Introduction to the Complex Refined Neutrosophic Set
Florentin Smarandache11UniversityofNewMexico,Gallup,NM87301,USA smarand@unm.edu

Abstract
Inthispaper,oneextendsthesingle valuedcomplexneutrosophicsettothesubset valued complex neutrosophic set, and afterwards to the subset valued complex refinedneutrosophicset.
Keywords
single valued complex neutrosophic set, subset valued complex neutrosophic set, subset valuedcomplexrefinedneutrosophicset.
1 Introduction

Onefirstrecallsthedefinitionsofthesingle valuedneutrosophicset(SVNS), andofthesubset valueneutrosophicset(SSVNS).
Definition 1.1.
Let X be a space of elements, with a generic element in X denoted by x. A Single-Valued Neutrosophic Set (SVNS) A is characterized by a truth membership function ���� (x), an indeterminacy membership function ���� (x), andafalsitymembershipfunction����(x), whereforeachelement x ∈X,����(x), ����(x),����(x) ∈[0,1]and 0()()()3 AAA TxIxFx ++ .
Definition 1.2.
Let X be a space of elements, with a generic element in X denoted by x A SubSet Valued Neutrosophic Set (SSVNS) A [3] is characterized by a truth membership function ���� (x), an indeterminacy membership function ���� (x), and a falsity membership function ����(x), where for each element x ∈X, the subsets (),(),()[0,1], AAA TxIxFx with 0sup(())sup(())sup(())3. A A A TxIxFx ++
Critical Review. Volume XIV, 2017
Florentin Smarandache
Introduction to the Complex Refined Neutrosophic Set
2 Complex Neutrosophic Set
Ali and Smarandache [1] introduced the notion of single-valued complex neutrosophic set (SVCNS) as a generalization of the single valued neutrosophicset(SVNS)[2].
Definition 2.1.
Let X be a space of elements, with a generic element in X denoted by x. A Single Valued Complex Neutrosophic Set (SVCNS) A [1] is characterized by a truth membership function 2 () 1 (), A A
iTxTxe an indeterminacy membership function 2 () 1 (), A A
iIxIxe and a falsity membership function 2 () 1 (), A A
iFxFxe where for each element x ∈ X, single valued numbers 111(),(),()[0,1], A A A TxIxFx 11 1 0()()()3, A A A TxIxFx ++ 1, i =− andthesingle-valuednumbers 222(),(),()[0,2] A A A TxIxFx , with 2 2 2 0()()()6 A A A TxIxFx ++ 111(),(),() A A A TxIxFx represent the real part (or amplitude) of the truth membership, indeterminacy membership, and falsehood membership respectively; while 222(),(),() A A A TxIxFx represent the imaginarypart (or phase) of the truth membership, indeterminacy membership, and falsehood membershiprespectively Definition 2 2 InthepreviousDefinition2.1.,ifonereplacesthesingle valuednumberswith subset values, i.e. the subset values 111(),(),()[0,1], A A A TxIxFx 1, i =− and thesubset values 222(),(),()[0,2] A A A TxIxFx , with 1 1 1 0sup(())sup(())sup(())3, A A A TxIxFx ++ and 2 2 2 0sup(())sup(())sup(())6, A A A TxIxFx ++ oneobtainsthe SubSet Valued Complex Neutrosophic Set (SSVCNS).
3 Refined Neutrosophic Set
Smarandacheintroducedtherefinedneutrosophicset[4]in2013.
Critical Review. Volume XIV, 2017
Introduction to the Complex Refined Neutrosophic Set
Definition 3.1.
Let X be a space of elements, with a generic element in X denoted by x. A Single-Valued Refined Neutrosophic Set (SVRNS) A is characterized by p subtruth membership functions 12(),(),...,(), A A Ap TxTxTx r sub indeterminacy membership functions 12(),(),...,(), A A Ar IxIxIx and s sub falsity membership functions 12(),(),...,(), A A As FxFxFx where for each element x ∈X, the singlevaluednumbers 12 12 12 (),(),...,(),(),(),...,(),(),(),...,()[0,1] A A A A A A A A A p r s TxTxTxIxIxIxFxFxFx , 1 2 1 2 1 2 0()()...()()()...()()()... ...(),
andtheintegers p, r, s ≥ 0,withatleastoneof p, r, s tobe ≥ 2. Inotherwords, thetruthmembership function TA(x) wasrefined (split)into p sub truths 12(),(),...,(), A A Ap TxTxTx the indeterminacy membership function IA(x) wasrefined (split)into r sub indeterminacies 12(),(),...,(), A A Ar IxIxIx and the falsity membership function FA(x) was refined (split) into s sub falsities 12(),(),..., A A As FxFxF Definition 3.2.
InthepreviousDefinition3.1.,ifonereplacesthesingle-valuednumberswith subset values i.e., the subset values 12 12 12 (),(),...,(),(),(),...,(),(),(),...,()[0,1], A A A A A A A A A p r s TxTxTxIxIxIxFxFxFx and 1 2 1 2 12
0sup(())sup(())...sup(())sup(())sup(())... ...sup(())sup(())sup(())...sup(()),
4 Complex Refined Neutrosophic Set
Now one combines the complex neutrosophic set with refined neutrosophic setinordertogetthecomplexrefinedneutrosophicset.
Definition 4 1 Let X be a space of elements, with a generic element in X denoted by x. A Single Valued Complex Refined Neutrosophic Set (SVCRNS) A is characterized
Critical Review. Volume XIV, 2017
Florentin Smarandache
Introduction to the Complex Refined Neutrosophic Set
5 Conclusion
After the introduction of the single-valued and subset-valued complex refined neutrosophic sets as future research is the construction of their aggregationoperators,thestudyoftheirproperties,andtheirapplicationsin variousfields.
6 References
[1] Ali, M., & Smarandache, F. (2017). Complex neutrosophic set. Neural ComputingandApplications,28(7),1817 1834.
[2] Smarandache, F Neutrosophic set a generalization of the intuitionistic fuzzy set.In:GranularComputing,2006IEEEIntl.Conference,(2006)38 42,DOI: 10.1109/GRC.2006.1635754.
[3] Smarandache, F., Neutrosophy / Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning, Ann Arbor, Michigan, USA, 105 p., 1998
[4] Smarandache, Florentin, n Valued Refined Neutrosophic Logic and Its Applications in Physics, Progress in Physics, 143 146, Vol. 4, 2013; https://arxiv.org/ftp/arxiv/papers/1407/1407.1041.pdf.
XIV,