Fuzzy Parameterized Complex Neutrosophic Soft Expert Set for Decision under Uncertainty

Page 1

FuzzyParameterizedComplexNeutrosophicSoft ExpertSetforDecisionunderUncertainty

AshrafAl-Quran 1 ,NasruddinHassan 2,* andShawkatAlkhazaleh 3

1 DepartmentofMathematics,FacultyofScience,JerashUniversity,Jerash26150,Jordan;a.quraan@jpu.edu.jo

2 SchoolofMathematicalSciences,FacultyofScienceandTechnology,UniversitiKebangsaanMalaysia, 43600UKMBangiSelangorDE,Malaysia

3 DepartmentofMathematics,FacultyofScience,ZarqaUniversity,Zarqa13132,Jordan;shmk79@gmail.com

* Correspondence:nas@ukm.edu.my;Tel.:+603-8921-3710

Received:5January2019;Accepted:26February2019;Published:15March2019

Abstract: Inthedefinitionofthecomplexneutrosophicsoftexpertset(CNSES),parametersset isaclassicalset,andtheparametershavethesamedegreeofimportance,whichisconsidered as1.Thisposesalimitationinmodelingofsomeproblems.Thispaperintroducestheconcept offuzzyparameterizedcomplexneutrosophicsoftexpertset(FP-CNSES)tohandlethisissueby assigningadegreeofimportancetoeachoftheproblemparameters.WefurtherdevelopFP-CNSES byestablishingtheconceptofweightedfuzzyparameterizedcomplexneutrosophicsoftexpertset (WFP-CNSES)basedontheideathateachexperthasarelativeweight.Thesenewmathematical frameworksreducethechanceofunfairnessinthedecisionmakingprocess.Someessentialoperations withtheirpropertiesandrelevantlawsrelatedtothenotionofFP-CNSESaredefinedandverified. Thenotationofmappingonfuzzyparameterizedcomplexneutrosophicsoftexpertclassesisdefined andsomepropertiesoffuzzyparameterizedcomplexneutrosophicsoftexpertimagesandinverse imageswasinvestigated.FP-CNSESisusedtoputforthanalgorithmondecision-makingby convertingitfromcomplexstatetorealstateandsubsequentlyprovidedthedetaileddecisionsteps. Then,weprovidethecomparisonofFP-CNSEStothecurrentmethodstoshowtheascendancyof ourproposedmethod.

Keywords: complexneutrosophicset;complexneutrosophicsoftexpertset;fuzzyparameterized singlevaluedneutrosophicsoftexpertset;singlevaluedneutrosophicset;softexpertset

1.Introduction

Inaworldwherenoteverythingiscertain,theneedtorepresentuncertaindatawassuccessfully fulfilledbyZadeh[1]byintroducingtheconceptoffuzzysets.Intuitionisticfuzzysetswereintroduced byAtanassov[2]asanextensionofZadeh’snotionoffuzzyset,whichprovedtobeabettermodel ofuncertainty.Thewords“neutrosophy”and“neutrosophic”wereintroducedforthefirsttimeby Smarandache[3].Then,neutrosophicset[4]wasdefinedasamoregeneralplatform,whichextendsthe conceptsofthefuzzysetandintuitionisticfuzzyset.Toapplyneutrosophicsettoreal-lifeproblems, itsoperatorsneedtobespecified.Thus,singlevaluedneutrosophicsetanditsbasicoperationswere defined[5]asaspecialcaseofneutrosophicset.Molodtsov[6]proposedtheconceptofsoftset, tobringatopologicalflavortothemodelsofuncertaintyandassociatefamilyofsubsetsofuniverseto parameters.Softsetwasthenextendedtothesoftexpertset[7],whichwasfurtherdevelopedtofuzzy softexpertset(FSES)[8],intuitionisticfuzzysoftexpertsets(IFSES)[9]andsinglevaluedneutrosophic softexpertsets(SVNSES)[10].Atthesametime,therehavebeensomepracticalapplicationsinsoft expertsettheoryanditsextensionsthatareusedindecisionmaking[11–13].

Symmetry 2019, 11,382;doi:10.3390/sym11030382 www.mdpi.com/journal/symmetry

SS
symmetry
Article

Amongthesignificantmilestonesinthedevelopmentofsoftsetsandsoftexpertsetsandtheir generalizationsistheintroductionofthefuzzyparameterizedaspect.Thisnewaspecthasfurther improvedthetheoriesofsoftandsoftexpertsetsandmadethembettersuitedtobeusedinsolving decisionmakingproblems,especiallywhenusedwiththemoreaccurategeneralizationsofsoft andsoftexpertsetssuchasFSESs,IFSESsandotherhybridmodelsmentionedabove.Thefuzzy parameterizedaspectwasfirstlyestablishedbyCagmanetal.[14]whointroducedtheconceptof fuzzyparameterizedsoftsetbygivingadegreeofimportancetoeachelementinthesetofparameters. Subsequently,thisaspectwasattachedand/oraddedtotheexistinggeneralizationsofthesoftsets, softexpertsetsandfuzzysets.BashirandSalleh[15]introducedthenotionoffuzzyparameterized softexpertsets(FP-SES),whileHazaymehetal.[16]thenotionoffuzzyparameterizedfuzzysoft expertsets(FP-FSES),followedbySelvachandranandSalleh[17]whointroducedthenotionof fuzzyparameterizedintuitionisticfuzzysoftexpertset(FP-IFSES)asageneralizationoftheworkby Hazaymehetal.[16].However,thesesetscanonlyhandleincompleteanduncertaintyinformationbut notindeterminateandinconsistentinformation,whichusuallyexistsinrealsituations.Totreatthis deficiency,Al-QuranandHassan[18]definedthefuzzyparameterizedsinglevaluedneutrosophicsoft expertset(FP-SVNSES),whichprovessuperiortothesemodelswiththreeindependentmembership functions.TheFP-SVNSESmodelisalsosignificantlymoreadvantageouscomparedtoSVNSES, asithasaddedadvantagestoSVNSESbyvirtueofthefuzzyparameterizedfeature,whichprovides moreinformationenhancingthequalityoftheinformationpresentedbytheSVNSES,whichinturn, increasestheaccuracyofthefinaldecision.

Thedevelopmentoftheuncertaintysetsthathavebeenmentionedabovearenotlimitedtothe realfieldbutextendedtothecomplexfield.Theintroductionoffuzzysetswasfollowedbytheir extensiontothecomplexfuzzyset[19,20].AlkouriandSalleh[21]introducedtheconceptofcomplex intuitionisticfuzzyset(CIFS)torepresentinformationthathappensrepeatedlyoveraperiodoftime. Tohandleimprecise,indeterminate,inconsistent,andincompleteinformationthathasperiodicnature, AliandSmarandache[22]introducedcomplexneutrosophicset,whereeachmembershipfunction associateswithaphaseterm.Thisfeaturegiveswave-likepropertiesthatcouldbeusedtodescribe constructiveanddestructiveinterferencedependingonthephasevalueofanelement,aswellas itsabilitytodealwithindeterminacy.Inspiredbythis,Al-QuranandHassan[23]generalizedthe CNSESfromthedefinitionsofthecomplexneutrosophicsetandsoftexpertsetonthebasisofthe SVNSES.Indepth,therationalesofintroducingthecomplexneutrosophicsetandthesoftexpertset areconsideredasapotentmotivationtotheintroductionoftheconceptofCNSES.CNSESisactually anextensionoftheSVNSEStothecomplexspace,whichmakesitsuperiortoalloftheaforementioned uncertaintysets.Subsequently,Al-QuranandHassan[24]studiedtheCNSESsfurtherbyestablishing anovelstructureofrelationbetweentwoCNSESs,calledcomplexneutrosophicsoftexpertrelation, toevaluatethedegreeofinteractionbetweentheCNSESs,whichisdefinedasasubsetoftheCartesian productoftheCNSESs.

Overtheyears,manytechniquesandmethodshavebeenproposedastoolstobeusedtofind thesolutionsofproblemsthatarenonlinearorvagueinnature,witheverymethodintroduced superiortoitspredecessors.Followinginthisdirection,weextendthestudiesonCNSESs[23]and FP-SVNSES[18]throughtheestablishmentofthenotionofFP-CNSEStokeeptheadvantagesofCNSES whileholdingtheFP-SVNSESfeatures.Ontheonehand,thenoveltyofCNSESappearsinitsability toprovideasuccinct,elegantandcomprehensiverepresentationoftwo-dimensionalneutrosophic informationaswellastheadequateparameterizationandtheopinionsoftheexperts,allinasingleset. Thistwo-dimensionalinformationispresentedbyamplitudeandphasetermssimultaneouslywhere thephasetermsgiveneutrosophicinformationthatmayinterfere,constructivelyordestructively, withtheneutrosophicinformationpresentedbytheassociatedamplitudeterms,thusmakingthis modelhighlysuitableforuseindecisionmakingproblemstoselectthebestalternative.Ontheother hand,FP-SVNSEShasthefuzzyparameterizedfeature,whichgivesadegreeofimportancetoeach

Symmetry 2019, 11,382 2of19

parameterinthedomainoftheSVNSES.Allofthesefeaturestogetherarecontainedintheproposed FP-CNSES.

Tofacilitateourdiscussion,wefirstreviewsomebackgroundoncomplexneutrosophicsetand FP-SVNSESinSection 2.InSection 3,weintroducetheconceptofFP-CNSESandgiveitstheoretic operations.InSection 4,westudyamappingonfuzzyparameterizedcomplexneutrosophicsoftexpert classesanditsproperties.InSection 5 wediscussanapplicationoftheFP-CNSESindecisionmaking. Section 6 providesacomprehensivecomparisonamongFP-CNSESandotherrecentapproaches tomanifestthedominanceofourproposedmethod.InSection 7,wedefinetheconceptofthe WFP-CNSESwhereexperts’relativeweightsareconsideredandappliedtosolveadecisionmaking problem.Section 8 outlinestheconclusionofthispaper.

2.Preliminaries

Inthissection,asummaryoftheliteratureoncomplexneutrosophicsetandFP-SVNSESrelevant tothispaperispresented.

Webeginbyrecallingthedefinitionofcomplexneutrosophicsetanditsbasicoperationsinthe followingtwodefinitions.

Definition1. [22]Let X beauniverseofdiscourse;acomplexneutrosophicset S in X ischaracterizedby atruthmembershipfunction TS (x),anindeterminacymembershipfunction IS (x),andafalsitymembership function FS (x) thatassignanelement x ∈ X acomplex-valuedgradeof TS (x), IS (x),and FS (x) in S Bydefinition,thevalues TS (x), IS (x),and FS (x) andtheirsummayallbewithintheunitcircleinthe complexplaneandareoftheform, TS (x)= pS (x) ejµS (x) , IS (x)= qS (x) ejνS (x) and FS (x)= rS (x) ejωS (x); pS (x), qS (x), rS (x) and µS (x), νS (x), ωS (x) are,respectively,realvaluedand pS (x), qS (x), rS (x) ∈ [0,1] suchthat 0 ≤ PS (x)+ qS (x)+ rS (x) ≤ 3+ .

Definition2. [22]Let A and B betwocomplexneutrosophicsets,where A ischaracterizedbyatruth membershipfunction TA (x)= pA (x).ejµA (x),anindeterminacymembershipfunction IA (x)= qA (x).ejνA (x) andafalsitymembershipfunction FA (x)= rA (x).ejωA (x) and B ischaracterizedbyatruthmembership function TB (x)= pB (x) ejµB (x),anindeterminacymembershipfunction IB (x)= qB (x) ejνB (x) andafalsity membershipfunctionFB (x)= rB (x) ejωB (x) Wedefinethethecomplement,subset,unionandintersectionoperationsasfollows.

1. ThecomplementofA,denotedas ˜ c(A),isspecifiedbyfunctions:

Tc(A) (u)= pc(A) (u) ejµc(A) (u) = rA (u) ej(2π µA (u)) , Ic(A) (u)= qc(A) (u).ejνc(A) (u) =(1 qA (u)).ej(2π νA (u)),and Fc(A) (u)= rc(A) (u) ejωc(A) (u) = pA (u) ej(2π ωA (u))

2. A issaidtobecomplexneutrosophicsubsetof B (A ⊆ B)ifandonlyifthefollowingconditionsaresatisfied:

(a)TA (u) ≤ TB (u) suchthatpA (u) ≤ pB (u) and µA (u) ≤ µB (u). (b)IA (u) ≥ IB (u) suchthatqA (u) ≥ qB (u) and νA (u) ≥ νB (u). (c)FA (u) ≥ FB (u) suchthatrA (u) ≥ rB (u) and ωA (u) ≥ ωB (u).

Symmetry 2019, 11,382 3of19
A ∪ (∩)B andthetruthmembershipfunction TA∪(∩)B (u), theindeterminacymembershipfunction IA∪(∩)B (u),andthefalsitymembershipfunction FA∪(∩)B (u) are definedas: TA∪(∩)B (u)=[( pA (u) ∨ (∧)pB (u))] ej(µA (u)∨(∧)µB (u)) , IA∪(∩)B (u)=[(qA (u) ∧ (∨)qB (u))] ej(νA (u)∧(∨)νB (u)) and FA∪(∩)B (u)=[(rA (u) ∧ (∨)rB (u))] ej(ωA (u)∧(∨)ωB (u)) ,
3. Theunion(intersection)of A and B,denotedas
where ∨ =maxand ∧ =min.

Al-QuranandHassan[18]definedtheFP-SVNSES,agreeFP-SVNSESanddisagreeFP-SVNSES asfollows.

Definition3. [18]Let U beauniverseset, E beasetofparameters, I E denoteallfuzzysubsetsof E, X be asetofexperts,and O = {1 = agree,0 = disagree} asetofopinions.Let Z = Ψ × X × O and A ⊆ Z, where Ψ ⊂ I E.Apair ( f , A)Ψ iscalledafuzzyparameterizedsinglevaluedneutrosophicsoftexpertset (FPSVNSES) overU,whereFisamappinggivenby fΨ : A → SVN(U), andSVN(U) denotesthesetofallsinglevaluedneutrosophicsubsetsofU.

Definition4. AnagreeFP-SVNSES ( f , A)Ψ1 over U isaFP-SVNSEsubsetof ( f , A)Ψ wheretheopinionsof allexpertsare“agree”andisdefinedasfollows:

( f , A)Ψ1 = FΨ ( ) : ∈ Ψ × X ×{1} .

AdisagreeFP-SVNSES ( f , A)Ψ0 over U isaFP-SVNSEsubsetof ( f , A)Ψ wheretheopinionsofall expertsare“disagree”andisdefinedasfollows:

( f , A)Ψ0 = FΨ ( ) : ∈ Ψ × X ×{0} .

3.FuzzyParameterizedComplexNeutrosophicSoftExpertSet

Inthissection,weintroducethedefinitionofFP-CNSES,whichisageneralizationoftheconcept ofFP-SVNSES.Wedefinesomeoperationsonthisconcept,namelysubset,equality,complement, unionandintersection.Wealsogivesomepropertiesontheseoperations.

WebeginbyproposingthedefinitionofFP-CNSES,andgiveanillustrativeexampleofit.

Definition5. Let U beauniverseset, E beasetofparameters, FZ(E) denoteallfuzzysubsetsof E, X bea setofexperts,and O = {1 = agree,0 = disagree} asetofopinions.Let Y = Γ × X × O and A ⊆ Y where Γ ⊂ FZ(E).Apair (H, A)Γ iscalledafuzzyparameterizedcomplexneutrosophicsoftexpertset(FP-CNSES) overU,whereHisamappinggivenby HΓ : A → CNU , andCNU denotesthepowercomplexneutrosophicsetofU. TheFP-CNSES (H, A)Γ canbewrittenasthefollowingsetoforderedpairs:

H,

Γ = a, u HΓ (a)(u) : u

U : a ∈ A , where A ⊆

, o :e

, x

(e) ,

and o ∈ O , suchthat µΓ (e) isthecorrespondingmembershipfunctionofthefuzzyset Γ and ∀u ∈ U, ∀a ∈ A, H

(a

, where

H

(a) (u)= pHΓ (a) (u).e

H

(a) (u) , IH(a) (u)= qH

Γ (a) (u) and FHΓ (a) (u)= rHΓ (a) (u) ejωHΓ (a) (u) with THΓ (a) (u), IHΓ (a) (u) and FHΓ (a) (u) representingthecomplex-valuedtruthmembershipfunction,complex-valuedindeterminacy membershipfunctionandcomplex-valuedfalsitymembershipfunction,respectively,forthe FP-CNSES (H, A)Γ.Thevalues THΓ (a) (u), IHΓ (a) (u), FHΓ (a) (u) arewithintheunitcircleinthe complexplaneandboththeamplitudeterms pHΓ (a) (u), qHΓ (a) (u), rHΓ (a) (u) andthephaseterms µHΓ (a) (u), νHΓ (a) (u), ωHΓ (a) (u) arerealvaluedsuchthat pHΓ (a) (u), qHΓ (a) (u), rHΓ (a) (u) ∈ [0,1] and0 ≤ pHΓ (a) (u)+ qHΓ (a) (u)+ rHΓ (a) (u) ≤ 3.

Symmetry 2019
11,382 4of19
,
(
A)
Γ × X × O = e µΓ
x
∈ E
∈ X
Γ
)(u)= THΓ (a) (u), IHΓ (a) (u), FHΓ (a) (u)
T
Γ
Γ
Γ (a) (u) ejνH

Example1. Supposethatacarcompanyproducestwodifferentmodelsofcarsandwishtotaketheopinionof itsteamofexpertsconcerningthesetwomodelsofcarsbeforeandaftertestingthesecars.Thesetwomodelsof carsformtheuniverseofelements, U = {u1, u2}.Theteamofexpertsisrepresentedbytheset X = {x1, x2}. Supposethattheteamofexpertsconsiderasetofparameters, E = {e1, e2, e3},where ei (i = 1,2,3) denotes thedecisions“reliability”,“comfortability”and“durability”,respectively,andsuppose Γ = e1 0.4 , e2 0.6 , e3 0.5 isa fuzzysubsetof FZ(E).Itistobenotedthattheparametersmaybeaffectedandalteredafterthecarsaretested. ByapplyingtheFP-CNSESandconsideringtheopinionsoftheexpertsinprocessone(beforetestingthecar) asamplitudetermsofmembership,non-membershipandindeterminatemembership,andsettingtheopinions oftheexpertsinthesecondprocess(aftertestingthecar)asphasetermsofmembership,non-membership, andindeterminacy,thefirstandsecondprocessesformaFP-CNSESasawhole,whichisshownbelow:

(H, A)Γ = e1 0.4 , x1,1 , u1 0.6e2π(0.5) ,0.1e2π(0) ,0.2e2π(0.4) , u2 0.5e2π(0.8) ,0.4e2π(0.7) ,0.3e2π(1) , e1 0.4 , x2,1 , u1 0.5e2π(0.4) ,0.7e2π(0.5) ,0.1e2π(0.2) , u2 0.8e2π(0.7) ,0.7e2π(0.5) ,0.4e2π(0.3) , e2 0.6 , x1,1 , u1 0.3e2π(0.2) ,0.5e2π(0.6) ,0.4e2π(0.5) , u2 0.6e2π(0.5) ,0.7e2π(0.6) ,0.1e2π(0.2) , e2 0.6 , x2,1 , u1 0.9e2π(0.8) ,0.5e2π(0.3) ,0.7e2π(0.4) , u2 0.5e2π(0.4) ,0.8e2π(0.9) ,0.1e2π(0.2) , e3 0.5 , x1,1 , u1 0.4e2π(0.2) ,0.5e2π(0.3) ,0.7e2π(0.6) , u2 0.5e2π(0.2) ,0.7e2π(0.2) ,0.8e2π(0.2) , e3 0.5 , x2,1 , u1 0.8e2π(0.1) ,0.3e2π(0.2) ,0.7e9π(0.2) , u2 0.1e2π(0.6) ,0.2e2π(0.4) ,0.6e2π(0.8) , e1 0.4 , x1,0 , u1 0.6e2π(0.5) ,0.7e2π(0.4) ,0.9e2π(0.3) , u2 0.9e2π(0.8) ,0.8e2π(0.8) ,0.7e2π(0.7) , e1 0.4 , x2,0 , u1 0.4e2π(0.2) ,0.6e2π(0.4) ,0.7e2π(0.8) , u2 0.2e2π(0.4) ,0.5e2π(0.4) ,0.6e2π(0.5) , e2 0.6 , x1,0 , u1 0.3e2π(0.2) ,0.6e2π(0.2) ,0.9e2π(0.2) , u2 0.6e2π(0.4) ,0.5e2π(0.6) ,0.7e2π(0.8) , e2 0.6 , x2,0 , u1 0.5e2π(0.8) ,0.3e2π(0.1) ,0.8e2π(0.9) , u2 0.3e2π(0.7) ,0.8e2π(0.7) ,0.7e2π(0.6) , e3 0.5 , x1,0 , u1 0.4e2π(0.7) ,0.9e2π(0.8) ,0.1e2π(0.3) , u2 0.8e2π(0.2) ,0.3e2π(0.2) ,0.5e2π(0.2) , e3 0.5 , x2,0 , u1 0.5e2π(0.4) ,0.6e2π(0.7) ,0.1e2π(0.9) , u2 0.1e2π(0) ,0.4e2π(0.3) ,0.1e2π(0.1)

IntheFP-CNSES (H, A)Γ above,theamplitudetermofthemembershipinthefirstprocessandthe phaseterminthesecondprocessformacomplex-valuedtruthmembershipfunction.Similarly,theamplitude termofnon-membershipinprocessoneandthephasetermofnon-membershipinthesecondprocessforma complex-valuedfalsitymembershipfunction.Inaddition,theamplitudetermofundecidednessinthefirst processandthephasetermofindeterminacyinthesecondprocessformthecomplex-valuedindeterminate membershipfunction.

Now,weputforwardthedefinitionofanagreeFP-CNSESandthedefinitionofadisagree FP-CNSES.

Definition6. AnagreeFP-CNSES (H, A)Γ1 over U isaFP-CNSEsubsetof (H, A)Γ wheretheopinionsof allexpertsare“agree”andisdefinedasfollows: (H, A)Γ1 = a, u HΓ (a)(u) : u ∈ U : a ∈ A ⊆ Γ × X ×{1}

Definition7. AdisagreeFP-CNSES (H, A)Γ0 over U isaFP-CNSEsubsetof (H, A)Γ wheretheopinionsof allexpertsare“disagree”andisdefinedasfollows: (H, A)Γ0 = a, u HΓ (a)(u) : u ∈ U : a ∈ A ⊆ Γ × X ×{0}

Symmetry 2019
5of19
, 11,382

Inthefollowing,wegivesomebasicdefinitionsandsettheoreticoperationsofFP-CNSESs. WebeginbyproposingthedefinitionofthesubsetoftwoFP-CNSESsandtheequalityoftwo FP-CNSESs.

Definition8. Let (H, A)Γ and (G, B)∆ betwoFP-CNSESsoverauniverse U,wesaythat (H, A)Γ isafuzzy parameterizedcomplexneutrosophicsoftexpertsubsetof (G, B)∆ denotedby (H, A)Γ ⊆ (G, B)∆ ifandonlyif 1.A ⊆ B,and2. ∀a ∈ A, HΓ (a) iscomplexneutrosophicsubsetofG∆ (a)

Definition9. FortwoFP-CNSESs (H, A)Γ and (G, B)Γ overauniverse U,wesaythat (H, A)Γ isequalto (G, B)Γ andwewrite (H, A)Γ =(G, B)Γ if (H, A)Γ ⊆ (G, B)Γ and (G, B)Γ ⊆ (H, A)Γ

Inthefollowing,weproposethedefinitionofthecomplementofaFP-CNSESalongwithan illustrativeexampleandgiveapropositiononthecomplementofaFP-CNSES. Let U beauniverseofdiscourseand (H, A)Γ beaFP-CNSESon U,whichisasdefinedbelow:

(H, A)Γ = a, u HΓ (a)(u) : u ∈ U : a ∈ A Definition10. Thecomplementof (H, A)Γ isdenotedby (H, A)c Γ andisdefinedby

(H, A)c Γ = a, u Hc Γ (a)(u) : u ∈ U : a ∈¬A , where Hc Γ (a)(u)= THc Γ (a) (u), IHc Γ (a) (u), FHC Γ (a) (u) , suchthat: THc Γ (a) (u)= pHc Γ (a) (u) e jµHcΓ (a) (u) = rHΓ (a) (u) ej(2π µHΓ (a) (u)) , IHc Γ (a) (u)= qHc Γ (a) (u).e jνHcΓ (a) (u) =(1 qHΓ (a) (u)).ej(2π νHΓ (a) (u)) , FHc Γ (a) (u)= rHc Γ (a) (u).e jωHcΓ (a) (u) = pHΓ (a) (u).ej(2π ωHΓ (a) (u)) , and ¬A ⊆ Γc × X × O,where ˜ cisthefuzzycomplement.

Example2. ConsidertheapproximationgiveninExample 1,where

HΓ ( e1 0.4 , x1,1)= { u1 0.6ej2Π(0.5),0.1ej2Π(0),0.2ej2Π(0.4) , u2 0.5ej2Π(0.8),0.4ej2Π(0.7),0.3ej2Π(1) }

Byusingthecomplexneutrosophiccomplementandthefuzzycomplement,weobtainthecomplementof theapproximationgivenby

HΓ ( e1 0.6 , x1,1)= { u1 0.2ej2Π(0.5),0.9ej2Π(1),0.6ej2Π(0.6) , u2 0.3ej2Π(0.2),0.6ej2Π(0.3),0.5ej2Π(0 }

Proposition1. If (H, A)Γ isaFP-CNSESoverU,then (H, A)c Γ c = (H, A)Γ

FromDefinition 10,wehave (H, A)c Γ = a, u Hc Γ (a)(

) : u ∈ U : a ∈¬A ,where, Hc Γ (a)(u)

THc

(a) (

, IHc

, FHc

(

) (

) = pHc Γ (a) (u) e jµHcΓ (a) (u) , qHc Γ (a) (u) e jνHcΓ (a) (u) , rHc Γ (a) (u) e jωHcΓ (a) (u) , = rHΓ (a) (u) ej(2π µHΓ (a) (u)) , (1 qHΓ (a) (u)) ej(2π νHΓ (a) (u)) , pHΓ (a) (u) ej(2π ωHΓ (a) (u)) ,and ¬A ⊆ Γc × X × O Thus, ((H, A)c Γ )c = a, u (Hc Γ )c (a)(u ) : u ∈ U : a ∈¬(¬A) ,where (Hc Γ )c (a)(u)= rHc Γ (a) (u).e j(2π µHcΓ (a) (u)) , (1 qHc Γ (a) (u)).e j(2π νHcΓ (a) (u)) , pHc Γ (a) (u) .e j(2π ωHcΓ (a) (u)) ,

Symmetry 2019, 11,382 6of19
Proof.
u
=
Γ
u)
Γ (a) (u)
Γ
a
u

= pHΓ (a) (u) ej 2π (2π µHΓ (a) (u)) , 1 (1 qHΓ (a) (u)) ej 2π (2π νHΓ (a) (u)) , rHΓ (a) (u).ej 2π (2π ωHΓ (a) (u)) = pHΓ (a) (u).ejµHΓ (a) (u) , qHΓ (a) (u).ejνHΓ (a) (u) , rHΓ (a) (u).ejωHΓ (a) (u) , = THΓ (a) (u), IHΓ (a) (u), FHΓ (a) (u) , = HΓ (a)(u), and ¬(¬A) ⊆ (Γc )c × X × O andsince (Γc )c = Γ, thiscompletestheproof.

WeintroducethedefinitionofunionandintersectionoperationsoftwoFP-CNSESsalongwithan illustrativeexampleandsomepropositionsonthesetwooperations. Let (H, A)Γ and (G, B)∆ betwoFP-CNSESsoverauniverse U,where (H, A)Γ = a, u HΓ (a)(u) : u ∈ U : a ∈ A and (G, B)∆ = b, u G∆ (b)(u) : u ∈ U : b ∈ B

Definition11. Theunionof (H, A)Γ and (G, B)∆,denotedby (H, A)Γ ∪ (G, B)∆,istheFP-CNSES (K, C)Θ suchthatCΘ = AΓ ∪ B∆ and Θ = Γ∪∆, ∪ isthefuzzyunion,and ∀ ∈ CΘ, ∀ u ∈ U,

pHΓ ( ) (u) ejµHΓ ( ) (u) , if ∈ AΓ B∆ pG∆ ( ) (u).ejµG∆ ( ) (u) , if ∈ B∆ AΓ (pHΓ ( ) (u) ∨ pG∆ ( ) (u)) ej(µHΓ ( ) (u)∨µG∆ ( ) (u)) , if ∈ AΓ ∩ B∆, IKΘ ( ) (u)= 

TKΘ ( ) (u)=

qHΓ ( ) (u) ejνHΓ ( ) (u) , if ∈ AΓ B∆ qG∆ ( ) (u).ejνG∆ ( ) (u) , if ∈ B∆ AΓ (qHΓ ( ) (u) ∧ qG∆ ( ) (u)) ej(νHΓ ( ) (u)∧νG∆ ( ) (u)) , if ∈ AΓ ∩ B∆,

rHΓ ( ) (u) ejωHΓ ( ) (u) , if ∈ AΓ B∆ rG∆ ( ) (u).ejωG∆ ( ) (u) , if ∈ B∆ AΓ (rHΓ ( ) (u) ∧ rG∆ ( ) (u)) ej(ωHΓ ( ) (u)∧ωG∆ ( ) (u)) , if ∈ AΓ ∩ B∆, where ∨ = max,and ∧ = min. Definition12. Theintersectionof (H, A)Γ and (G, B)∆,denotedby (H, A)Γ ∩ (G, B)∆,istheFP-CNSES (K, C)Θ suchthatCΘ = AΓ ∪ B∆ and Θ = Γ∩∆, ∩ isthefuzzyintersection,and ∀ ∈ CΘ, ∀ u ∈ U, TKΘ ( ) (u)=

FKΘ ( ) (u)=  

pHΓ ( ) (u) ejµHΓ ( ) (u) , if ∈ AΓ B∆ pG∆ ( ) (u).ejµG∆ ( ) (u) , if ∈ B∆ AΓ (pHΓ ( ) (u) ∧ pG∆ ( ) (u)) ej(µHΓ ( ) (u)∧µG∆ ( ) (u)) , if ∈ AΓ ∩ B∆, IKΘ ( ) (u)=

Symmetry 2019
7of19
, 11,382
    
     
    
      
      
      
qHΓ ( ) (u) ejνHΓ ( ) (u) , if ∈ AΓ B∆ qG∆ ( ) (u).ejνG∆ ( ) (u) , if ∈ B∆ AΓ (qHΓ ( ) (u) ∨ qG∆ ( ) (u)) ej(νHΓ ( ) (u)∨νG∆ ( ) (u)) , if ∈ AΓ ∩ B∆, FKΘ ( ) (u)=
rHΓ ( ) (u).ejωHΓ ( ) (u) , if ∈ AΓ B∆ rG∆ ( ) (u) ejωG∆ ( ) (u) , if ∈ B∆ AΓ (rHΓ ( ) (u) ∨ rG∆ ( ) (u)) ej(ωHΓ ( ) (u)∨ωG∆ ( ) (u)) , if ∈ AΓ ∩ B∆, where ∨ = max,and ∧ = min.

Example3. ConsiderExample1.Let Γ = e1 0.3 , e2 0.1 , e3 0.9 beafuzzysubsetof E, and ∆ = e1 0.4 , e2 0.8 , e3 0.2 be anotherfuzzysubsetoverE.

AΓ = e1 0.3 , x1,1 , e2 0.1 , x2,1 , e3 0.9 , x2,0 , BΥ = e1 0.4 , x2,0 , e2 0.8 , x2,1 , e3 0.2 , x1,0 .

Suppose (H, A)Γ and (G, B)∆ aretwoFP-CNSESsoverthesameUgivenby

(H, A)Γ = e1 0.3 , x1,1 , u1 0.4e2π(0.5) ,0.5e2π(0.6) ,0.8e2π(0.3) , u2 0.3e2π(0.8) ,0.7e2π(0.1) ,0.6e2π(0.7) , e2 0.1 , x2,1 , u1 0.7e2π(0.4) ,0.9e2π(0.3) ,0.4e2π(0.1) , u2 0.6e2π(0.3) ,0.2e2π(0.6) ,0.4e2π(0.7) , e3 0.9 , x2,0 , u1 0.4e2π(0.1) ,0.3e2π(0.4) ,0.5e2π(0.9) , u2 0.6e2π(0.2) ,0.9e2π(0.8) ,0.1e2π(0.3) , and (G, B)∆ = e1 0.4 , x2,0 , u1 0.9e2π(0.5) ,0.5e2π(0.8) ,0.4e2π(0.4) , u2 0.1e2π(0.9) ,0.7e2π(0.2) ,0.6e2π(0.7) , e2 0.8 , x2,1 , u1 0.7e2π(0.6) ,0.4e2π(0.3) ,0.6e2π(0.4) , u2 0.7e2π(0.9) ,0.2e2π(0.4) ,0.1e2π(0.6) , e3 0.2 , x1,0 , u1 0.7e2π(0.4) ,0.2e2π(0.5) ,0.9e2π(0.3) , u2 0.1e2π(0.5) ,0.3e2π(0.7) ,0.9e2π(0.8)

Byusingthecomplexneutrosophicunionandthefuzzyunion(maximum),wehave

(H, A)Γ ∪ (G, B)∆ = e1 0.3 , x1,1 , u1 0.4e2π(0.5) ,0.5e2π(0.6) ,0.8e2π(0.3) , u2 0.3e2π(0.8) ,0.7e2π(0.1) ,0.6e2π(0.7) , e2 0.8 , x2,1 , u1 0.7e2π(0.6) ,0.4e2π(0.3) ,0.4e2π(0.1) , u2 0.7e2π(0.9) ,0.2e2π(0.4) ,0.1e2π(0.6) , e3 0.9 , x2,0 , u1 0.4e2π(0.1) ,0.3e2π(0.4) ,0.5e2π(0.9) , u2 0.6e2π(0.2) ,0.9e2π(0.8) ,0.1e2π(0.3) , e1 0.4 , x2,0 , u1 0.9e2π(0.5) ,0.5e2π(0.8) ,0.4e2π(0.4) , u2 0.1e2π(0.9) ,0.7e2π(0.2) ,0.6e2π(0.7) , e3 0.2 , x1,0 , u1 0.7e2π(0.4) ,0.2e2π(0.5) ,0.9e2π(0.3) , u2 0.1e2π(0.5) ,0.3e2π(0.7) ,0.9e2π(0.8)

Byusingthecomplexneutrosophicintersectionandthefuzzyintersection(minimum),wehave

(H, A)Γ ∩ (G, B)∆ = e1 0.3 , x1,1 , u1 0.4e2π(0.5) ,0.5e2π(0.6) ,0.8e2π(0.3) , u2 0.3e2π(0.8) ,0.7e2π(0.1) ,0.6e2π(0.7) , e2 0.8 , x2,1 , u1 0.7e2π(0.4) ,0.9e2π(0.3) ,0.6e2π(0.4) , u2 0.6e2π(0.3) ,0.2e2π(0.6) ,0.4e2π(0.7) , e3 0.9 , x2,0 , u1 0.4e2π(0.1) ,0.3e2π(0.4) ,0.5e2π(0.9) , u2 0.6e2π(0.2) ,0.9e2π(0.8) ,0.1e2π(0.3) , e1 0.4 , x2,0 , u1 0.9e2π(0.5) ,0.5e2π(0.8) ,0.4e2π(0.4) , u2 0.1e2π(0.9) ,0.7e2π(0.2) ,0.6e2π(0.7) , e3 0.2 , x1,0 , u1 0.7e2π(0.4) ,0.2e2π(0.5) ,0.9e2π(0.3) , u2 0.1e2π(0.5) ,0.3e2π(0.7) ,0.9e2π(0.8)

Symmetry 2019, 11,382 8of19
Let
Γ
and
Θ
1. ((
A)Γ ∪ (G, B)∆ )∩(S, W)Θ =((H, A)Γ ∩ (S, W)Θ )∪((G, B)∆ ∩(S, W)Θ ); 2. ((H, A)Γ ∩ (G, B)∆ )∪(S, W)Θ =((H, A)Γ ∪ (S, W)Θ )∩((G, B)∆ ∪(S, W)Θ ) Proof. (1)Assumethat ((H, A)Γ ∪ (G, B)∆ )=(Q, R)Π, where RΠ = AΓ ∪ B∆ and Π = Γ∪∆, (L, D)Φ = (Q, R)Π ∩(S, W)Θ where DΦ = RΠ ∪ WΘ and Φ = Π∩Θ.Thus, Φ =(Γ∪∆)∩Θ =(Γ∩Θ)∪(∆∩Θ), sincethedistributivepropertyisvalidforfuzzysets.
Proposition2.
(H, A)
, (G, B)∆
(S, W)
beanythreeFP-CNSESsoverauniverseU.Then,
H,

Let (L, D)Φ = , u LΦ ( )(u ) : u ∈ U : ∈ D ,where LΦ ( )(u)= TLΦ ( ) (u), ILΦ ( ) (u), FLΦ ( ) (u) . Weconsiderthecasewhen ∈ AΓ ∩ B∆ ∩ WΘ astheothercasesaretrivial. Then,wehave, TLΦ ( ) (u)= T(QΠ ( )∩SΘ ( )) (u)= T(HΓ ( )∪G∆ ( ))∩SΘ ( ) (u), = min(max(pHΓ ( ) (u), pG∆ ( ) (u)), pSΘ ( ) (u)) ejmin(max(µHΓ ( ) (u),µG∆ ( ) (u)),µSΘ ( ) (u)) , = max(min(pHΓ ( ) (u), pSΘ ( ) (u)), min(pG∆ ( ) (u), pSΘ ( ) (u))) ejmax(min(µHΓ ( ) (u),µSΘ ( ) (u)),min(µG∆ ( ) (u),µSΘ ( ) (u))) , = T(HΓ ( )∩SΘ ( ))∪(G∆ ( )∩SΘ ( )) (u), whichimpliesthat T(HΓ ( )∪G∆ ( ))∩SΘ ( ) (u)= T(HΓ ( )∩SΘ ( ))∪(G∆ ( )∩SΘ ( )) (u). Theproofsfortheidentityandfalsitytermsfollowsimilarly.Therefore, ((H, A)Γ ∪ (G, B)∆ )∩(S, W)Θ =((H, A)Γ ∩ (S, W)Θ )∪((G, B)∆ ∩(S, W)Θ ) (2)TheproofissimilartothatinPart(1)andthereforeisomitted.

4.MAPPINGONFP-CNSESs

Inthissection,weintroducethenotionofamappingonfuzzyparameterizedcomplex neutrosophicsoftexpertclasses.fuzzyparameterizedcomplexneutrosophicsoftexpertclasses arecollectionsofFP-CNSESs.Wedefinethefuzzyparameterizedcomplexneutrosophicsoftexpert imagesandfuzzyparameterizedcomplexneutrosophicsoftexpertinverseimagesofFP-CNSESs. Wegivesomeoperationsandpropertiesrelatedwiththisconcept.

Definition13. Let U beauniverseset, E beasetofparameters, FZ(E) denoteallfuzzysubsetsof E,where Γ ⊂ FZ(E), X beasetofexperts,and O = {1 = agree,0 = disagree} asetofopinions.Let Y = Γ × X × O. Then,thecollectionofallFP-CNSESsover U withparametersfrom Y iscalledafuzzyparameterizedcomplex neutrosophicsoftexpertclassandisdenotedas (U, Y).

Definition14. Let (U, Y) and (V, Y ) befuzzyparameterizedcomplexneutrosophicsoftexpertclasses.Let r : U → Vands : Y → Y bemappings.Then,amappingF : (U, Y) → (V, Y ) isdefinedasfollows: ForaFP-CNSES (H, A)Γ in (U, Y), (F (H, A)Γ , M),where M = s(Y) ⊆ Y isaFP-CNSESin (V, Y ) obtainedasfollows:

F (H, A)Γ (β)(v) =    u∈r 1(v) α∈s 1(β)∩A HΓ (α) (u) ifr 1 (v) ands 1 (β) ∩ A = ∅, (0,1,1) otherwise.

For u ∈ r 1 (v), β ∈ M ⊆ Y , v ∈ V and ∀ α ∈ s 1 (β) ∩ A, (F (H, A)Γ , M) iscalledafuzzy parameterizedcomplexneutrosophicsoftexpertimageoftheFP-CNSES (H, A)Γ.If M = Y , thenweshall write (F (H, A)Γ , M) asF (H, A)Γ

Definition15. Let (U, Y) and (V, Y ) betwofuzzyparameterizedcomplexneutrosophicsoftexpertclasses. Letr : U → Vands : Y → Y bemappings.Then,amappingF 1 : (V, Y ) → (U, Y) isdefinedasfollows: ForaFP-CNSES (G, B)∆ in (V, Y ), (F 1 (G, B)∆ , N), where N = s 1 (B) , isaFP-CNSESin (U, Y) obtainedasfollows: F 1 (G, B)∆ (α)(u) = G∆ (s (α))(r (u)) ifs (α) ∈ B, (0,1,1) otherwise,

For α ∈ N ⊆ Y and u ∈ U (F 1 (G, B)∆, N) iscalledafuzzyparameterizedcomplexneutrosophicsoft expertinverseimageoftheFP-CNSES (G, B)∆.IfN = Y, wewrite (F 1 (G, B)∆, N) asF 1(G, B)∆

Symmetry 2019, 11,382 9of19

Definition16. Let F : (U, Y) → (V, Y ) beamappingand (H, A)Γ, (H , A )∆ beFP-CNSESsin (U, Y) Then,for β ∈ Y , ν ∈ V,theunionandintersectionofthefuzzyparameterizedcomplexneutrosophicsoftexpert imagesF(H, A)Γ andF(G, B)∆ aredefinedasfollows.

F (H, A)Γ ∪F H , A ∆ (β)(ν) = F (H, A)Γ (β)(ν) ∪F H , A ∆ (β)(ν) ,

F (H, A)Γ ˜ ∩F H , A ∆ (β)(ν) = F (H, A)Γ (β)(ν) ∩F H , A ∆ (β)(ν) , where ˜ ∪ and ˜ ∩ denotefuzzyparameterizedcomplexneutrosophicsoftexpertunionandintersectionoffuzzy parameterizedcomplexneutrosophicsoftexpertimagesin (V, Y )

Definition17. Let F : (U, Y) → (V, Y ) beamappingand (G, B)Σ, (G , B )Ω FP-CNSESsin (V, Y ).Then, for α ∈ Y, u ∈ U,theunionandintersectionofthefuzzyparameterizedcomplexneutrosophicsoftexpert inverseimagesF 1(G, B)Σ andF 1(G , B )Ω aredefinedasfollows.

F 1 (G, B)Σ ∪F 1 G , B Ω (α)(u) = F 1 (G, B)Σ (α)(u) ∪F 1 G , B Ω (α)(u) , (F 1(G, B)Σ ∩F 1(G , B )Ω )(α)(u)= F 1(G, B)Σ (α)(u)∩F 1(G , B )Ω (α)(u), where ∪ and ∩ denotefuzzyparameterizedcomplexneutrosophicsoftexpertunionandintersectionoffuzzy parameterizedcomplexneutrosophicsoftexpertinverseimagesin (U, Y).

Proposition3. Let F : (U, Y) → (V, Y ) beamapping.Then,forFP-CNSESs (H, A)Γ and (H , A )∆ inthe fuzzyparameterizedcomplexneutrosophicsoftexpertclass (U, Y),wehave:

1. F(φ)= φ.

2. F(ψ)= ψ

3. F ((H, A)Γ ∪ (H , A )∆ ) = F (H, A)Γ ∪F (H , A )∆

4. F ((H, A)Γ ∩ (H , A )∆ ) ⊆ F (H, A)Γ ∩F (H , A )∆.

5. If (H, A)Γ ⊆ (H , A )∆,thenF (H, A)Γ ⊆ F (H , A )∆

Proof. TheproofisstraightforwardbyDefinitions 14 and 16

Proposition4. Let F : (U, Y) → (V, Y ) beamapping.Then,forFP-CNSESs (G, B)Σ and (G , B )Ω inthe fuzzyparameterizedcomplexneutrosophicsoftexpertclass (V, Y ),wehave:

1. F 1(φ)= φ.

2. F 1( ˜ ψ)= ˜ ψ 3. F 1 ((G, B)Σ ∪ (G , B )Ω ) = F 1 (G, B)Σ ∪F 1 (G , B )Ω

Symmetry 2019
10of19
, 11,382
Inthissection,wepresentanapplicationofFP-CNSESinadecisionmakingproblemby consideringthefollowingexample. Example4. Supposethatanengineeringcompanywishestoevaluatetwokindsofacertainproductfrom amanufacturerandchoosethemostsuitableone.Supposethatthecompanytakestheopinionofitsexperts concerningthesetwokindsofproductontwophases:oncebeforeusingtheproductsandagainaftertryinga sampleofeachofthetwokindsoftheproduct.Supposethat U =
u
u2} istheuniverseconsistingofthetwo alternatives(thetwokindsoftheproduct)and E = {e1, e2, e3} istheattributesset,where
e2 standsfor“functional”and e3 standsfor“durable”.Theattributes
e2 and e3 areimportant
. 4. F 1 ((G, B)Σ ˜ ∩ (G , B )Ω ) = F 1 (G, B)Σ ˜ ∩F 1 (G , B )Ω 5. If (G, B)Σ ⊆ (G , B )Ω,thenF 1 (G, B)Σ ⊆ F 1 (G , B )Ω Proof. TheproofisstraightforwardbyDefinitions 15 and 17 5.AnApplicationofFuzzyParameterizedComplexNeutrosophicSoftExpertSet
{
1,
e1 standsfor“easy touse”,
e1,

withdegrees0.3,0.6and0.8,respectively.Thatis,thefuzzysubsetofparametersis Γ = e1 0.3 , e2 0.6 , e3 0.8 Let X = {x1, x2} beasetofexperts.Now,theteamofexpertsarerequestedtomakeadecisionaboutthemost desirablealternativebasedonthegoalsandtheconstraintsaccordingtoachosensubset Γ of FZ(E) toconstruct aFP-CNSES.

(H, A)Γ = e1 0.3 , x1,1 , u1 0.5e2π(0.4) ,0.2e2π(0.4) ,0.1e2π(0.2) , u2 0.6e2π(0.7) ,0.5e2π(0.4) ,0.1e2π(1) , e1 0.3 , x2,1 , u1 0.6e2π(0.5) ,0.6e2π(0.4) ,0.1e2π(0.3) , u2 0.9e2π(0.8) ,0.5e2π(0.6) ,0.5e2π(0.4) , e2 0.6 , x1,1 , u1 0.4e2π(0.3) ,0.7e2π(0.8) ,0.8e2π(0.7) , u2 0.4e2π(0.9) ,0.2e2π(0.5) ,0.1e2π(0.2) , e2 0.6 , x2,1 , u1 0.8e2π(0.9) ,0.4e2π(0.3) ,0.7e2π(0.4) , u2 0.5e2π(0.4) ,0.8e2π(0.6) ,0.6e2π(0.2) , e3 0.8 , x1,1 , u1 0.2e2π(0.2) ,0.3e2π(0.3) ,0.7e2π(0.6) , u2 0.5e2π(0.2) ,0.7e2π(0.2) ,0.8e2π(0.2) , e3 0.8 , x2,1 , u1 0.8e2π(0.1) ,0.3e2π(0.2) ,0.7e9π(0.2) , u2 0.1e2π(0.6) ,0.2e2π(0.4) ,0.6e2π(0.8) , e1 0.3 , x1,0 , u1 0.5e2π(0.5) ,0.5e2π(0.4) ,0.9e2π(0.3) , u2 0.9e2π(0.8) ,0.7e2π(0.8) ,0.5e2π(0.7) , e1 0.3 , x2,0 , u1 0.4e2π(0.6) ,0.7e2π(0.4) ,0.7e2π(0.8) , u2 0.5e2π(0.4) ,0.5e2π(0.4) ,0.3e2π(0.5) , e2 0.6 , x1,0 , u1 0.3e2π(0.2) ,0.6e2π(0.2) ,0.9e2π(0.2) , u2 0.7e2π(0.4) ,0.5e2π(0.8) ,0.6e2π(0.8) , e2 0.6 , x2,0 , u1 0.3e2π(0.5) ,0.3e2π(0.1) ,0.9e2π(0.3) , u2 0.3e2π(0.7) ,0.8e2π(0.7) ,0.7e2π(0.6) , e3 0.8 , x1,0 , u1 0.5e2π(0.4) ,0.4e2π(0.5) ,0.4e2π(0.3) , u2 0.8e2π(0.2) ,0.3e2π(0.2) ,0.5e2π(0.2) , e3 0.8 , x2,0 , u1 0.4e2π(0.6) ,0.2e2π(0.3) ,0.1e2π(0.6) , u2 0.3e2π(0) ,0.6e2π(0.4) ,0.3e2π(0.1)

IntheFP-CNSES (H, A)Γ above,theamplitudetermsofmembership,non-membershipand indeterminatemembershiprepresenttheopinionsoftheexpertsinphaseone(beforeusingthe products),whilethephasetermsofmembership,non-membership,andindeterminacyrepresentthe opinionsoftheexpertsinthesecondphase(aftertryingasampleofeachofthetwokindsofthe product).Thus,theamplitudetermofthemembershipinthefirstphaseandthephasetermofthe membershipinthesecondphaseformacomplex-valuedtruthmembershipfunctionoftheFP-CNSES (H, A)Γ.Similarly,theamplitudetermofnon-membershipinphaseoneandthephasetermof non-membershipinthesecondphaseformacomplex-valuedfalsitymembershipfunction.Inaddition, theamplitudetermofundecidednessinthefirstphaseandthephasetermofindeterminacyinthe secondphaseformthecomplex-valuedindeterminatemembershipfunction.Now,ourproblemisto selectthemostdesirablekindoftheproducttotheengineeringcompany.

Tosolvethisdecisionmakingproblem,weusetheFP-CNSES (H, A)Γ togetherwithageneralized algorithm.Thisalgorithmconvertsthefuzzyparameterizedcomplexneutrosophicsoftexpertvalues (FP-CNSEVs)tofuzzyparameterizedsingle-valuedneutrosophicsoftexpertvalues(FP-SVNSEVs) usingapracticalformulawhichgiveadecision-makingwithasimplecomputationalprocesswithout theneedtocarryoutdirectedoperationsoncomplexnumbers.Inthisformula,wegiveaweight totheamplitudeterms(aweighttotheexperts’opinionsbeforeusingtheproducts)bymultiplying theweightvectortoeachamplitudeterm.Similarlywegiveaweighttothephaseterms(aweight totheexperts’opinionsafterusingtheproducts)bymultiplyingtheweightvectortoeachphase term.Then,wecombinethevaluesoftheweightedamplitudetermsandphasetermstoobtain theFP-SVNSEVswhichrepresenttheexperts’opinionsonbothphasestogether.Thus,afterdoing thesesimplecalculationstoallmembershipfunctionsoftheFP-CNSES (H, A)Γ,weproceedto thefinaldecisionusingthefuzzyparameterizedsinglevaluedneutrosophicsoftexpertmethod (FPSVNSEM)[18].

Thegeneralizedalgorithmisasfollows.

Symmetry
11of19
2019, 11,382

Algorithm1: Fuzzyparameterizedcomplexneutrosophicsoftexpertmethod(FP-CNSEM).

1.InputtheFP-CNSES (H, A)Γ

2.ConverttheFP-CNSES (H, A)Γ totheFPSVNSES (H, A)Γ byobtainingtheweighted aggregationvaluesof T HΓ (ai ) (uj ), I HΓ (ai ) (uj ) and F HΓ (ai ) (uj ),∀ai ∈ A and ∀uj ∈ U asthe followingformulas:

THΓ (ai ) (uj )= w1 pHΓ (ai ) (uj )+ w2(1/2π)µHΓ (ai ) (uj ), IHΓ (ai ) (uj )= w1qHΓ (ai ) (uj )+ w2(1/2π)νHΓ (ai ) (uj ), FHΓ (ai ) (uj )= w1rHΓ (ai ) (uj )+ w2(1/2π)ωHΓ (ai ) (uj ), where pHΓ (ai ) (uj ), qHΓ (ai ) (uj ), rHΓ (ai ) (uj ) and µHΓ (ai ) (uj ), νHΓ (ai ) (uj ), ωHΓ (ai ) (uj ) arethe amplitudeandphasetermsintheFP-CNSES (H, A)Γ,respectively. T HΓ (ai ) (uj ), I HΓ (ai ) (uj ) and F HΓ (ai ) (uj ) arethetruth-membershipfunction,indeterminacy-membershipfunctionand falsity-membershipfunctionintheFP-SVNSES (H, A)Γ,respectively,and w1, w2 arethe weightsfortheamplitudeterms(thefirstdecisionprocess)andthephaseterms(thesecond decisionprocess),respectively,where w1 and w2 ∈ [0,1] and w1 + w2 = 1.

3.Findthevaluesof cij = T HΓ (ai ) (uj ) I HΓ (ai ) (uj ) F HΓ (ai ) (uj ), ∀uj ∈ U and ∀ai ∈ A

4.Computethescoreofeachelement uj ∈ U bythefollowingformulas: Kj = ∑ x∈X

n ∑ i=1 cij (µΓ (ei )), Sj = ∑ x∈X

n ∑ i=1 cij (µΓ (ei ))

fortheagreeFP-SVNSESanddisagreeFP-SVNSES,where µΓ (ei ) isthecorresponding membershipfunctionofthefuzzyset Γ, X isthesetoftheexpertsand n isthenumberofthe parameters(attributes).

5.Findthevaluesofthescore rj = Kj Sj foreachelement uj ∈ U

6.Determinethevalueofthehighestscore m = maxuj ∈U {rj }.Then,thedecisionistochoose element uj astheoptimalsolutiontotheproblem.Iftherearemorethanoneelementswith thehighest rj score,thenanyoneofthoseelementscanbechosenastheoptimalsolution.

Then,wecanconcludethattheoptimalchoicefortheteamoftheexpertsistoselectthekind uj asthemostdesirablekindoftheproducttothecompany.

Now,toconverttheFP-CNSES (H, A)Γ totheFP-SVNSES (H, A)Γ,supposethattheweight vectorfortheamplitudetermsis w1 = 0.3 andtheweightvectorforthephasetermsis w2 = 0.7 and obtaintheweightedaggregationvaluesof T HΓ (ai ) (uj ), I HΓ (ai ) (uj ) and F HΓ (ai ) (uj ),∀ai ∈ A and ∀uj ∈ U Toillustratethisstep,wecalculate T HΓ (a1) (u1), I HΓ (a1) (u1) and F HΓ (a1) (u1),suchthat a1 =( e1 0.3 , x1,1) asshownbelow: T HΓ ( e1 0.3 ,x1,1) (u1)= w1 pHΓ ( e1 0.3 ,x1,1) (u1)+ w2(1/2π)µHΓ ( e1 0.3 ,x1,1) (u1) = 0.3(0.5)+ 0.7(1/2π)(2π)(0.4) = 0.43 I HΓ ( e1 0.3 ,x1,1) (u1)= w1qHΓ ( e1 0.3 ,x1,1) (u1)+ w2(1/2π)νHΓ ( e1 0.3 ,x1,1) (u1) = 0.3(0.2)+ 0.7(1/2π)(2π)(0.4) = 0.34

Symmetry 2019, 11,382 12of19

F HΓ ( e1 0.3 ,x1,1) (u1)= w1r HΓ ( e1 0.3 ,x1,1) (u1)+ w2(1/2π)ωHΓ ( e1 0.3 ,x1,1) (u1) = 0.3(0.1)+ 0.7(1/2π)(2π)(0.2) = 0.17.

Then,theFP-SVNSEV (THΓ (a1) (u1), IHΓ (a1) (u1), FHΓ (a1) (u1))=(0.43,0.34,0.17)

Inthesamemanner,wecalculatetheothersFP-SVNSEVs, ∀a ∈ A and ∀u ∈ U asinTable 1

Table1. Valuesof (H, A)Γ u1 u2

e1 0.3 , x1,1 0.43,0.34,0.17 0.67,0.43,0.73 e1 0.3 , x2,1 0.53,0.46,0.24 0.83,0.57,0.53 e2 0.6 , x1,1 0.33,0.77,0.73 0.75,0.41,0.71 e2 0.6 , x2,1 0.87,0.33,0.49 0.43,0.66,0.32 e3 0.8 , x1,1 0.20,0.30,0.63 0.29,0.35,0.38 e3 0.8 , x2,1 0.31,0.23,0.35 0.45,0.34,0.74 e1 0.3 , x1,0 0.50,0.43,0.48 0.83,0.77,0.64 e1 0.3 , x2,0 0.54,0.49,0.77 0.43,0.43,0.44 e2 0.6 , x1,0 0.23,0.32,0.41 0.49,0.71,0.74 e2 0.6 , x2,0 0.44,0.16,0.48 0.58,0.73,0.63 e3 0.8 , x1,0 0.43,0.47,0.33 0.38,0.23,0.29 e3 0.8 , x2,0 0.54,0.27,0.45 0.09,0.46,0.16

Tables 2 and 3 givethevaluesof cij = T HΓ (ai ) (uj ) I HΓ (ai ) (uj ) F HΓ (ai ) (uj ) andthescoreofeach element uj ∈ U foragreeFP-SVNSESanddisagreeFP-SVNSES,respectively.

Table2. NumericaldegreeofagreeFP-SVNSES.

Uu1 u2 e1 0.3 , x1 0.08 0.49 e1 0.3 , x2 0.17 0.27 e2 0.6 , x1 1.17 0.37 e2 0.6 , x2 0.05 0.55 e3 0.8 , x1 0.73 0.44 e3 0.8 , x2 0.27 0.63

Kj = ∑ x∈X

3 ∑ i=1 cij (µΓ (ei )) K1 = 1.547 K2 = 1.636

Table3. NumericaldegreefordisagreeFP-SVNSES.

Uu1 u2

e1 0.3 , x1 0.41 0.58 e1 0.3 , x2 0.72 0.44 e2 0.6 , x1 0.50 0.96 e2 0.6 , x2 0.20 0.78 e3 0.8 , x1 0.37 0.14 e3 0.8 , x2 0.18 0.53

Sj = ∑ x∈X

3 ∑ i=1 cij(µΓ (ei )) S1 = 1.199 S2 = 1.886

Symmetry 2019, 11,382 13of19

Let Kj and Sj representthescoreofeachnumericaldegreefortheagreeFP-SVNSESanddisagree FP-SVNSES,respectively.ThesevaluesaregiveninTable 4.

Table4. Thescore rj = Kj Sj Kj = ∑ x∈X

3 ∑ i=1 cij(µΓ (ei )) Sj = ∑ x∈X

3 ∑ i=1 cij(µΓ (ei )) rj = Kj Sj

K1 = 1.547 S1 = 1.199 0.348 K2 = 1.636 S2 = 1.8860.25

Thus, m = maxuj ∈U {rj } = r2 .Therefore,theteamofexpertsadviseselectingthekind u2 ofthis productasadesirablealternative.

6.ComparisonbetweenFP-CNSESandOtherExistingMethods

Inthissection,wecompareourproposedFP-CNSESmodeltoFP-SVNSES[18]andFP-IFSES[17], whicharegeneralizationsofFP-SES[15]andFP-FSES[16].

TorevealthesignificanceofourproposedFP-CNSEScomparedtoFP-SVNSESandFP-IFSES, letusconsiderExample4above.Inthisexample,weapplytheFP-CNSEStohandleadecision-making problem,whichconsistsoftwodecisionprocesses.Ourproposedmodelisappliedtoboththedecision processesbyconsideringtheopinionsinprocessoneasamplitudetermsoftruthmembership,falsity membershipandindeterminacymembership,andsettingtheseconddecisionprocessasphaseterms oftruthmembership,falsitymembership,andindeterminacy.Thus,bothdecisionprocessesforma FP-CNSESaswhole.

Ontheotherhand,whenweapplytheFP-IFSEStobothprocesses,ittellsusonlyaboutthe truthmembershipandfalsitymembershipinthefirstdecisionprocess,butcannottellanythingabout theundecidedness.Thesituationissimilarintheseconddecisionprocess.Thus,FP-IFSESfailsto handlethissituation.Now,whenweapplytheFP-SVNSES,ittellsaboutthetruthmembership,falsity membershipandindeterminacymembershipinthefirstround,and,similarly,ittellsaboutthesecond roundbutitcannotdescribebothdecisionprocessessimultaneously.

Thus,bothFP-SVNSESandFP-IFSEScannotdirectlysolvesuchadecision-makingproblem withfuzzyparameterizedcomplexneutrosophicsoftexpertinformation.Incontrast,theFP-CNSES candirectlyaddressthefuzzyparameterizedsinglevaluedneutrosophicsoftexpertproblem, sincetheFP-SVNSESisaspecialcaseofFP-CNSESandcanbeeasilyrepresentedintheformof FP-CNSES.Inotherwords,theFP-SVNSESisaFP-CNSESwithphasetermsequalzeros.Forexample, theFP-SVNSEV(0.2,0.4,0.6)canberepresentedas (0.2ej2Π(0),0.4ej2Π(0),0.6ej2Π(0) ) bymeansof FP-CNSES.Furthermore,ourmethodisapplicableforfuzzyparameterizedintuitionisticfuzzysoft expertproblem,sinceFP-IFSESisaspecialcaseofFP-SVNSESandconsequentlyofFP-CNSES. Forexample,thefuzzyparameterizedintuitionisticfuzzysoftexpertvalue(0.1,0.6)canbe(0.1,0.3, 0.6)bymeansofFP-SVNSESandhencecanbe (0.1ej2Π(0),0.3ej2Π(0),0.6ej2Π(0) ) bymeansofFP-CNSES, sincethesumofthedegreesofmembership,nonmembershipandindeterminacyofanintuitionistic fuzzyvalueequalto1.Notethattheindeterminacydegreeinintuitionisticfuzzysetisprovidedby defaultandcannotbedefinedaloneunliketheSVNSwheretheindeterminacyisdefinedindependently andquantifiedexplicitly.

TheadvantageofusingFP-CNSESmanifestsinrepresentinginformationoftwodimensions foroneobjectinthesametime(i.e.,theexpert’stimecanbesavedbyconstructing/buildingone set(FP-CNSES)insteadoftwosets(FP-SVNSESs),nottomentionreducingtheamountofboth mathematicalcalculationsandinvestigationofseveraloperatorsinincorporatingtwoFP-SVNSESsto findtheoptimalsolution).ApracticalformulaisemployedtoconverttheFP-CNSEStotheFP-SVNSES, whichgivesadecision-makingwithasimplecomputationalprocesswithouttheneedtocarryout directedoperationsoncomplexnumbers.

Symmetry 2019,
,382 14of19
11

7.WeightedFuzzyParameterizedComplexNeutrosophicSoftExpertSet

Expertsopinionsarevitalforanydecisionmakingprocessasmostreal-lifesituationsdeal withelementsandparametersthataresubjective,biasedandhavethepotentialtobedistortedand interpreteddifferentlybydifferentparties.Eachexpertmighthavehis/herownthought,whichdiffers fromothersinvariousaspectsbutalloftheexpertsshouldhaveacommongoaltoreachthefinal destination.Moreover,asthedomainsofexpertiseofdifferentexpertsaredifferent,oneexpertmay bemoreconfidentonhis/heropinionthantheotheronthesamesetofattributes.Forthistypeof environment,equalweightsassignmenttodifferentexpertsmayleadtoimproperandbiasedsolution. Feelingtheneedofprioritizingdifferentexpertsmotivatesustodevelopanewideaforassigning relativeweighttoeachexpertbyestablishinganovelnotioncalledweightedfuzzyparameterized complexneutrosophicsoftexpertset(WFP-CNSES).Therelativeweightisassignedtoeachofthe expertswherethechoiceoftheexpertsmaynotbeofequalimportance.

Thisnewmathematicalframeworkreducesthechanceofunfairnessinthedecisionmaking processandbringsmorecredibilitytothefinaldecision.

Webeginthissectionbyfirstproposingtheconceptoftheweightedfuzzyparameterized single-valuedneutrosophicsoftexpertset(WFP-SVNSES).

Definition18. Let U beauniverseset, E beasetofparameters, I E denoteallfuzzysubsetsof E, X bea setofexperts, I X denotesallfuzzysubsetsof X and O = {1 = agree,0 = disagree} asetofopinions. Let Z = Ψ × W × O and A ⊆ Z where Ψ ⊂ I E and W ⊂ I X .Apair ( f , A, )Ψ,W iscalledaweightedfuzzy parameterizedsingle-valuedneutrosophicsoftexpertsetoverU,wherefisamappinggivenby fΨ,W : A → SVN(U), andSVN(U) denotesthesetofallsingle-valuedneutrosophicsubsetsofU.

WethengeneralizetheWFP-SVNSESbyestablishingtheconceptoftheweightedfuzzy parameterizedcomplexneutrosophicsoftexpertset(WFP-CNSES),whichisactuallyanextended versionofWFP-SVNSES,onthecomplexspace.

Definition19. Let U beauniverseset, E beasetofparameters, FZ(E) denoteallfuzzysubsetsof E, X bea setofexperts, FZ(X) denotesallfuzzysubsetsof X and O = {1 = agree,0 = disagree} asetofopinions. Let Y = Γ × W × O and A ⊆ Y where Γ ⊂ FZ(E) and W ⊂ FZ(X) .Apair (H, A, )Γ,W iscalledaweighted fuzzyparameterizedcomplexneutrosophicsoftexpertset (WFP CNSES) over U,where H isamapping givenby HΓ,W : A → CNU , andCNU denotesthepowercomplexneutrosophicsetofU.

TheWFP-CNSES (H, A)Γ,W canbewrittenasthefollowingsetoforderedpairs: (H, A)Γ,W = a, u HΓ,W (a)(u ) : u ∈ U : a ∈ A ,where A ⊆ Γ × W × O = e µΓ (e) , x µW (x) , o : e ∈ E, x ∈ Xand o ∈ O , suchthat µΓ (e) and µW (x) arethecorresponding membershipfunctionsofthefuzzysets Γ and W,respectively.

FromDefinition19,itisclearthattheexpertsetintheWFP-CNSES (H, A)Γ,W isafuzzy set,wherethemembershipfunction µW (x) ofthefuzzyset W representsweightoftheexpert x, and µW (x) ∈ [0,1], ∀x ∈ X

Formoreillustration,weconsiderthefollowingexample.

Symmetry 2019, 11,382 15of19

Example5. ConsiderExample4.Supposethattheweightsfortheexperts x1 and x2 are 0.5 and 0.8,respectively. Then,thefuzzysubsetofexpertsis W = x1 0.5 , x2 0.8 andtheFP-CNSES (H, A)Γ inExample4isconvertedto theWFP-CNSES (H, A)Γ,W where,

(H, A)Γ,W = e1 0.3 , x1 0.5 ,1 , u1 0.5e2π(0.4) ,0.2e2π(0.4) ,0.1e2π(0.2) , u2 0.6e2π(0.7) ,0.5e2π(0.4) ,0.1e2π(1) , e1 0.3 , x2 0.8 ,1 , u1 0.6e2π(0.5) ,0.6e2π(0.4) ,0.1e2π(0.3) , u2 0.9e2π(0.8) ,0.5e2π(0.6) ,0.5e2π(0.4) , e2 0.6 , x1 0.5 ,1 , u1 0.4e2π(0.3) ,0.7e2π(0.8) ,0.8e2π(0.7) , u2 0.4e2π(0.9) ,0.2e2π(0.5) ,0.1e2π(0.2) , e2 0.6 , x2 0.8 ,1 , u1 0.8e2π(0.9) ,0.4e2π(0.3) ,0.7e2π(0.4) , u2 0.5e2π(0.4) ,0.8e2π(0.6) ,0.6e2π(0.2) , e3 0.8 , x1 0.5 ,1 , u1 0.2e2π(0.2) ,0.3e2π(0.3) ,0.7e2π(0.6) , u2 0.5e2π(0.2) ,0.7e2π(0.2) ,0.8e2π(0.2) , e3 0.8 , x2 0.8 ,1 , u1 0.8e2π(0.1) ,0.3e2π(0.2) ,0.7e9π(0.2) , u2 0.1e2π(0.6) ,0.2e2π(0.4) ,0.6e2π(0.8) , e1 0.3 , x1 0.5 ,0 , u1 0.5e2π(0.5) ,0.5e2π(0.4) ,0.9e2π(0.3) , u2 0.9e2π(0.8) ,0.7e2π(0.8) ,0.5e2π(0.7) , e1 0.3 , x2 0.8 ,0 , u1 0.4e2π(0.6) ,0.7e2π(0.4) ,0.7e2π(0.8) , u2 0.5e2π(0.4) ,0.5e2π(0.4) ,0.3e2π(0.5) , e2 0.6 , x1 0.5 ,0 , u1 0.3e2π(0.2) ,0.6e2π(0.2) ,0.9e2π(0.2) , u2 0.7e2π(0.4) ,0.5e2π(0.8) ,0.6e2π(0.8) , e2 0.6 , x2 0.8 ,0 , u1 0.3e2π(0.5) ,0.3e2π(0.1) ,0.9e2π(0.3) , u2 0.3e2π(0.7) ,0.8e2π(0.7) ,0.7e2π(0.6) , e3 0.8 , x1 0.5 ,0 , u1 0.5e2π(0.4) ,0.4e2π(0.5) ,0.4e2π(0.3) , u2 0.8e2π(0.2) ,0.3e2π(0.2) ,0.5e2π(0.2) , e3 0.8 , x2 0.8 ,0 , u1 0.4e2π(0.6) ,0.2e2π(0.3) ,0.1e2π(0.6) , u2 0.3e2π(0) ,0.6e2π(0.4) ,0.3e2π(0.1) .

SupposeweareinterestedinsolvingthedecisionmakingprobleminExample4,wherethedata arerepresentedbythemeansoftheWFP-CNSES (H, A)Γ,W above,whereeachexperthashis/herown weight.Then,wemayusethefollowingalgorithm,whichisageneralizationofAlgorithm 1 Now,weuseAlgorithm 2 toselectthemostdesirablekindoftheproducttotheengineeringcompany.

Algorithm2: Weightedfuzzyparameterizedcomplexneutrosophicsoftexpertmethod (WFP-CNSEM).

1.InputtheWFP-CNSES (H, A)Γ,W .

2.ConverttheWFP-CNSES (H, A)Γ,W totheWFP-SVNSES (H, A)Γ,W asitwasillustratedin step2ofAlgorithm1.NotethattheWFP-CNSES (H, A)Γ,W andtheFP-CNSES (H, A)Γ has thesameevaluationinformationandthedifferencebetweenthemliesinthestructureofthe expertsetwhichdoesnotaffecttheconversionprocess. 3.Findthevaluesof cij foragreeWFP-SVNSESanddisagreeWFP-SVNSESrespectively,where cij = T H

Symmetry 2019, 11,382 16of19
,W (ai ) (uj ) I HΓ,W (ai ) (uj ) F HΓ,W
ai
(uj
∀uj ∈
Kj = ∑ x∈X ∑ i cij (µΓ (e))(µW (x)), Sj = ∑ x∈X ∑ i cij (µΓ (e))(µW
x))
µΓ
µ
Γ
(
)
),
U and ∀ai ∈ A 4.Computethescoreofeachelement uj ∈ U bythefollowingformulas:
(
,fortheagreeWFP-SVNSES anddisagreeWFP-SVNSES,where
(e) and
W (x) arethecorrespondingmembership functionsofthefuzzysets Γ and W,respectively. 5.Findthevaluesofthescore rj = Kj Sj foreachelement uj ∈ U 6.Determinethevalueofthehighestscore m = maxuj ∈U {rj }.Then,thedecisionistochoose element uj astheoptimalsolutiontotheproblem.

Tables 5 and 6 givethenumericaldegreeofagreeWFP-SVNSESanddisagreeWFP-SVNSES, respectively.

Table5. NumericaldegreeofagreeWFP-SVNSES.

Uu1 u2

e1 0.3 , x1 0.5 0.08 0.49

e1 0.3 , x2 0.8 0.17 0.27

e2 0.6 , x1 0.5 1.17 0.37 e2 0.6 , x2 0.8 0.05 0.55

e3 0.8 , x1 0.5 0.73 0.44 e3 0.8 , x2 0.8 0.27 0.63

Kj = ∑ x∈X ∑ i cij (µΓ (e))(µW (x)) K1 = 0.845 K2 = 1.093

Table6. NumericaldegreeofdisagreeWFP-SVNSES.

Uu1 u2

e1 0.3 , x1 0.5 0.41 0.58

e1 0.3 , x2 0.8 0.72 0.44

e2 0.6 , x1 0.5 0.50 0.96

e2 0.6 , x2 0.8 0.20 0.78 e3 0.8 , x1 0.5 0.37 0.14 e3 0.8 , x2 0.8 0.18 0.53 Sj = ∑ x∈X ∑ i cij (µΓ (e))(µW (x)) S1 = 0.744 S2 = 1.250

Let Kj and Sj representthescoreofeachnumericaldegreeofagreeWFP-SVNSESanddisagree WFP-SVNSES,respectively.ThesevaluesaregiveninTable 7.

Table7. Thescore rj = Kj Sj Kj = ∑ x∈X ∑ i cij(µΓ (e))(µW (x)) Sj = ∑ x∈X ∑ i cij (µΓ (e))(µW (x)) rj = Kj Sj K1 = 0.845 S1 = 0.744 0.101 K2 = 1.093 S2 = 1.2500.157

Thus, m = maxuj ∈U {rj } = r2 .Therefore,theteamofexpertsadviseselectingthekind u2 ofthis productasadesirablealternative.

UsingAlgorithms 1 and 2,weobtainedthesameresults.However,itisclearthatgivingmore considerationtotheexpert(weight)reducesthechanceofunfairnessinthedecisionmakingprocess andasaresultaddsmorecredibilitytothefinaldecision.

ToillustratethesignificanceoftheadjustableapproachusingWFP-CNSESascomparedtothatof FP-CNSES,letusconsiderExample5above.

ItcanbeseenthatWFP-CNSESisbasicallyaFP-CNSESwithweightedexpertsandevery FP-CNSEScanbeconsideredasaWFP-CNSESwitharelativeweightequalto1assignedtoall oftheexperts’opinions.

Symmetry 2019, 11,382 17of19

Forexample,theapproximation

e1 0.3 , x1 0.5 ,1 , u1 0.5e2π(0.4),0.2e2π(0.4),0.1e2π(0.2) , u2 0.6e2π(0.7),0.5e2π(0.4),0.1e2π(1)

canberepresentedas

e1 0.3 , x1 1 ,1 , u1 0.5e2π(0.4),0.2e2π(0.4),0.1e2π(0.2) , u2 0.6e2π(0.7),0.5e2π(0.4),0.1e2π(1) bymeansofFP-CNSES.

Inotherwords,theexpertsetintheFP-CNSESisaclassicalset,wheretheopinionsoftheexperts havethesamedegreeofimportance,whichisconsideredas1.Thislimitationmayleadtoimproper andbiasedsolution.Incontrast,theexpertsetintheWFP-CNSESisafuzzyset,i.e.,amembership degreethatrepresentsanimportancedegree(arelativeweight)betweenzeroandoneisassignedto eachoftheexperts.Thismakesthedecisionprocessmorerealisticandreducesthebiasedinformation givenbytheexperts.

8.Conclusions

WeintroducedtheconceptofFP-CNSES,whichisaFP-SVNSESdefinedinacomplexsetting. WedefinedFP-CNSESoperationsandtheirproperties.Wethenstudiedamappingonfuzzy parameterizedcomplexneutrosophicsoftexpertclassesanditsproperties.Anadjustableapproachto decisionmakingproblemsbasedonFP-CNSESwasalsointroduced.AcomparisonoftheFP-IFSES andFP-SVNSEStoFP-CNSESwasmadeandthepreferabilityofFP-CNSESwasrevealed.Finally, wedefinedthenotionofWFP-CNSESwhereexperts’relativeweightswereconsideredandapplied ittosolveadecisionmakingproblem.Thisadjustableapproachtodecisionmakingcanbehelpful todealwithmoreroomofuncertaintycomparedtousingFP-CNSESonthesameproblem.Boththe newlyproposedapproachesefficientlycapturetheincomplete,indeterminate,andinconsistent informationandextendexistingdecision-makingmethodstoprovideamorecomprehensiveoutlook fordecision-makers.WFP-CNSESseemstobeapromisingnewconcept,pavingthewaytoward numerouspossibilitiesforfutureresearch.Weintendtoinvestigatethisconceptfurtherbystudying itsoperationsandtheirpropertiestodevelopsomerealapplications.

AuthorContributions: A.A.-Q.proposedtheconceptofthefuzzyparameterizedcomplexneutrosophicsoft expertset;N.H.providedaconcreteexampleonthedecisionmakingproblem;A.A.-Q.andS.A.proposedthe FP-CNSESdecisionmakingmethod;andN.H.editedthemanuscript.Allauthorswrotethemanuscript.

Funding: UniversitiKebangsaanMalaysiaGUP-2017-105.

Acknowledgments: WeareindebtedtoUniversitiKebangsaanMalaysiaforprovidingfinancialsupportand facilitiesforthisresearchunderthegrantGUP-2017-105.

ConflictsofInterest: Authorsdeclarethattheyhavenoconflictofinterest.

References

1. Zadeh,L.A.Fuzzysets. Inf.Control. 1965, 8,338–353.[CrossRef]

2. Atanassov,K.Intuitionisticfuzzysets. FuzzySetsSyst. 1986, 20,87–96.[CrossRef]

3. Smarandache,F. Neutrosophy:NeutrosophicProbability,Set,andLogic; AmericanResearchPress:Rehoboth,IL, USA,1998.

4. Smarandache,F.Neutrosophicset—Ageneralisationoftheintuitionisticfuzzysets. Int.J.Pure.Appl.Math. 2005, 24,287–297.

5. Wang,H.;Smarandache,F.;Zhang,Y.;Sunderraman,R.Singlevaluedneutrosophicsets. Multisp.Multistruct. 2010, 4,410–413.

6. Molodtsov,D.Softsettheory:Firstresults. Comput.Math.Appl. 1999, 37,19–31.[CrossRef]

7. Alkhazaleh,S.;Salleh,A.R.Softexpertsets. Adv.Decis.Sci. 2011, 2011,757868.[CrossRef]

Symmetry 2019
11
18of19
,
,382

Symmetry 2019, 11,382

8. Alkhazaleh,S.;Salleh,A.R.Fuzzysoftexpertsetanditsapplication. Appl.Math. 2014, 5,1349–1368. [CrossRef]

9. Broumi,S.;Smarandache,F.Intuitionisticfuzzysoftexpertsetsanditsapplicationindecisionmaking. J.NewTheory 2015, 1,89–105.

10. Broumi,S.;Smarandache,F.Singlevaluedneutrosophicsoftexpertsetsandtheirapplicationindecision making. J.NewTheory 2015, 3,67–88.

11. Al-Quran,A.;Hassan,N.Neutrosophicvaguesoftexpertsettheory. J.Intell.FuzzySyst. 2016, 30,3691–3702. [CrossRef]

12. AbuQamar,M.;Hassan,N.GeneralizedQ-neutrosophicsoftexpertsetfordecisionunderuncertainty. Symmetry 2018, 10,621.[CrossRef]

13. Ulucay,V.;Sahin,M.;Hassan,N.Generalizedneutrosophicsoftexpertsetformultiple-criteria decision-making. Symmetry 2018, 10,437.[CrossRef]

14. Cagman,N.;Citak,F.;Enginoglu,S.FP-softsettheoryanditsapplications. Ann.FuzzyMath.Inform. 2011, 2,219–226.

15. Bashir,M.;Salleh,A.R.Fuzzyparameterizedsoftexpertset. Abstr.Appl.Anal 2012, 2012,258361.[CrossRef]

16. Hazaymeh,A.;Abdullah,I.B.;Balkhi,Z.;Ibrahim,R.Fuzzyparameterizedfuzzysoftexpertset. Appl.Math.Sci 2012, 6,5547–5564.

17. Selvachandran,G.;Salleh,A.R.Fuzzyparameterizedintuitionisticfuzzysoftexpertsettheoryandits applicationindecisionmaking. Int.J.SoftComput. 2016, 11,52–63.

18. Al-Quran,A.;Hassan,N.Fuzzyparameterisedsinglevaluedneutrosophicsoftexpertsettheoryandits applicationindecisionmaking. Int.J.Appl.Decis.Sci. 2016, 9,212–227.

19. Ramot,D.;Milo,R.;Friedman,M.;Kandel,A.Complexfuzzysets. IEEETrans.FuzzySyst. 2002, 10,171–186. [CrossRef]

20. Hu,B.;Bi,L.;Dai,S.Theorthogonalitybetweencomplexfuzzysetsanditsapplicationtosignaldetection. Symmetry 2017, 9,175.[CrossRef]

21. Alkouri,A.;Salleh,A.R.Complexintuitionisticfuzzysets. AIPConf.Proc 2012, 1482,464–470.

22. Ali,M.;Smarandache,F.Complexneutrosophicset. NeuralComput.Appl. 2017, 28,1817–1834.[CrossRef]

23.

24.

Al-Quran,A.;Hassan,N.Thecomplexneutrosophicsoftexpertsetanditsapplicationindecisionmaking. J.Intell.Fuzzy.Syst 2018, 34,569–582.[CrossRef]

Al-Quran,A.;Hassan,N.Thecomplexneutrosophicsoftexpertrelationanditsmultipleattribute decision-makingmethod. Entropy 2018, 20,101.[CrossRef]

c 2019bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution (CCBY)license(http://creativecommons.org/licenses/by/4.0/).

19of19

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.