Introduction to the Complex Refined Neutrosophic Set

Page 1

Introduction to the Complex Refined Neutrosophic Set

1UniversityofNewMexico,Gallup,NM87301,USA smarand@unm.edu

Abstract

Inthispaper,oneextendsthesingle valuedcomplexneutrosophicsettothesubset valued complex neutrosophic set, and afterwards to the subset valued complex refinedneutrosophicset.

Keywords

single valued complex neutrosophic set, subset valued complex neutrosophic set, subset valuedcomplexrefinedneutrosophicset.

1 Introduction

Onefirstrecallsthedefinitionsofthesingle valuedneutrosophicset(SVNS), andofthesubset valueneutrosophicset(SSVNS).

Definition 1.1.

Let X be a space of elements, with a generic element in X denoted by x. A Single-Valued Neutrosophic Set (SVNS) A is characterized by a truth membership function ���� (x), an indeterminacy membership function ���� (x), andafalsitymembershipfunction����(x), whereforeachelement x ∈X,����(x), ����(x),����(x) ∈[0,1]and 0()()()3 AAA TxIxFx ++ .

Definition 1.2.

Let X be a space of elements, with a generic element in X denoted by x A SubSet Valued Neutrosophic Set (SSVNS) A [3] is characterized by a truth membership function ���� (x), an indeterminacy membership function ���� (x), and a falsity membership function ����(x), where for each element x ∈X, the subsets (),(),()[0,1], AAA TxIxFx  with 0sup(())sup(())sup(())3. A A A TxIxFx ++

Critical Review. Volume XIV, 2017

5

Florentin Smarandache

Introduction to the Complex Refined Neutrosophic Set

2 Complex Neutrosophic Set

Ali and Smarandache [1] introduced the notion of single-valued complex neutrosophic set (SVCNS) as a generalization of the single valued neutrosophicset(SVNS)[2].

Definition 2.1.

Let X be a space of elements, with a generic element in X denoted by x. A Single Valued Complex Neutrosophic Set (SVCNS) A [1] is characterized by a truth membership function 2 () 1 (), A A

iTxTxe an indeterminacy membership function 2 () 1 (), A A

iIxIxe and a falsity membership function 2 () 1 (), A A

iFxFxe where for each element x ∈ X, single valued numbers 111(),(),()[0,1], A A A TxIxFx  11 1 0()()()3, A A A TxIxFx ++ 1, i =− andthesingle-valuednumbers 222(),(),()[0,2] A A A TxIxFx   , with 2 2 2 0()()()6 A A A TxIxFx  ++ 111(),(),() A A A TxIxFx represent the real part (or amplitude) of the truth membership, indeterminacy membership, and falsehood membership respectively; while 222(),(),() A A A TxIxFx represent the imaginarypart (or phase) of the truth membership, indeterminacy membership, and falsehood membershiprespectively Definition 2 2 InthepreviousDefinition2.1.,ifonereplacesthesingle valuednumberswith subset values, i.e. the subset values 111(),(),()[0,1], A A A TxIxFx  1, i =− and thesubset values 222(),(),()[0,2] A A A TxIxFx   , with 1 1 1 0sup(())sup(())sup(())3, A A A TxIxFx ++ and 2 2 2 0sup(())sup(())sup(())6, A A A TxIxFx  ++ oneobtainsthe SubSet Valued Complex Neutrosophic Set (SSVCNS).

3 Refined Neutrosophic Set

Smarandacheintroducedtherefinedneutrosophicset[4]in2013.

Critical Review. Volume XIV, 2017

6

Introduction to the Complex Refined Neutrosophic Set

Definition 3.1.

Let X be a space of elements, with a generic element in X denoted by x. A Single-Valued Refined Neutrosophic Set (SVRNS) A is characterized by p subtruth membership functions 12(),(),...,(), A A Ap TxTxTx r sub indeterminacy membership functions 12(),(),...,(), A A Ar IxIxIx and s sub falsity membership functions 12(),(),...,(), A A As FxFxFx where for each element x ∈X, the singlevaluednumbers 12 12 12 (),(),...,(),(),(),...,(),(),(),...,()[0,1] A A A A A A A A A p r s TxTxTxIxIxIxFxFxFx  , 1 2 1 2 1 2 0()()...()()()...()()()... ...(),

andtheintegers p, r, s ≥ 0,withatleastoneof p, r, s tobe ≥ 2. Inotherwords, thetruthmembership function TA(x) wasrefined (split)into p sub truths 12(),(),...,(), A A Ap TxTxTx the indeterminacy membership function IA(x) wasrefined (split)into r sub indeterminacies 12(),(),...,(), A A Ar IxIxIx and the falsity membership function FA(x) was refined (split) into s sub falsities 12(),(),..., A A As FxFxF Definition 3.2.

InthepreviousDefinition3.1.,ifonereplacesthesingle-valuednumberswith subset values i.e., the subset values 12 12 12 (),(),...,(),(),(),...,(),(),(),...,()[0,1], A A A A A A A A A p r s TxTxTxIxIxIxFxFxFx  and 1 2 1 2 12

0sup(())sup(())...sup(())sup(())sup(())... ...sup(())sup(())sup(())...sup(()),

4 Complex Refined Neutrosophic Set

Now one combines the complex neutrosophic set with refined neutrosophic setinordertogetthecomplexrefinedneutrosophicset.

Definition 4 1 Let X be a space of elements, with a generic element in X denoted by x. A Single Valued Complex Refined Neutrosophic Set (SVCRNS) A is characterized

Critical Review. Volume XIV, 2017

Smarandache
Florentin
++++++++++
A A A A A A A A A pr s TxTxTxIxIxIxFxFx Fxprs
+++
A A A A A A A A A p rs TxTxTxIxIx IxFxFxFxprs ++++++ +++++++ oneobtainsthe SubSet Valued Refined Neutrosophic Set (SSVRNS)
7

Florentin Smarandache

Introduction to the Complex Refined Neutrosophic Set

A
A A A A A A A A A pr s TxTxTxIxIxIxFxFx
22122 22122 2
A A A A A A A A A p r s TxTxTxIxIxIxFxFxFx   with 21 22 2 21 22 2 21 22 2 0()()...()()()...()()()... ()2(), A A A A A A A A A pr s TxTxTxIxIxIxFxFx Fxprs  ++++++++++ +++ andthe
p, r, s ≥ 0,withatleast
p, r, s tobe ≥ 2. Definition 4.2. InthepreviousDefinition4.1.,ifonereplacesthesingle valuednumberswith subset valuesi.e.,thesubset values 1112 11112 11112 1 (),(),...,(),(),(),...,(),(),(),...,()[0,1] A A A A A A A A A p r s TxTxTxIxIxIxFxFxFx  with 11 12 1 11 12 1 11 12 1 0sup(())sup(())...sup(())sup(())sup(()). ...sup(())sup(())sup(())...sup(()), A A A A A A A A A p rs TxTxTxIxIx IxFxFxFxprs +++ +++ ++ + ++ ++ and 2122 22122 22122 2 (),(),...,(),(),(),...,(),(),(),...,()[0,2] A A A A A A A A A p r s TxTxTxIxIxIxFxFxFx   with 8
Critical Review. Volume XIV, 2017 by p sub truthmembershipfunctions 21 22 2 () () () 11 12 1 (),(),...,(), p A A A A A A iTx iTx iTx p TxeTxeTxe r sub indeterminacy membership functions 21 22 2 () () () 11 12 1 (),(),...,(), r A A A A A A iIx iIx iIx r IxeIxeIxe and s sub falsity membership functions 21 22 2 () () () 11 12 1 (),(),...,(), s A A A A A A iFx iFx iFx s FxeFxeFxe and 1, i =− where for each element x ∈X, the single valued numbers (sub real parts,orsub amplitudes) 1112 11112 11112 1 (),(),...,(),(),(),...,(),(),(),...,()[0,1] A A A
A A A A A p r s TxTxTxIxIxIxFxFxFx  with 1112 1 1112 1 11 12 1 0()()...()()()...()()() ...(),
Fxprs ++++++++++ +++ andthesingle valuednumbers(sub imaginaryparts,orsub phases) 2122
(),(),...,(),(),(),...,(),(),(),...,()[0,2]
integers
oneof

5 Conclusion

After the introduction of the single-valued and subset-valued complex refined neutrosophic sets as future research is the construction of their aggregationoperators,thestudyoftheirproperties,andtheirapplicationsin variousfields.

6 References

[1] Ali, M., & Smarandache, F. (2017). Complex neutrosophic set. Neural ComputingandApplications,28(7),1817 1834.

[2] Smarandache, F Neutrosophic set a generalization of the intuitionistic fuzzy set.In:GranularComputing,2006IEEEIntl.Conference,(2006)38 42,DOI: 10.1109/GRC.2006.1635754.

[3] Smarandache, F., Neutrosophy / Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning, Ann Arbor, Michigan, USA, 105 p., 1998

[4] Smarandache, Florentin, n Valued Refined Neutrosophic Logic and Its Applications in Physics, Progress in Physics, 143 146, Vol. 4, 2013; https://arxiv.org/ftp/arxiv/papers/1407/1407.1041.pdf.

XIV,

A A A
A A A
p rs
 
Florentin Smarandache Introduction to the Complex Refined Neutrosophic Set Critical Review. Volume
2017 21 22 2 21 22 2 21 22 2 0sup(())sup(())...sup(())sup(())sup(())... ...sup(())sup(())sup(())...sup(())2(),
A A
A
TxTxTxIxIx IxFxFxFxprs
+ ++ ++ + ++ + ++ ++ oneobtainsthe SubSet Valued Complex Refined Neutrosophic Set (SSVCRNS)
9

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.