Fluid segmentation in Neutrosophic domain

Page 1

FluidsegmentationinNeutrosophicdomain

ElyasRashno

DepartmentofComputerEngineering IranUniversityOfScienceandTechnology Tehran,Iran elyas.rashno@gmail.com

AbdolrezaRashno

DepartmentofComputerEngineering EngineeringFaculty LorestanUniversity Khorramabad,Iran rashno.a@lu.ac.ir

SadeghFadaei DepartmentofElectricalEngineering FacultyofEngineering YasoujUniversity Yasouj,Iran,7591874934 s.fadaei@yu.ac.ir

Abstract—Opticalcoherencetomography(OCT)asretina imagingtechnologyiscurrentlyusedbyophthalmologistas anon-invasiveandnon-contactmethodfordiagnosisofagerelateddegeneration(AMD)anddiabeticmacularedema(DME) diseases.FluidregionsinOCTimagesrevealthemainsignsof AMDandDME.Inthispaper,anefficientandfastclustering inneutrosophic(NS)domainreferredasneutrosophicC-means isadaptedforfluidsegmentation.Forthistask,aNCMcost functioninNSdomainisadaptedforfluidsegmentationandthen optimizedbygradientdescendmethodswhichleadstobinary segmentationofOCTBscanstofluidandtissueregions.The proposedmethodisevaluatedinOCTdatasetsofsubjectswith DMEabnormalities.Resultsshowedthattheproposedmethod outperformsexistingfluidsegmentationmethodsby6%indice coefficientandsensitivitycriteria.

IndexTerms—Opticalcoherencetomography;Neutrosophic theory;Fluidsegmentation;Retinadiseases

I.INTRODUCTION

Ophthalmologistsuseopticalcoherencetomography(OCT) asanon-contactmethodtodiagnosisandfollowupof retinadisease.FluidregionsaredetectableinOCTimages andrevealabnormalitiesofretinadiseaseincludingdiabetic maculaedema(DME)andage-relatedmaculardegeneration (AMD)[1].Imageprocessinganddataminingapplications havebeenwidelyusedinmanyapplication[2]–[7].Fluid regionscanbesegmentedautomaticallybyimageprocessing anddataminingtools.Manyfluiddetectionmethodshave beenproposedintheliteraturesuchaskernelregression basedsegmentationofOCTimageswithDME[8],fluid-filled regiondelineationofboundariesinOCT[9],semi-automatic segmentationmethodforretinalOCTimagestestedinpatients withdiabeticmacularedema[10],labelpropagationand higher-orderconstraint-basedsegmentationoffluidregionsin OCTimagesofDMEsubjects[11],computerizedassessment ofintraretinalandsubretinalfluidregionsinOCTimages oftheretina[12],automatedsegmentationofpathological cavitiesinOCTscans[13],three-dimensionalanalysisof retinallayerandfluid-filledregionsinOCTofthemacula [14],probabilityconstrainedgraph-search-graph-cutmethod forthree-dimensionalsegmentationoffluid-associatedabnormalities[15],fluidsegmentationwithshortest-pathmethods andneutrosophic(NS)theory[16]–[21],fluidsegmentation withdeepconvolutionalnetworks(CNNs)[22]–[25].

SmarandacheproposedNStheoryin1995,abranchofphilosophywhichstudiestheorigin,natureandscopeofneutralities,aswellastheirinteractionswithdifferentideationalspectra[26].Thistheoryhasbeenappliedonmanyapplications includingimagesegmentation[27]–[30],imagethresholding [31],imageedgedetection[32],content-basedimageretrieval [33]–[37],retinalimageanalysis[16]–[20],speechprocessing [38],dataclustering[39],[40]anduncertaintyhandling[41], [42].Themaincontributionofthisworkistooptimizeacost functioninNSdomaintobinarizeretinaOCTscanstofluid andtissueregions.Thecostfunctionisderivedfromfuzzycmeans(FCM)andisoptimizedbygradientdescendmethods insubsequenceiterations.Therestofthispaperisorganized asfollows:SectionIIreviewsFCMandNStheory.Section IIIpresentstheproposedmethod.Experimentalresultsand conclusionarediscussedinsectionsIVandV,respectively.

II.REVIEWOF NS AND FCM

SincethecostfunctioninthisworkisanextensionofFCM andisdefinedinNSdomain,here,areviewonFCMandNS isdiscussedshortly.

A.FCM

TheFCMisaclusteringmethodthatassignsamembership degreeininterval[0-1]toeachdatapoint,Therefore,each datapointisassignedtoallclusterswithdifferentmembership degreesandthesumofmembershipstoallclustersshouldbe 1.FCMcostfunctionisdefinedasfollows:

tothe

th clusterwithcenter v

.

and m areanorm metricandaconstantvariablefordeterminingthefuzziness oftheresultingpartition,respectively.MinimizingFCMcost functionleadstothefollowingequationsforthecomputation ofmembershipdegreesandclustercenters:

J = N j=1 C i=1 um ij ||Xj vi||2
u
Xj
uij = 1 N j=1 ||Xj vi|| ||Xj vk 2 m 1
arXiv:1912.11540v1 [eess.IV] 23 Dec 2019
(1) where
ij representsthemembershipdegreeofdatapoint
i
i
||·||
(2)

Firstly,membershipdegreesareinitializedrandomlyand clustercentersarecomputedbyEq.(3).Then,membership degreesandclustercentersarecomputedrepeatedly,untilthere isnosignificantchangesoftheseparametersinsubsequent iterations.

B.Neutrosophic

NStheoryisanewlybroughtupbranchesofphilosophy.In thistheory,setA,Anti-A(contemplatesAinacorrelationwith itsopposite),Neut-A(neutralityofA,neitherAnorAnti-A) aredefined[26].Ineachapplication,NSsetsshouldbedefined foralldatapointsaswellasrelationsbetweensets.Forexample,inourproblemofinterestasimagesegmentation,each pixelinNSdomainismodeledas P (t,i,f ) meaningthatitis t percenttrue, i percentindeterministic,and f percentfalse. Therefore,threesets PNS (i,j)= {T (i,j),I(i,j),F (i,j)} are definedforpixelsinNSdomainasfollows[27]:

T (i,j)= g(i,j) gmin gmax gmin (4)

g(i,j)= 1 w × w

i+ w 2 m=i w 2

j+ w 2 n=j w 2

g(m,n) (5)

I(i,j)= δ(i,j) δmin δmax δmin (6)

δ(i,j)= |g(i,j) g(i,j)| (7)

F (i,j)=1 T (i,j) (8)

where, g(i,j) representstheintensityvalueofthepixel P (i,j), g isimagematrix g filteredbyaveragefilterwith windowsize w.Differenceoftwomatrixes g and g is computedandstoredin δ

III.PROPOSED METHOD

Inthiswork,NCMcostfunctionisusedandadaptedfor OCTfluidsegmentation.SinceOCTscanscontainnoiseand thereisambiguitybetweenfluidpixelsandmanypixelsin backgroundandtissue,indeterminacyset I inNSdomaincan beveryusefulandmodelssuchambiguitieseasily.Here,each pixelinOCTscansaretransferredtothreesets T , I and F by Eqs.(4),(6)and(8),respectively.Then,NSsetsarepresented forclusteringcostfunctionasfollows:

(T,I,F,C

Cqi = argmax(Tij ) ,j = pi ∩ j =1, 2, ,C (12)

Gradientdescentmethodisusedforcostfunctionoptimizationwhichleadstothefollowingrelationsforthecomputation of T , I and F setsinNSdomainandclustercenters.

Tij = K w1 (Xi Cj ) ( 2 m 1) (13)

Ii = K w2 (Xi Cimax ) ( 2 m 1) (14)

Fi = K w3 δ ( 2 m 1) (15) Cj = N i=1(¯ w1Tij )mXi N i=1(¯ w1Tij )m (16)

K = 1 w1

C j=1 (Xi Cj ) ( 2 m 1) + 1 w2 (Xi Cimax ) ( 2 m 1) + 1 w3 δ ( 2 m 1) 1 (17)

Parameter K isacommonpartinEqs.(13)-(15).Itis computedonceandusedthreetimeswhichleadstospeedupin eachiterationofoptimization.Inthefirststep, 12 clustersare consideredforclustering.Thereasonisthatthereis 11 layers inretinaandeachlayercanbeassignedtooneclusterbasedon itstextureandgraylevel.Oneextraclusterisconsideredfor fluidregionsasfluidcluster.Afterconvergence,clustersare sortedascendinglybasedonthegraylevelofclustercenters. Thefirstclusterisconsideredasfluidclusterwithlabel1and otherclustersareconsideredastissueclusterswithlabel 0 Therefore,theproposedclusteringschemeleadstoabinary segmentationofOCTscans.

IV.EXPERIMENTAL RESULTS

A.EvaluationMetrics

Toshowtheeffectivenessoftheproposedmethod,ithas beenevaluatedwiththreemetrics;dicecoefficient,precision andsensitivity;computedfromtruepositive(TP)fluidpixels detectedasfluid,falsepositive(FP)tissuepixelsdetectedas fluid,truenegative(TN)tissuepixelsdetectedastissueand falsenegative(FN)fluidpixelsdetectedastissue.

Dice Coeff = 2TP 2TP + FP + FN (18)

Sensitivity = TP TP + FN (19)

Precision = TP TP + FP (20)

Thesecriteriaareusedtoevaluatefluidsegmentationresultsofautomatedmethodsincomparisonwithmanually segmentedfluidregionsbyophthalmologistexperts.

vi = N j=1 um ij Xj N j
=1 um ij (3)
L
)= N j=1 C i=1 (¯ w1Tij )m||Xi Cj ||2 + N i=1 (¯ w2Ii)m||Xi Cimax ||2+ N i=1 δ2(¯ w3Fi)m (9) Cimax = Cpi + Cqi 2 (10) Cpi = argmax(Tij ) ,j =1, 2, ··· ,C (11)

B.Dataset

Theproposedfluidsegmentationmethodistestedona datasetfromOPTIMACystSegmentationChallengewhich contains 4 subjectswith 49 imagespersubjectwheretheimage resolutionvariesfrom 512 × 496 to 512 × 1024.Thefluid regionsofeachOCTimagearemanuallysegmentedbytwo ophthalmologistexpertsasgroundtruthimages.Thisdataset ispubliclyavailableandcanbefoundonline1

C.Resultes

Segmentedfluidregionsbytheproposedmethodarecomparedwithgroundtruthimages.Fig.1depictsfluidregions segmentedbyexpertandtheproposedmethodfortwoscans, eachscaninonerow.Theproposedfluidsegmentationmethod iscomparedwith4fluidsegmentationmethodsproposedin [17]and[44]–[46].Theresultsofthesemethodsareshownin Fig.2.Itisclearvisuallythattheproposedmethodhaslower numberoffalsenegaiveswhichleadstohigheraccuracy.

Fig.2:Segmentedfluidby:(a)expert,(b)methodin[17], (c)methodin[44],(d)methodin[45]and(e)theproposed method

TABLEI:Dicecoefficient,sensitivityandprecisionofthe proposedmethodandothermethodsincomparisonwithexpert 1.

Expert1 Sub. Method in[44] Method in[45] Method in[46] Method in[17] Prop. Method

DiceCoeff

Sensitivity

1 73.49 80.43 71.40 82.96 83.17 2 73.90 55.10 45.49 78.11 74.61 3 78.46 75.35 69.54 82.23 84.85 4 78.12 71.78 71.15 80.75 86.32 Ave. 75.99 70.66 64.39 81.01 82.23

1 70.81 82.19 72.49 84.43 86.95 2 96.79 99.04 70.45 98.94 98.42 3 75.72 85.13 47.38 85.18 86.58 4 78.78 80.59 77.79 84.49 90.51 Ave. 80.52 86.73 67.02 88.26 90.59

1 93.00 85.06 54.87 84.03 82.12

Fig.1:Fluidsegmentationresultsfor2scans:(a)InputOCT image,(b)manuallysegmentatedbyexpertand(c) segmentedbytheproposedmethod.

Precision

2 74.36 54.18 51.12 78.48 69.31 3 94.89 79.88 30.93 85.45 83.43 4 96.97 88.62 54.98 93.20 75.01 Ave. 89.80 76.93 47.97 85.29 77.46

TableIreportsthedicecoefficient,sensitivityandprecision oftheproposedmethodandmethodsin[17]and[44]–[46]. ReportedresultsinTableIarethecomparisonbetweenall methodsandfluidregionsmanuallysegmentedbyexpert1. TableIIreportsthesameresultsbutincomparisonwithexpert 2.Incomparisonwiththeresultsofexpert1,theproposed methodoutperformsothermethodswithrespecttodicecoefficientandsensitivityof 82.23% and 90.59%,respectively. Thesemeasuresoftheproposedmethodincomparisonwith expert2are 81 62% and 90 11% whichalsooutperforms othermethods.Forprecisionmeasure,methodsin[17]with 85 29% and[44]with 90 87% havethebestperformancein comparisonwithexpert1and2,respectively.

(a) (b) (c) (a) (b) (c)

V.CONCLUSION

(a) (b) (c) (d) (e)

Thispaperpresentedafluidsegmentationmethodbased onNCMcostfunctioninNSdomain.Minimizingthecost

1https://optima.meduniwien.ac.at/research/challenges/

functionresultedinbinarysegmentationofOctimagesinto tissueandfluidregions.SegmentationresultsonOptima datasetshowedthattheproposedmethodoutperformsother segmentationmethodsindicecoefficientandsensitivitymeasureswhileforprecisioncriteria,othermethodshadthebest performance.Futureeffortswillbedirectedtowardsproposing acostfunctioninNSdomainforbettermodelingofnoiseand uncertaintyinOCTpixels.NScanmodeluncertaintyofOCT pixelsindeepconvolutionalnetworksandleadstomorerobust networkagainstnoiseandimagingdevice.Therefore,using NStheoryforfluidsegmentationbyCNNcanbeproposedas anotherfuturework.

REFERENCES

[1] Kafieh,R.,Rabbani,H.,Abramoff,M.D.andSonka,M.,”Intraretinal layersegmentationof3Dopticalcoherencetomographyusingcoarse graineddiffusionmap,” Medicalimageanalysis,vol.17,no.8,pp.907928,2013.

[2] A.Rashno,B.Nazari,S.Sadri,M.Saraee,Effectivepixelclassification ofmarsimagesbasedonantcolonyoptimizationfeatureselectionand extremelearningmachine,Neurocomputing226(2017)66–79.

TABLEII:Dicecoefficient,sensitivityandprecisionofthe proposedmethodandothermethodsincomparisonwithexpert 1.

Expert2 Sub. Method in[44] Method in[45] Method in[46] Method in[17] Prop. Method

DiceCoeff

1 72.96 79.10 68.17 82.90 83.03

2 71.68 55.11 45.81 79.09 78.12

3 82.33 79.34 65.01 80.36 82.22

4 77.91 71.56 72.55 80.87 83.12 Ave. 76.22 71.27 62.88 80.80 81.62

1 69.95 78.56 66.75 80.94 83.35

2 92.25 94.54 64.71 94.45 93.86

Sensitivity

Precision

3 81.49 90.95 54.84 90.75 92.15

4 78.54 80.22 77.56 83.70 91.06 Ave. 80.55 86.06 65.96 87.46 90.10

1 95.71 86.55 59.61 87.53 82.62

2 74.45 54.14 51.34 78.58 67.79

3 96.10 79.96 37.99 85.48 83.14

4 97.24 88.99 59.50 93.58 77.98 Ave. 90.87 77.41 52.11 86.29 77.88

[3] A.Rashno,H.SadeghianNejad,A.Heshmati,Highlyefficientdimension reductionfortext-independentspeakerverificationbasedonrelieff algorithmandsupportvectormachines,InternationalJournalofSignal Processing,ImageProcessingandPatternRecognition6(1)(2013)91–108.

[4] A.Rashno,S.M.Ahadi,M.Kelarestaghi,Text-independentspeaker verificationwithantcolonyoptimizationfeatureselectionandsupport vectormachine,in:20152ndInternationalConferenceonPattern RecognitionandImageAnalysis(IPRIA),IEEE,2015,pp.1–5.

[5] A.Rashno,M.Saraee,S.Sadri,Marsimagesegmentationwithmost relevantfeaturesamongwaveletandcolorfeatures,in:2015AI& Robotics(IRANOPEN),IEEE,2015,pp.1–7.

[6] A.Rashno,F.S.Tabataba,S.Sadri,Imagerestorationwithregularization convexoptimizationapproach,JournalofElectricalSystemsandSignals 2(2)(2014)32–36.

[7] A.Rashno,F.S.Tabataba,S.Sadri,Regularizationconvexoptimization methodwithl-curveestimationinimagerestoration,in:20144th InternationalConferenceonComputerandKnowledgeEngineering (ICCKE),IEEE,2014,pp.221–226.

[8] Chiu,S.J.,Allingham,M.J.,Mettu,P.S.,Cousins,S.W.,Izatt,J.A.and Farsiu,S.,”Kernelregressionbasedsegmentationofopticalcoherence tomographyimageswithdiabeticmacularedema,” Biomedicaloptics express,vol.6,no.4,pp.1172-1194,2015.

[9] FernandezDC,”Delineatingfluid-filledregionboundariesinoptical coherencetomographyimagesoftheretina,” IEEEtransactionson medicalimaging,vol.24,no.8,pp.929945,2005.

[10] HuangY,DanisRP,PakJW,LuoS,WhiteJ,ZhangX,etal., ”Developmentofasemi-automaticsegmentationmethodforretinaloct imagestestedinpatientswithdiabeticmacularedema,” PloSone,vol. 8,no.12,p.e82922,2013.

[11] WangT,JiZ,SunQ,ChenQ,YuS,FanW,etal.,”Labelpropagationandhigher-orderconstraint-basedsegmentationoffluid-associated regionsinretinalsd-octimages,” InformationSciences,vol.358,pp. 92111,2016.

[12] ZhengY,SahniJ,CampaC,StangosAN,RajA,HardingSP.,”Computerizedassessmentofintraretinalandsubretinalfluidregionsinspectraldomainopticalcoherencetomographyimagesoftheretina,” American journalofophthalmology,vol.155,no.2,pp.277286,2013.

[13] PilchM,StiegerK,WennerY,PreisingMN,FriedburgC,zuBexten EM,etal.,”Automatedsegmentationofpathologicalcavitiesinoptical coherencetomographyscanspathologicalcavitiesinoctscans,” Investigativeophthalmology&visualscience,vol.54,no.6,pp.43854393, 2013.

[14] QuellecG,LeeK,DolejsiM,GarvinMK,AbramoffMD,Sonka M.,”Three-dimensionalanalysisofretinallayertexture:identification offluid-filledregionsinsd-octofthemacula,” IEEEtransactionson medicalimaging,vol.29,no.6,pp.13211330,2010.

[15] ChenX,NiemeijerM,ZhangL,LeeK,AbrmoffMD,SonkaM.”Threedimensionalsegmentationoffluid-associatedabnormalitiesinretinaloct:

probabilityconstrainedgraphsearch-graph-cut,” IEEEtransactionson medicalimaging,vol.31,no.8,pp.15211531,2012.

[16] RashnoA,KoozekananiDD,DraynaPM,NazariB,SadriS,Rabbani H,etal.,”Fully-automatedsegmentationoffluid/cystregionsinoptical coherencetomographyimageswithdiabeticmacularedemausingneutrosophicsetsandgraphalgorithms,” IEEETransactionsonBiomedical Engineering,2017.

[17] A.Rashno,B.Nazari,D.D.Koozekanani,P.M.Drayna,S.Sadri,H. Rabbani,K.K.Parhi,”Fully-automatedsegmentationoffluidregionsin exudativeage-relatedmaculardegenerationsubjects:Kernelgraphcut inneutrosophicdomain,” PloSone vol.12,no.10,pp.e0186949,2017.

[18] KohlerJ,RashnoA,ParhiKK,DraynaPM,RadwanS,Koozekanani DD.,”Correlationbetweeninitialvisionandvisionimprovementwith automaticallycalculatedretinalcystvolumeintreateddmeafterresolution,” InvestigativeOphthalmology&VisualScience,vol.58,no.8,pp. 953953,2017.

[19] ParhiKK,RashnoA,NazariB,SadriS,RabbaniH,DraynaPM,et al.,”Automatedfluid/cystsegmentation:Aquantitativeassessmentof diabeticmacularedema,” InvestigativeOphthalmology&VisualScience, vol.58,no.8,pp.46334633,2017.

[20] A.Rashno,K.K.Parhi,B.Nazari,S.Sadri,H.Rabbani,P.Drayna, D.D.Koozekanani,”Automatedintra-retinal,subretinalandsub-rpe cystregionssegmentationinage-relatedmaculardegeneration(amd) subjects,” InvestigativeOphthalmology&VisualScience,vol.58,no.8, pp.397397,2017.

[21] Salafian,B.,Kafieh,R.,Rashno,A.,Pourazizi,M.andSadri,S., ”Automaticsegmentationofchoroidlayerinedioctimagesusinggraph theoryinneutrosophicspace,” arXivpreprintarXiv:1812.01989,2018.

[22] Bogunovi,H.,Venhuizen,F.,Klimscha,S.,Apostolopoulos,S.,BabHadiashar,A.,Bagci,U.,Beg,M.F.,Bekalo,L.,Chen,Q.,Ciller,C. andGopinath,K.,”RETOUCH-TheRetinalOCTFluidDetectionand SegmentationBenchmarkandChallenge,” IEEEtransactionsonmedical imaging,2019.

[23] Rashno,A.,Koozekanani,D.D.andParhi,K.K.,”Octfluidsegmentation usinggraphshortestpathandconvolutionalneuralnetwork,” In2018 40thAnnualInternationalConferenceoftheIEEEEngineeringin MedicineandBiologySociety(EMBC),pp.3426-3429,2018.

[24] Montuoro,A.,Waldstein,S.M.,Gerendas,B.S.,Schmidt-Erfurth,U.and Bogunovi,H.,”JointretinallayerandfluidsegmentationinOCTscans ofeyeswithseveremacularedemausingunsupervisedrepresentation andauto-context,” Biomedicalopticsexpress,vol.8,no.3,pp.18741888,2017.

[25] Roy,A.G.,Conjeti,S.,Karri,S.P.K.,Sheet,D.,Katouzian,A., Wachinger,C.andNavab,N.,”ReLayNet:retinallayerandfluid segmentationofmacularopticalcoherencetomographyusingfully convolutionalnetworks,” Biomedicalopticsexpress,vol.8,no.8,pp. 3627-3642,2017.

[26] Smarandache,F.ed.,”Aunifyingfieldinlogics:Neutrosophiclogic: neutrosophy,neutrosophicset,neutrosophicprobability,” InfiniteStudy, 2003.

[27] Guo,Y.andCheng,H.D.,”Newneutrosophicapproachtoimage segmentation,” PatternRecognition,vol.42,no.5,pp.587-595,2009.

[28] Zhang,M.,Zhang,L.andCheng,H.D.,”Aneutrosophicapproachto imagesegmentationbasedonwatershedmethod,” SignalProcessing, vol.90,no.5,pp.1510-1517,2010.

[29] Sengur,A.andGuo,Y.,”Colortextureimagesegmentationbasedon neutrosophicsetandwavelettransformation,” ComputerVisionand ImageUnderstanding,vol.115,no.8,pp.1134-1144,2011.

[30] Heshmati,A.,Gholami,M.andRashno,A.,”Schemeforunsupervised colourtextureimagesegmentationusingneutrosophicsetandnonsubsampledcontourlettransform,” IETImageProcessing,vol.10,no. 6,pp.464-473,2016.

[31] Guo,Y.,engr,A.andYe,J.,”Anovelimagethresholdingalgorithm basedonneutrosophicsimilarityscore,” Measurement,vol.58,pp.175186,2014.

[32] Guo,Y.andengr,A.,”Anovelimageedgedetectionalgorithmbased onneutrosophicset,” Computers&ElectricalEngineering,vol.40,no. 8,pp.3-25,2014.

[33] Rashno,A.,Smarandache,F.andSadri,S.,”Refinedneutrosophicsets incontent-basedimageretrievalapplication,” In201710thIranian ConferenceonMachineVisionandImageProcessing(MVIP),pp.197202,2017.

[34] Rashno,A.andSadri,S.,”Content-basedimageretrievalwithcolor andtexturefeaturesinneutrosophicdomain,” In20173rdInternational

ConferenceonPatternRecognitionandImageAnalysis(IPRIA),pp. 50-55,2017.

[35] Rashno,A.,Sadri,S.andSadeghianNejad,H.,”Anefficientcontentbasedimageretrievalwithantcolonyoptimizationfeatureselection schemabasedonwaveletandcolorfeatures,” In2015TheInternational SymposiumonArtificialIntelligenceandSignalProcessing(AISP),pp. 59-64,2015.

[36] Rashno,A.andRashno,E.,”Content-basedimageretrievalsystemwith mostrelevantfeaturesamongwaveletandcolorfeatures,” arXivpreprint arXiv:1902.02059,2019.

[37] S.Fadaei,A.Rashno,E.Rashno,Content-basedimageretrievalspeedup, arXivpreprintarXiv:1911.11379.

[38] Rashno,E.,Akbari,A.andNasersharif,B.,”AConvoloutionalNeural NetworkmodelbasedonNeutrosophyforNoisySpeechRecognition,” InfiniteStudy,2019.

[39] Rashnoa,E.,Minaei-Bidgolia,B.andGuo,Y.,”Aneffectiveclustering methodbasedondataindeterminacyinneutrosophicsetdomain,” InfiniteStudy,2018.

[40] Guo,Y.andSengur,A.,”NCM:Neutrosophicc-meansclustering algorithm,” PatternRecognition,vol.48,no.8,pp.2710-2724,2015.

[41] Rashno,E.,Norouzi,S.S.,Minaei-Bidgoli,B.andGuo,Y.,”Certainty ofoutlierandboundarypointsprocessingindatamining,” In201927th IranianConferenceonElectricalEngineering(ICEE),pp.1929-1934, 2019.

[42] Rashno,E.andMinaei-Bidgoli,B.,”Boundarypointshandlingforimage edgedetectionbasedonNeutrosophicset,” In20195thConferenceon KnowledgeBasedEngineeringandInnovation(KBEI),pp.886-890, 2019.

[43] Bezdek,J.C.,Ehrlich,R.andFull,W.,”FCM:Thefuzzyc-means clusteringalgorithm,” Computers&Geosciences,vol.10,no.2-3,pp. 191-203,1984.

[44] Boykov,Y.andFunka-Lea,G.,”GraphcutsandefficientNDimage segmentation,” Internationaljournalofcomputervision,vol.70,no.2, pp.109-131,2006.

[45] Salah,M.B.,Mitiche,A.andAyed,I.B.,”Multiregionimagesegmentationbyparametrickernelgraphcuts,” IEEETransactionsonImage Processing,vol.20,no.2,pp.545-557,2010.

[46] Esmaeili,M.,Dehnavi,A.M.,Rabbani,H.andHajizadeh,F.,”Threedimensionalsegmentationofretinalcystsfromspectral-domainoptical coherencetomographyimagesbytheuseofthree-dimensionalcurvelet basedK-SVD,” Journalofmedicalsignalsandsensors,vol.6,no.3, p.166,2016.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.