Correlation Coefficients of Refined-Single Valued Neutrosophic Sets and Their Applications

Page 1

Paper:

CorrelationCoefficientsofRefined-SingleValuedNeutrosophic

SetsandTheirApplicationsinMultipleAttribute Decision-Making

ChangxingFan

DepartmentofComputerScience,ShaoxingUniversity 508HuanchengWestRoad,Shaoxing,Zhejiang312000,China E-mail:fcxjszj@usx.edu.cn [ReceivedJuly21,2018;acceptedOctober19,2018]

Thepaperpresentsthecorrelationcoefficientof refined-singlevaluedneutrosophicsets(RefinedSVNSs)basedontheextensionofthecorrelationof singlevaluedneutrosophicsets(SVNSs),andthena decisionmakingmethodisproposedbytheuseof theweightedcorrelationcoefficientofRefined-SVNSs. Throughtheweightedcorrelationcoefficientbetween theidealalternativeandeachalternative,wecanrank allalternativesandthebestoneofallalternativescan beeasilyidentifiedaswell.Finally,toprovethisdecisionmakingmethodproposedinthispaperisuseful todealwiththeactualapplication,weuseanexample toillustrateit.

efficientsofRefined-SVNSsanduseadecisionmaking exampletoprovethismethodinthispaper.

Therestorganizationsofthispaperareasfollows.Section2:brieflyintroducesNS,SVNSandRefined-SVNS. Section3:introducestheCorrelationCoefficientsand theCorrelationCoefficientsofRefined-SVNS.Section4: givesadecisionmakingmethodbasedontheweighted correlationcoefficientmeasuresofRefined-SVNSs.Section5:presentsanexamplewithRefined-SVNStoillustratetheproposedmethodsandgivesaconclusion.Finally,Section6:concludes.

2.SomeConceptsofNS,SVNS,andRefinedSVNS

Keywords: refined-SVNSs,correlationcoefficients,decisionmaking,SVNSs

1.Introduction

Neutrosophicset(NS)proposedbySmarandache[1]is animportanttooltosolvemulti-criteriadecisionmaking problems.Sincethen,manynewextensionsaboutincomplete,uncertainandimpreciseinformationhavebeenpresented.Forexamples,in2005,Wangetal.[2]introduced theconceptofanintervalneutrosophicset(INS).Thesinglevaluedneutrosophicset(SVNS)wasintroducedfor thefirsttimebySmarandachein1998inhisbook[3];reviewedin[4],whichisalsomentionedbyWangetal.[5] in2010.In2013,Smarandacherefinedtheneutrosophic set:truthvalue T isrefinedintotypesofsub-truthssuch as T1 , T2 ,etc.,similarlyindeterminacy I issplit/refined intotypesofsub-indeterminacies I1 , I2 ,etc.,andthesubfalsehood F issplitinto F1 , F2 ,etc.Therefore,Smarandache[6]introducedtheconceptofaRefined-SVNS.Ina decisionmakingproblem,ifthegivencriteriahavemany sub-criteria,wewillsubdividethesecriteria.In2014, Ye[7]presentedaconceptofasimplifiedneutrosophicset (SNS).NowINS,SNS,andSVNShavebeendeveloped bymanyresearchersinvariousfields[8–22].Butthere arefewstudiesandresearchesontheRefined-SVNS.So weproposeadecisionmakingmethodoncorrelationco-

Definition1 [1].Set X beauniverseofdiscourse,witha genericelementdenoted x in X .ThenaNSisdefinedas:

A = x, TA (x), IA (x), FA (x) x ∈ X ,

inwhich TA (x) : X → ] 0, 1+ [ meanstruthmembership function, IA (x) : X → ] 0, 1+ [ meansindeterminacymembershipand FA (x) : X → ] 0, 1+ [ meansfalsitymembershipfunction.Thefunctions TA (x), IA (x),and FA (x) are realstandardornonstandardsubsetsof ] 0, 1+ [ andthere isnorelationonthesumof TA (x), IA (x),and FA (x),so 0 ≤ sup TA (x)+ sup IA (x)+ sup FA (x) ≤ 3+ .

Obviously,justusingthisDefinition1,wecannotapply theneutrosophicsettodealwiththepracticalproblems. Therefore,Smarandache[3]introducedtheconceptofa SVNS,whichisanextensionofNS.

Definition2 [3].Set X beauniverseofdiscourse,witha genericelementdenoted x in X .ThenaSVNSisdefined as:

A = x, TA (x), IA (x), FA (x) x ∈ X ,

inwhich TA (x), IA (x), FA (x) ∈ [0, 1],0 ≤ TA (x)+ IA (x)+ FA (x) ≤ 3.

Whenwedealthepracticalproblem,thegivencriteria maybehavemanysub-criteria,weshouldsubdividethese criteria.Therefore,Smarandache[6]introducedthecon-

Refined-SingleValuedNeutrosophicSets
Vol.23No.3,2019JournalofAdvancedComputationalIntelligence421 andIntelligentInformatics

ceptofaRefined-SVNS.

Definition3 [6].Set X beauniverseofdiscourse,witha genericelementdenoted x in X .ThenaRefined-SVNSis definedas:

A = x, T1A (x), T2A (x),..., TkA (x) , I1A (x), I2A (x),..., IkA (x) , F1A (x), F2A (x),..., FkA (x) x ∈ X

here k isapositiveinteger, T1A (x), T2A (x),..., TkA (x) ∈ [0, 1], I1A (x), I2A (x),..., IkA (x) ∈ [0, 1], F1A (x), F2A (x),..., FkA (x) ∈ [0, 1],and0 ≤ TiA (x)+ IiA (x)+ FiA (x) ≤ 3for i = 1, 2,..., k

Definition4 [14].Set X beauniverseofdiscourse,and L and M betwoSVNSs, L = { x, TL (xi ), IL (xi ), FL (xi ) | xi ∈ X } and M = { x, TM (xi ), IM (xi ), FM (xi ) | xi ∈ X }.The correlationcoefficientsmeasureoftwoSVNSs L and M is: N (L, M )= C (L, M ) max{C (L, L), C (M , M )} = n ∑ k =1 TL (xi ) TM (xi )+ IL (xi ) IM (xi )+ FL (xi ) FM (xi ) max n ∑ k =1 T 2 L (xi )+ I 2 L (xi )+ F 2 L (xi ) , n ∑ k =1 T 2 M (xi )+ I 2 M (xi )+ F 2 M (xi ) . ....(1)

Theorem1. Thecorrelationcoefficientsmeasure N (L, M ) satisfiesthefollowingproperties(1)–(3)[14]:

(1)0 ≤ N (L, M ) ≤ 1;

(2) N (L, M )= 1ifandonlyif L = M ; (3) N (L, M )= N (M , L); Theirproofscanbeconsultedin[14].

3.CorrelationCoefficientsMeasureMethods ofRefined-SVNSs

Definition5. Let X = {x1 , x2 ,..., xn } beauniverseof discourse,and L and M betwoRefined-SVNSs, L = { xi , (T1L (xi ), T2L (xi ),..., Tki L (xi )), (I1L (xi ), I2L (xi ),..., Iki L (xi )), (F1L (xi ), F2L (xi ),..., Fki L (xi )) |xi ∈ X }, M = { xi , (T1M (xi ), T2M (xi ),..., Tki M (xi )), (I1M (xi ), I2M (xi ),..., Iki M (xi )), (F1M (xi ), F2M (xi ),..., Fki M (xi )) |xi ∈ X }

Here ki isapositiveinteger,andall T jL (xi ), I jL (xi ), FjL (xi ) and T jM (xi ), I jM (xi ), FjM (xi ) ∈ [0, 1](i = 1, 2,..., n; j = 1, 2,..., ki )

AsanextensionofDefinition4,wepresentacorrelationcoefficientsmeasurebetweentwoRefined-SVNSs L and M asfollows:

N (L, M )= C (L, M ) max{C (L, L), C (M , M )} = n ∑ i=1

ki ∑ j =1 T jL (xi ) · T jM (xi )+ I jL (xi ) · I jM (xi ) +FjL (xi ) T jM (xi ) ki max n ∑ i=1

ki ∑ j =1 T jL 2 (xi )+ I jL 2 (xi )+ FjL 2 (xi ) ki , n ∑ i=1

ki ∑ j =1 T jM 2 (xi )+ I jM 2 (xi )+ FjM 2 (xi ) ki ...................(2)

Theorem1. Thecorrelationcoefficientsmeasure N (L, M ) betweentwoRefined-SVNSs L and M satisfies thefollowingproperties:

(1) N (L, M )= N (M , L); (2)0 ≤ N (L, M ) ≤ 1; (3) N (L, M )= 1ifandonlyif L = M ;

Proof.

(1)For T jL (xi ) T jM (xi )+I jL (xi ) I jM (xi )+ FjL (xi ) FjM (xi )= T jM (xi ) T jL (xi )+ I jM (xi ) I jL (xi )+ FjM (xi ) FjL (xi ),sowecanget N (L, M )= N (M , L)

ki ∑ j =1 T jL (xi ) T jM (xi )+ I jL (xi ) I jM (xi ) +FjL (xi ) · FjM (xi ) ki

1

Fan,C.
=
k1
T1
+F1L
1
F1
))+ +(
+Ik1 L
1
1
1
+ + 1 kn (T1L
1
(2)For0 ≤ T jM (xi ) ≤ 1then0 ≤ T jL (xi ) T jM (xi ) ≤ 1, 0 ≤ I jM (xi ) ≤ 1then0 ≤ I jL (xi ) I jM (xi ) ≤ 1and0 ≤ FjM (xi ) ≤ 1then0 ≤ FjL (xi ) FjM (xi ) ≤ 1,sowecanget N (L, M ) ≥ 0.Next,weprove N (L, M ) ≤ 1; C (L, M ) = n ∑ i=1 )+ I1L (xn ) I1M (xn ) +F1L (xn ) F1M (xn ))+ +(Tkn L (xn ) Tkn M (xn ) +Ikn L (xn ) Ikn M (xn )+ Fkn L (xn ) Fkn M (xn )) AccordingtotheCauchy-Schwarzinequality: (α1 β1 + α2 β2 + ··· + αnβn )2 ≤ (α1 2 + α2 2 + ··· + αn 2 )(β1 2 + β2 2 + ··· + βn 2 ) Where α1 , α2 ,..., αn ∈ Rn and β1 , β2 ,..., βn ∈ Rn ,wecan 422JournalofAdvancedComputationalIntelligence Vol.23No.3,2019 andIntelligentInformatics
(
L (x1 ) · T1M (x1 )+ I1L (x1 ) · I1M (x1 )
(x
)
M (x1
Tk1 L (x1 ) Tk1 M (x1 )
(x1 ) Ik
M (x1 )+ Fk
L (x1 ) Fk
M (x1 ))
(xn ) T
M (xn

Table1. TheRefined-SVNSdecisionmatrix D ) ) get C (L, M )2 ≤ 1 k1 2 T1L 2 (x1 )+ I1L 2 (x1 )+ F1L 2 (x1 ) T1M 2 (x1 )+ I1M 2 (x1 )+ F1M 2 (x1 ) + ··· + Tk1 L 2 (x1 )+ Ik1 L 2 (x1 )+ Fk1 L 2 (x1 ) Tk1 M 2 (x1 )+ Ik1 M 2 (x1 )+ Fk1 M 2 (x1 ) + ··· + 1 kn 2 T1L 2 (x1 )+ I1L 2 (x1 )+ F1L 2 (x1 ) ·

T1M 2 (x1 )+ I1M 2 (x1 )+ F1M 2 (x1 ) + +(Tkn L 2 (x1 )+ Ikn L 2 (x1 )+ Fkn L 2 (x1 ) · Tkn M 2 (x1 )+ Ikn M 2 (x1 )+ Fkn M 2 (x1 ) = C (L, L)C (M , M )

For C (L, M )2 ≤ C (L, L)C (M , M ),just C (L, M ) ≤ C (L, L)1/2C (M , M )1/2 . Then, C (L, M ) ≤ max{C (L, L), C (M , M )}. Sowecanget N (L, M )= C (L, M ) /max{C (L, L), C (M , M )}≤ 1.

(3)If L = M then T jL (xi )= T jM (xi )I jL (xi )= I jM (xi ),and FjL (xi )= FjM (xi ) forany xi ∈ X and i = 1, 2,..., n,sowe canget N (L, M )= 1,ifandonlyif L = M

Usually,allattributeshaveweights,maybethese weightsareatthesamevaluesordifferent,buttheyare allbelong0to1andthetotalvalueofthemis1.Now,we assumethattheweightofeachattribute Ci (i = 1, 2,..., n) is wi .Then,wecanintroducetheweightedcorrelationcoefficientsmeasurebetweentwoRefined-SVNSs L and M

4.BuildingaDecision-MakingModelUsing theCorrelationCoefficients

Inadecision-makingproblem,thereareasetofalternatives A = {A1 , A2 ,..., Am } andasetofattributes C = {C1 , C2 ,..., Cn }.Sometimes Ci (i = 1, 2,..., n) maybe subdividedintosomesub-attribute Cij (i = 1, 2,..., n, j = 1, 2,..., ki ),thenwecanuseaRefined-SVNStoexpress it: Ar = Ci , (T1Ar (Ci ), T2Ar (Ci ),..., Tki Ar (Ci )), (I1Ar (Ci ), I2Ar (Ci ),..., Iki Ar (Ci )), (F1Ar (Ci ), F2Ar (Ci ),..., Fki Ar (Ci )) Ci ∈ C , r = 1, 2,..., m and i = 1, 2,..., n.

(4)

WecoulduseaRefined-SVNStodenotethevaluesofthe threefunctions Tki Sr (Gi ), Iki Sr (Gi ), Fki Sr (Gi ) forconvenience,soweestablishtheRefined-SVNSdecisionmatrix D,whichisshownin Table1

Step1: BasedontheRefined-SVNSdecisionmatrix

, wecangettheidealsolution(idealRefined-SVNS) A

i Whentheattributesarebenefit, A

i isshownasfollows:

Refined-SingleValuedNeutrosophicSets
...................(3)
asfollow: W (L, M ) = n ∑ i=1 wi ki ∑ j =1 T jL (xi ) · T jM (xi )+ I jL (xi ) · I jM (xi ) +FjL (xi ) FjM (xi ) ki max n ∑ i=1 wi ki ∑ j =1 T jL 2 (xi )+ I jL 2 (xi )+ FjL 2 (xi ) ki , n ∑ i=1 wi ki ∑ j =1 T jM 2 (xi )+ I jM 2 (xi )+ FjM 2 (xi ) ki
...(5) Vol.23No.3,2019JournalofAdvancedComputationalIntelligence423 andIntelligentInformatics
D
A∗ i = T1Am max , T2Am max ,..., Tki Am max , I1Am max , I2Am max ,..., Iki Am max , F1Am max , F2Am max ,..., Fki Am max , for i = 1, 2,..., n

Table2. TheRefined-SVNSdecisionmatrix D forfouralternativesonthreeattributes/sevensub-attributes. ) ) )

Whentheattributesarecost, A∗ i isshownasfollows:

A∗ i = T1Am min , T2Am min ,..., Tki Am min , I1Am min , I2Am min ,..., Iki Am min , F1Am min , F2Am min ,..., Fki Am min , for i = 1, 2,..., n

....(6)

Sowecangettheidealalternative A∗ = {A∗ 1 , A∗ 2 ,..., A∗ n }

Step2: Whentheweightsofattributesaregivenby w = (w1 , w2 ,..., wn ) with wi ≥ 0and ∑n i=1 wi = 1.Thecorrelationcoefficientsmeasurebetweentheidealalternative A∗ andeachalternative Ar (r = 1, 2,..., m) canbecalculatedaccordingtoEqs.(4)and(5).Thenwecanobtain thevaluesof W (Ar , A∗ ) for r = 1, 2,..., m.

Step3: Accordingthevaluesof W (Ar , A∗ ) for r = 1, 2,..., m,allalternativescanberankedinadescending orderandthealternativeofbiggest W (Ar , A∗ ) valuejust isthebestchoice.

Step4: End.

5.IllustrativeExamples

Inthissection,wegivetwoexampleswithmultiple attributetodemonstratetheapplicationoftheproposed methodinthispaper.

5.1.Example1

Now,wediscussthedecision-makingproblemadapted from[22].Aconstructioncompanywantstodetermine theselectingproblemofconstructionprojects.Now fourconstructionprojectsareprovidedbydecisionmakers,thenwecangetasetoffouralternatives A = A1 , A2 , A3 , A4 .Then,intheseconstructionprojects,which onecanbeselecteddependentonthreemainattributes. Theseattributesarefinancialstate(C1 ),environmental protection(C2 )andtechnology(C3 ),andatthesametime theseattributescanbedividedintosevensub-attributes: budgetcontrol(C11 )andrisk/returnratio(C12 );publicrelation(C21 ),geographicallocation(C22 ),andhealthand safety(C23 );technicalknowhow(C31 )andtechnologicalcapability(C32 ).Then,decisionmakersevaluatethe valueofthefourpossiblealternativesundertheabove attributesbysuitabilityjudgments.Withthesevalues

wecanconstructtheRefined-SVNSdecisionmatrix D, whichisshownin Table2.

Fortheseattributesarebenefit,sowecanobtainthe idealalternative A∗ byusingEq.(4)fromtheRefinedSVNSdecisionmatrix D

A∗ = { (0.8, 0.8), (0.1, 0.1), (0.2, 0.2) , (0 9, 0 8, 0 8), (0 1, 0 1, 0 1), (0 1, 0 1, 0 1) , (0 8, 0 8), (0 1, 0 2), (0 1, 0 1) }

Withtheweightvectorofthethreeattributesby w = (0 4, 0 3, 0 3) ontheopinionoftheexpertsandEq.(3), wecanobtaintheweightedcorrelationcoefficientsmeasurevaluesbetweentheidealalternation A∗ andeachalternative Ar (r = 1, 2, 3, 4),themeasurevaluesarelisted asfollows: W (A1 , A∗ )= 0 9156, W (A2 , A∗ )= 0 9603, W (A3 , A∗ )= 0.9308, and W (A4 , A∗ )= 0.8861. Becauseofthemeasurevaluesare W (A2 , A∗ ) > W (A3 , A∗ ) > W (A1 , A∗ ) > W (A4 , A∗ ),therankingorder justis A2 A3 A1 A4 .Therefore,wecangetthealternative A2 asthebestchoiceamongallalternatives.

Comparingwiththemethodof[22],thecorrelationcoefficientsmeasurebetweentwoRefined-SVNSsproposed inthispaperisrelativelysimplerandeasier,andwecan obtainthesamechoiceasin[22]throughtheweighted correlationcoefficientsmeasurevaluesbetweentheideal alternation A∗ andeachalternative Ar (r = 1, 2, 3, 4)

5.2.Example2

Auniversitywantstoranktheacademywithsome mainattributes.Nowtherearefiveacademieswillbe ranked,thenwecangetasetoffiveacademics A = {A1 , A2 , A3 , A4 , A5 }.Therankoftheseacademicsdependsonthreemainattributesandsevensub-attributes: (1)Teaching(C1 ):teachingconditions(C11 ),teachers troop(C12 )andteachinglevel(C13 );(2)Thescientificresearch(C2 ):teachers’scientificresearch(C21 ),students’ scientificresearch(C22 );(3)Server(C3 ):socialreputation (C31 ),theemploymentsituation(C32 ).

Expertsevaluatethevalueofthefiveacademicsunder theaboveattributesbysomedata.Withthesevalueswe canconstructtheRefined-SVNSdecisionmatrix,which isshownin Table3.

Fortheseattributesarebenefit,sowecanobtain theidealalternative A*byusingformula(4)fromthe

Fan,C.
424JournalofAdvancedComputationalIntelligence Vol.23No.3,2019 andIntelligentInformatics

Table3. TheRefined-SVNSdecisionmatrix D forfiveacademicsonthreeattributes/sevensub-attributes. ) ) )

Refined-SVNSdecisionmatrix D

A∗ = { (0.8, 0.9, 0.8), (0.2, 0.2, 0.1), (0.1, 0.1, 0.2) , (0 9, 0 7), (0 1, 0 1), (0 2, 0 3) , (0 8, 0 9), (0 1, 0 2), (0 1, 0 1) } W (A1 , A∗ )= 0 9950, W (A2 , A∗ )= 0 9207, W (A3 , A∗ )= 0.8779, W (A4 , A∗ )= 0.8987, W (A5 , A∗ )= 0 8947

So,therankingoffiveacademicsis A1 A2 A4 A5 A3 .Therefore,theacademicnamed A1 isthebest oneofallevaluatedacademics.

Fromabovetwoexamples,wecanseethatthecorrelationcoefficientsofrefined-neutrosophicsetcanbeused inactualengineeringandscientificapplicationstohelp peopletodosomedecisionproblems.

6.Conclusions

Wepresentedthecorrelationcoefficientsmeasureof Refined-SVNSsinthispaperandweusethismethod todealwithtwoactualdecision-makingapplications. Throughthecorrelationcoefficientsmeasurebetweenthe idealalternativeandeachalternative,therankingorder ofallalternativescanbegotandthebestalternativecan beselectedaswell.Finally,therankingorderinthefirst examplewithcorrelationcoefficientsmeasureisprobablyagreewiththerankingresultsof[22],thesecondexamplewithcorrelationcoefficientsmeasurecangetthe rankoffiveevaluatedacademics,sothemethodproposedinthispaperissuitableforactualapplicationsin decision-makingproblemswithRefined-SVNS.Inthefuture,weshallgoonstudyingthecorrelationcoefficients measurebetweenRefined-SVNSsandextendingtheproposeddecision-makingmethodtomanyotherfields.

Acknowledgements

ThisresearchwasfundedbytheNationalNaturalScienceFoundationofChinagrantnumber[61603258],[61703280];GeneralResearchProjectofZhejiangProvincialDepartmentof Educationgrantnumber[Y201839944];PublicWelfareTechnologyResearchProjectofZhejiangProvincegrantnumber [LGG19F020007];PublicWelfareTechnologyApplicationResearchProjectofShaoxing Citygrantnumber[2018C10013].

References:

[1]F.Smarandache,“Neutrosophy:Neutrosophicprobability,set,and logic,”AmericanResearchPress,1998.

[2]H.Wang,F.Smarandache,Y.Q.Zhang,andR.Sunderraman,“Intervalneutrosophicsetsandlogic:Theoryandapplicationsincomputing,”Hexis,2005.

[3]F.Smarandache,“Aunifyingfieldinlogics.InNeutrosophy:NeutrosophicProbability,SetandLogic,”AmericanResearchPress, 1999.

[4]F.Smarandache,“Neutrosophy.Neutrosophicprobability,set,and logic.Analyticsynthesisandsyntheticanalysis,”AmericanResearchPress,p.105,1998.

[5]H.Wang,F.Smarandache,Y.Q.Zhang,andR.Sunderraman,“Singlevaluedneutrosophicsets,”MultispaceandMultistructure,Vol.4, pp.410-413,2010.

[6]F.Smarandache,“n-ValuedRefinedNeutrosophicLogicandIts ApplicationsinPhysics,”ProgressinPhysics,Vol.4,pp.143-146, 2013.

[7]J.Ye,“Amulticriteriadecision-makingmethodusingaggregation operatorsforsimplifiedneutrosophicsets,”J.ofIntelligentand FuzzySystems,Vol.26,pp.2459-2466,2014.

[8]J.YeandF.Smarandache,“SimilarityMeasureofRefinedSingleValuedNeutrosophicSetsandItsMulticriteriaDecisionMaking Method,”NeutrosophicSetsandSystems,Vol.12,pp.41-44,2016.

[9]J.Ye,“Similaritymeasuresbetweenintervalneutrosophicsetsand theirapplicationsinmulticriteriadecision-making,”J.ofIntelligent andFuzzySystems,Vol.26,pp.165-172,2014.

[10]J.Ye,“Multicriteriadecision-makingmethodusingthecorrelation coefficientundersingle-valuedneutrosophicenvironment,”Int.J. ofGeneralSystems,Vol.42,pp.386-394,2013.

[11]S.YeandJ.Ye,“Dicesimilaritymeasurebetweensinglevalued neutrosophicmultisetsanditsapplicationinmedicaldiagnosis,” NeutrosophicSetsandSystem,Vol.6,pp.49-54,2014.

[12]H.-Y.Zhang,J.-Q.Wang,andX.-H.Chen,“Intervalneutrosophic setsandtheirapplicationinmulticriteriadecisionmakingproblems,”TheScientificWorldJ.,2014.

[13]J.Ye,“Improvedcosinesimilaritymeasuresofsimplifiedneutrosophicsetsformedicaldiagnoses,”ArtificialIntelligencein Medicine,Vol.63,No.3,pp.171-179,2015.

[14]J.Ye,“AnotherFormofCorrelationCoefficientbetweenSingleValuedNeutrosophicSetsandItsMultipleAttributeDecisionMaking Method,”NeutrosophicSetsandSystems,Vol.1,pp.8-13,2013.

[15]C.X.FanandJ.Ye,“TheCosineMeasureofRefined-SingleValuedNeutrosophicSetsandRefined-IntervalNeutrosophicSetsfor MultipleAttributeDecision-Making,”J.Intell.FuzzySyst.,Vol.33, pp.2281-2289,2017.

[16]S.Broumi,M.Talea,F.Smarandache,andA.Bakali,“SingleValued NeutrosophicGraphs:Degree,OrderandSize,”IEEEInt.Conf.on FuzzySystems(FUZZ),pp.2444-2451,2016.

[17]S.Broumi,A.Bakali,M.Talea,andF.Smarandache,“IsolatedSingleValuedNeutrosophicGraphs,” NeutrosophicSetsandSystems, Vol.11,pp.74-78,2016.

[18]S.Broumi,F.Smarandache,M.Talea,andA.Bakali,“DecisionMakingMethodBasedontheIntervalValuedNeutrosophicGraph,” 2016FutureTechnologiesConf.(FTC),pp.44-50,2016.

[19]S.Broumi,A.Bakali,M.Talea,F.Smarandache,andL.Vladareanu,“ComputationofShortestPathProbleminaNetworkwithSVTrapezoidalNeutrosophicNumbers,”Proc.ofthe2016Int.Conf. onAdvancedMechatronicSystems,pp.417-422,2016.

[20]S.Broumi,A.Bakali,M.Talea,F.Smarandache,andL.Vladareanu,“ApplyingDijkstraAlgorithmforSolvingNeutrosophicShortestPathProblem,”Proc.ofthe2016Int.Conf.onAdvancedMechatronicSystems,No.30,pp.412-416,2016.

Refined-SingleValuedNeutrosophicSets
Vol.23No.3,2019JournalofAdvancedComputationalIntelligence425 andIntelligentInformatics

Fan,C.

[21]C.X.Fan,E.Fan,andJ.Ye,“TheCosineMeasureofSingle-Valued NeutrosophicMultisetsforMultipleAttributeDecision-Making,” Symmetry,Vol.10,Issue5,doi:10.3390/sym10050154,2018.

[22]J.YeandF.Smarandache,“SimilarityMeasureofRefinedSingleValuedNeutrosophicSetsandItsMulticriteriaDecisionMaking Method,”NeutrosophicSetsandSystems,Vol.12,pp.41-44,2016.

Name: ChangxingFan

Affiliation: DepartmentofComputerScience,Shaoxing University

Address: 508HuanchengWestRoad,Shaoxing,Zhejiang312000,China

BriefBiographicalHistory: 1996-JiangxiUniversityofScienceandTechnology 2000-ShaoxingUniversity 2006-TongjiUnivarsity MainWorks: • Intelligentinformationprocessing,Neutrosophicsettheory

426JournalofAdvancedComputationalIntelligence

andIntelligentInformatics

Vol.23No.3,2019

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.