∗ a)= a, but (d ∗ c) ∗ a = d = a. Na = d, Ia = c, Nc,Nd donotexist, Ic,Id donotexist. a ∗ d = d ∗ a = a, but c ∗ d = d,d ∗ c = c = d.

Alltheseshowthat (H, ∗) isaNeutroAbelianGroup.Since H ⊂ G,itfollowsthat H isaNeutroSubgroupof G.

Itshouldbeobservedthattheorderof H isnotadivisoroftheorderof G.Hence,Lagrange’stheorem doesnothold.

Doi:10.5281/zenodo.384076143

InternationalJournalofNeutrosophicScience(IJNS)Vol.6,No.1,PP.41-47,2020

Theorem2.9. Let (G, ∗) beaNeutroGroupandlet (Hi, ∗),i =1, 2, ,n beafamilyofNeutroSubgroups of G.Then

(i) H = n i=1 Hi isaNeutroSubgroupof G

(ii) H = n i=1 Hi isaNeutroSubgroupof G

Proof. Obvious. Definition2.10. Let H beaNeutroSubgroupoftheNeutroGroup (G, ∗) andlet x ∈ G

(i) xH theleftcosetof H in G isdefinedby

xH = {xh : h ∈ H}. (16)

(i) Hx therightcosetof H in G isdefinedby

Hx = {hx : h ∈ H}. (17)

Example2.11. Let (G, ∗) betheNeutroGroupof Example2.3 andlet H betheNeutroSubgroupof Example 2.8 Hl thesetofdistinctleftcosetsof H in G isgivenby

Hl = {{a,b,d}, {a,c}, {b,d}} and Hr thesetofdistinctrightcosetsof H in G isgivenby

Hr = {{a,b,d}, {a,b,c}, {b,c,d}, {a,d}}

Itshouldbeobservedthat Hl and Hr donotpartition G.Thisisdifferentfromwhatisobtainableinthe classicalgroups.However,theorderof Hl is 3 whichisnotadivisoroftheorderof G andtherefore, [G : H ] theindexof H in G is3,thatis [G : H ]=3.Also,theorderof Hr is 4 whichisadivisorof G.Hence, [G : H ]=4

Example2.12. Let U = {a,b,c,d} beauniverseofdiscourseandlet G = {a,b,c} beaNeutroGroupgiven intheCayleytablebelow:

∗ a b c a a c b b c a c c a c d

Let H = {a,b} beaNeutroSubgroupof G givenintheCayleytablebelow: ∗ a b a a c b c a

Then,thesetsofdistinctleftandrightcosetsof H in G arerespectivelyobtainedas: Hl = {{a,c}}, Hr = {{a, }, {c}, {b,c}}

Inthisexample,theorderof Hl thesetofdistinctleftcosetsof H in G is 1 whichisnotadivisoroftheorder of G andtherefore, [G : H ]=1.However,theorderof Hr thesetofdistinctrightcosetsof H in G is 3 which isadivisoroftheorderof G andtherefore, [G : H ]=3.Thisisalsodifferentfromwhatisobtainableinthe classicalgroups.

Consequenton Examples2.8,2.11and2.12,westatethefollowingtheorem:

Theorem2.13. Let H beaNeutroSubgroupofthefiniteNeutroGroup (G, ∗).Thengenerally:

(i) o(H ) isnotadivisorof o(G).

(ii) Thereisno1-1correspondencebetweenanytwoleft(right)cosetsof H in G Doi:10.5281/zenodo.384076144

InternationalJournalofNeutrosophicScience(IJNS)Vol.6,No.1,PP.41-47,2020

(iii) Thereisno1-1correspondencebetweenanyleft(right)cosetof H in G and H

(iv) If Nx = e thatis xe = ex = x forany x ∈ G,then eH = H , He = H and {e} isnotaNeutroSubgroup of G.

(v) o(G) =[G : H ]o(H )

(vi) Thesetofdistinctleft(right)cosetsof H in G isnotapartitionof G

Definition2.14. Let (G, ∗) beaNeuroGroup.Since ∗ isassociativeforatleastonetriplet (x,x,x) ∈ G,the powersof x aredefinedasfollows:

x 1 = x x 2 = xx x 3 = xxx . . xn = xxx xn factors ∀n ∈ N.

Theorem2.15. Let (G, ∗) beaNeutroGroupandlet x ∈ G.Thenforany m,n ∈ N,wehave:

(i) xmxn = xm+n (ii) (xm)n = xmn

Definition2.16. Let (G, ∗) beaNeutroGroup. G issaidtobecyclicif G canbegeneratedbyanelement x ∈ G thatis

G =<x>= {xn : n ∈ N} (18)

Example2.17. Let (G, ∗) betheNeutroGroupgivenin Example2.3 andconsiderthefollowing:

a 1 = a,a 2 = b,a3 = c,a 4 = d. b1 = b,b2 = d,b3 = c,b4 = a. c 1 = c,c 2 = b,c3 = a,c 4 = d. d1 = d,d2 = a,d3 = a,d4 = a. ∴ G = <a>=<b>=<c>,G =<d>.

Theseshowthat G iscyclicwiththegenerators a,b,c.Theelement d ∈ G doesnotgenerate G Definition2.18. Let H beaNeutroSubgroupoftheNeutroGroup (G, ∗).Thesets (G/H )l and (G/H )r are definedby: (G/H )l = {xH : x ∈ G} (19) (G/H )r = {Hx : x ∈ G}. (20)

Let xH,yH ∈ (G/H )l andlet l beabinaryoperationdefinedon (G/H )l by xH l yH = x ∗ yH ∀ x,y ∈ G. (21)

Also,let xH,yH ∈ (G/H )r andlet r beabinaryoperationdefinedon (G/H )r by Hx r Hy = Hx ∗ y ∀ x,y ∈ G. (22)

Itcanbeshownthatthecouples ((G/H )l, l) and ((G/H )r , r ) areNeutroGroups. Example2.19. Let G and H beasgivenin Example2.12 andconsider (G/H )l = {aH,bH,cH} = {aH} = {{a,c}}.

Then ((G/H )l, l) isaNeutroGroup.

Doi:10.5281/zenodo.384076145

InternationalJournalofNeutrosophicScience(IJNS)Vol.6,No.1,PP.41-47,2020

Definition2.20. Let (G, ∗) and (H, ◦) beanytwoNeutroGroups.Themapping φ : G → H iscalleda NeutroGroupHomomorphismif φ preservesthebinaryoperations ∗ and ◦ thatisifforall x,y ∈ G,wehave

φ(x ∗ y)= φ(x) ◦ φ(y) (23)

Thekernelof φ denotedby Kerφ isdefinedas

Kerφ = {x : φ(x)= eH } (24)

where eH ∈ H issuchthat Nh = eH foratleastone h ∈ H Theimageof φ denotedby Imφ isdefinedas

Imφ = {y ∈ H : y = φ(x) forsome h ∈ H} (25)

Ifinaddition φ isabijection,then φ iscalledaNeutroGroupIsomorphismandwewrite G ∼ = H.NeutroGroupEpimorphism,NeutroGroupMonomorphism,NeutroGroupEndomorphism,andNeutroGroupAutomorphismaresimilarlydefined.

Example2.21. Let (G, ∗) beaNeutroGroupof Example2.12 andlet ψ : G × G → G beaprojectiongiven by ψ((x,y))= x ∀x,y ∈ G.

Then ψ isaNeutroGroupHomomorphism.The Kerψ = {(a,a), (a,b),a,c)} whichisaNeutroSubgroupof G × G asshownintheCayleytablebelow.

∗ (a,a) (a,b) (a,c) (a,a) (a,a) (a,c) (a,b) (a,b) (a,c) (a,a) (a,c) (a,c) (a,a) (a,c) (a,d) and Imψ = {a,b,c} = G

Consequenton Example2.21,westatethefollowingtheorem:

Theorem2.22. Let (G, ∗) and (H, ◦) beNeutroGroupsandlet Nx = eG suchthat eG ∗ x = x ∗ eG = x for atleastone x ∈ G andlet Ny = eH suchthat eH ∗ y = y ∗ eH = y foratleastone y ∈ H .Supposethat φ : G → H isaNeutroGroupHomomorphism.Then:

(i) φ(eG)= eH

(ii) Kerφ isaNeutroSubgroupof G

(iii) Imφ isaNeutroSubgroupofH.

(iv) φ isinjectiveifandonlyif Kerφ = {eG}

Example2.23. Considering Example2.19,let φ : G → G/H beamappingdefinedby φ(x)= xH forall x ∈ G.Then, φ(a)= φ(b)= φ(c)= aH = {a,c} fromwhichwehavethat φ isaNeutroGroupHomomorphism. Kerφ = {x ∈ G : φ(x)= eG/H } = {x ∈ G : xH = eG/H = e{{a,c}} } = H. Consequenton Example2.23,westatethefollowingtheorem:

Theorem2.24. Let H beaNeutroSubgroupofaNeutroGroup (G, ∗).Themapping ψ : G → G/H defined by ψ(x)= xH ∀ x ∈ G isaNeutroGroupHomomorphismandthe Kerψ = H .

Theorem2.25. Let φ : G → H beaNeutroGroupHomomorpismandlet K = Kerφ.Thenthemapping ψ : G/K → Imφ definedby ψ(xK)= φ(x) ∀ x ∈ G isaNeutroGroupEpimorphismandnotaNeutroGroupIsomorphism. Doi:10.5281/zenodo.384076146

InternationalJournalofNeutrosophicScience(IJNS)Vol.6,No.1,PP.41-47,2020

Proof. That ψ isawelldefinedsurjectivemappingisclear.Let xK,yK ∈ G/K bearbitrary.Then

ψ(xKyK)= ψ(xyK)

= φ(xy)

= φ(x)φ(y)

= ψ(xK)ψ(yK)

Kerψ = {xK ∈ G/K : ψ(xK)= eφ(x)}

= {xK ∈ G/K : φ(x)= eφ(x)}

= {eG/K }

Thisshowsthat ψ isasurjectiveNeutroGroupHomomorphismandthereforeitisaNeutroGroupEpimorphism. Since ψ isnotinjective,itfollowsthat G/K ∼ = Imφ whichisdifferentfromwhatisobtainableintheclassical groups.

Theorem2.26. NeutroGroupIsomorphismofNeutrogroupsisanequivalencerelation.

Proof. Thesameastheclassicalgroups.

3Conclusion

WehaveformallypresentedtheconceptofNeutroGroupinthispaperbyconsideringthreeNeutroAxioms (NeutroAssociativity,existenceofNeutroNeutralelementandexistenceofNeutroInverseelement).WepresentedandstudiedseveralinterestingresultsandexamplesonNeutroSubgroups,NeutroCyclicGroups,NeutroQuotientGroupsandNeutroGroupHomomorphisms.Wehaveshownthatgenerally,Lagrange’stheorem and1stisomorphismtheoremoftheclassicalgroupsdonotholdintheclassofNeutroGroups.Furtherstudies ofNeutroGroupswillbepresentedinourfuturepapers.OtherNeutroAlgebraicStructuressuchasNeutroRings,NeutroModules,NeutroVectorSpacesetcareopenedtostudiesforNeutrosophicResearchers.

4Appreciation

Theauthorisverygratefultoallanonymousreviewersforvaluablecommentsandsuggestionswhichwehave foundveryusefulintheimprovementofthepaper.

References

[1] AgboolaA.A.A.,IbrahimM.A.andAdelekeE.O.,”ElementaryExaminationofNeutroAlgebrasand AntiAlgebrasviz-a-viztheClassicalNumberSystems”,InternationalJournalofNeutrosophicScience,Volume4,Issue1,pp.16-19,2020.

[2] Smarandache,F.,”IntroductiontoNeutroAlgebraicStructures,inAdvancesofStandardandNonstandard NeutrosophicTheories,”PonsPublishingHouseBrussels,Belgium,Ch.6,pp.240-265,2019.

[3] Smarandache,F.,”IntroductiontoNeutroAlgebraicStructuresandAntiAlgebraicStructures(revisited)”, NeutrosophicSetsandSystems,vol.31,pp.1-16,2020.DOI:10.5281/zenodo.3638232.

[4] Smarandache,F.,”NeutroAlgebraisaGeneralizationofPartialAlgebra”,InternationalJournalofNeutrosophicScience,vol.2(1),pp.08-17,2020.

Doi:10.5281/zenodo.384076147

InternationalJournalofNeutrosophicScience(IJNS)Vol.6,No.1,PP.41-47,2020

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.