Characterizations of Strong and Balanced Neutrosophic Complex Graphs

Page 1

International Journal of Engineering & Technology, 7 (4.10) (2018) 593-597

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET Research paper

Characterizations of Strong and Balanced Neutrosophic Complex Graphs

R. Narmada Devi1*, N.Kalaivani2, S. Broumi3 and K.A.Venkatesan4

1 Department of Mathematics, Vel Tech Rangarajan Dr.Sagunthala R & D Institute of Science and Technology, Chennai, India. Email:narmadadevi23@gmail.com 2 Department of Mathematics, Vel Tech Rangarajan Dr.Sagunthala R& D Institute of Science and Technology, Chennai, India. Email:kalaivani.rajam@gmail.com 3 Laboratoryof Information Processing, Faculty of Science BenM’sik, University Hassan II,B.P 7955, Sidi Othman, Casablanca, Morocca. Email:broumisaid78@gmail.com 4 Department of Mathematics, Vel Tech Rangarajan Dr.Sagunthala R & D Institute of Science and Technology, Chennai, India. Email:venkimaths1975@gmail.com *Corresponding author E-mail: narmadadevi23@gmail.com

Abstract

In this paper, the concepts of neutrosophic complex graph, complete neutrosophic complex graph, strong neutrosophic complex graph, balanced neutrosophic complex graph and strictly balanced neutrosophic complex graph are introduced. Some of the interesting properties and related examples are established.

Keywords: Neutrosophic complex graph, complement of a NCG , NCGcomp , density of a NCG , NCG balanced , NCG strt-balanced , total degree of a vertex, size and order of NCG

1. Introduction

The graph theory is an extremely useful tool for solving combinatorial problems in different areas such algebra, number theory, operation research, computer science, networks etc. as the result of rapid increasing in the size of networks the graph problems become uncertain and we deal these aspects with the method of fuzzy logic[8]. Al. Hawary [1] introduced the concept of balanced fuzzy graphs and some operations of fuzzy graphs. Ramot [5, 6], Zhang [9] introduced the idea of a complex fuzzy sets, complex fuzzy logic and its applications. R.Narmada Devi [7] discussed the concept of neutrosophic complex set and its operations. S. Broumi [2,3,4] were introduced the concepts of single valued neutrosophic graph, its types and their application in real life problem.

2. Preliminaries

Definition 2.1

[7] Let X be a nonempty set. A neutrosophic complex set {,(),(),():} AAA AxTxIxFxxX  is defined on the universe of discourse X which is characterized by a truth membership function AT , an indeterminacy membership function A I and a falsity

membership function AF that assigns a complex values grade of (),()AA TxIx and () A Fx in A for any xX  . The values (),()AA TxIx and () A Fx and their sum may all within the unit circle in the complex plane and so is of the following form () ()(). A jx AA Txpxe   , () ()(). A jx AA Ixqxe   and () ()(). A jx AA Fxrxe   where (),(),() AAA pxqxrx and (),(),() AAAxxx are respectively real valued and (),(),()[0,1] AAA pxqxrx  such that 0()()()3 AAA pxqxrx  .

Definition 2.2:

[7] Let ,(),(),() AAA AxTxIxFx  and ,(),(),() BBB BxTxIxFx  be anytwo neutrosophic complex sets in X . Then theunion and intersection of A and B are denoted and defined as (i) ,(),(),() ABABAB ABxTxIxFx

where [()()] ()[()()]. AB jxx ABAB Txpxpxe

jxx ABAB Ixqxqxe 

and [()()] ()[()()]. AB jxx ABAB Fxrxrxe 

,(),(),() ABABAB ABxTxIxFx 

where

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 
    , [()()] ()[()()]. AB

   . (ii)


[()()] ()[()()]. AB jxx ABAB Txpxpxe     , [()()] ()[()()]. AB jxx ABAB Ixqxqxe     and [()()] ()[()()]. AB jxx ABAB Fxrxrxe    

Definition 2.3: [7] Let ,(),(),() AAA AxTxIxFx  and ,(),(),() BBB BxTxIxFx  be anytwo neutrosophic complex sets in X . Then (i) AB  if ()(),()() ABAB TxTxIxIx  and ()()AB FxFx  , for all That is ()(),()() ABAB pxpxxx  , ()(),()() ABAB qxqxxx  , ()()AB rxrx  and ()()ABxx  , (ii) The complement of is defined as ,(),(),() CCC C AAA AxTxIxFx  where [1()] ()[1()]. A C jx A A Txpxe   , [1()] ()[1()]. A C jx A A Ixqxe   and [1()] ()[1()]. A C jx A A Fxrxe   , for all

3. View on Strong Neutrosophic Complex Graphs

Definition 3.1: Let   *, GVE  be a crisp graph. A pair   , GAB  is called a neutrosophic complex graph (in short. NCG ) on a crisp graph   *, GVE  , where       ,,,AAA AxTxIxFx  is a neutrosophic complex set on V, for every xV  and       ,,,BBB BxyTxyIxyFxy  is a neutrosophic complex set on E such that       min, BAA TxyTxTy   ,       min, BAA IxyIxIy  and       max, BAA FxyFxFy   for every xyEVV  . Then A and B are neutrosophic complex vertex set on V and neutrosophic complex edge set on E respectively.

Definition 3.2:.

A neutrosophic complex graph   , GAB  is called a complement of a neutrosophic complex graph   , GAB  if (i) AA  , (ii)         min,AAB B TxyTxTyTxy   , (iii)         min,AAB B IxyIxIyIxy   , (iv)  

Definition 3.3:

    11 , AAAA IxIxFxFx  , for all 1 xyEE 

Definition 3.4:

A neutrosophic complex graph G is a complete neutrosophic complex graph (in short. NCGcomp )       min, BAA TxyTxTy   ,       min, BAA IxyIxIy   and       max, BAA FxyFxFy   for every , xyV 

Definition 3.5:

A neutrosophic complex graph G is a strong neutrosophic complex graph (in short. NCGSt )       min, BAA TxyTxTy   ,       min, BAA IxyIxIy   and       max, BAA FxyFxFy   for every xyE 

Proposition 3.1: Let   , GAB  be any strong neutrosophic complex fuzzy graph. Then (i) Every strong neutrosophic complex graph is the generalization of strong complex fuzzy graph.

(ii) Every strong neutrosophic complex graph is the generalization of strong neutrosophic fuzzy graph. (iii) Every strong neutrosophic complex graph is the generalization of strong intuitionistic fuzzy graph. (iv) Every strong neutrosophic complex graph is the generalization of strong vague fuzzygraph. (v) Every strong neutrosophic complex graph is the generalization of strong fuzzygraph.

Definition 3.6:. Let  111 , GAB  and   222 , GAB  be any two neutrosophic complex graphs on the crisp graphs  11*, GVE  and   22**, GVE  respectively. Then the Cartesian product   121212 , GGAABB  is a neutrosophic complex graph which is defined as follows: (i)                        

Proposition

     1212 for all,xxVVV 

TxxTxTx IxxIxIx FxxFxFx

1212 1212 1212

  

AAAA AAAA AAAA

1212 1212 1212

,min,, ,min,and ,max,,

TxxxyTxTxy IxxxyIxIxy FxxxyFxFxy

1212 1212 1212

  

BBAB BBAB BBAB

,,,min,,, ,,,min,,and ,,,max,,,

2222 2222 2222

     222 for everyx,,VxyE (iii)                                    

BBBA BBBA BBBA   

1212 1212 1212

,,,min,,, ,,,min,,and ,,,max,,,

1111 1111 1111

2111 for everyz,,VxyE

TxzyzTxyTz IxzyzIxyIz FxzyzFxyFz     

594 International Journal of Engineering & Technology
     
max,AAB B FxyFxFyFxy   , for all xyE 
            111 ,, AAAAAA TxTxIxIxFxFx 
1
 ,
    1 , AA TxTx     
Let   , GAB
be any neutrosophic complex graph of a crisp graph   *, GVE  . Then  11 , HAB  is called a neutrosophic complex subgraph(inshort., NCSubG ) if (i)
, for all
xVV
(ii)
(ii)                                    
3.2:.
If  111 , GAB  and   222 , GAB  be any two strong neutrosophic complex graphs on the crisp graphs  11*, GVE  and   22**, GVE  respectively. Then the Cartesian product   121212 , GGAABB  is a neutrosophic complex graph on the crisp graph   ***, GGGVE  where 12VVV  and 12EEE  .

,,,min, min,,.3.2 BBAB AAA

2222 22

  

IxxxyIxIxy IxIxIy    (iii)                       1212 122

FxxxyFxFxy FxFxFy    We knowthat                                                            

,,,max, max,,.3.3 BBAB AAA

2222 22

            But (i)   

TxxTxTx TxyTxTy IxxIxIx IxyIxIy FxxFxFx FxyFxFy

Fxy FG FxFy  

This implies that a) 

2 B xyV D AA xyE

Ixy IG IxIy  

  

          ,

 

  

  and         2 B xyV D AA xyE

Definition 4.2:. A neutrosophic complex graph   , GAB  is balanced (in short., NCG balanced ) if    DHDG  where  11 , HAB  is a neutrosophic complex subgraph of   , GAB  . That is,     DD THTG  ,     DD IHIG  and     DD FHFG 

Example 4.1:.

,min,, ,min,, ,min,, ,min,, ,min,and ,max,,  

b)  

1212 1212 1212 1212 1212 1212 

                1212 1212 22 22 min,,, minmin,,min, AAAA AAAA TxxTxy TxTxTxTy   (ii)                     1212 1212 22 22 min,,, minmin,,min, AAAA AAAA IxxIxy IxIxIxIy   (iii)                     1212 1212 22 22 max,,, maxmax,,max, AAAA AAAA FxxFxy FxFxFxFy 

1212 1212 1212 1212 1212 1212             

AAAA AAAA AAAA AAAA AAAA AAAA  

Consider neutrosophic complex graph   , GAB  for a crisp graph   *, GVE  where   ,, Vuvz  and   ,, Euvuzvz  . Let neutrosophic complex subgraphs of G are  111 , HAB  ,   222 , HAB  ,  333 , HAB  ,   444 , HAB  ,   555 , HAB  and   666 , HAB  whose vertex sets and edge sets are given by         1122,,,,,, VuvEuvVuzEuz      33,,,VvzEvz      44,,,,, VuvzEuvvz        556,,,,,,, VuvzEuvuzVuvz  and   6 , Euzvz  respectively. Therefore the density of a neutrosophic complex graph   0.27,0.27,2.71 DG  But     1 0.18,0.18,2.76, DHDG      2 0.18,0.18,2.76, DHDG      3 0.18,0.18,3.68, DHDG      4 0.16,0.16,3.05, DHDG      5 0.16,0.16,2.97 DHDG  and     6 0.18,0.18,2.97 DHDG  . This implies that the given graph   , GAB  is a balanced neutrosophic complex graph.

Figure 1: Balanced neutrosophic complex graph

International Journal of Engineering & Technology 595
Proof: Let 1G and 2G be strong neutrosophic complex graphs. Then there exists ,,1,2 jjj xxEj such that         ,min,, jjj BjjAjAj TxxTxTy          ,min,and jjj BjjAjAj IxxIxIy          ,max, jjj BjjAjAj FxxFxFy  for 1,2 j  Let              22122112111 ,,,,,,,, ExxxyxVxyExzyzzVxyE  U Suppose that    22,, xxxyE  , we have (i)                       1212 122
2222 22
,,,min, min,,.3.1 BBAB AAA
TxxxyTxTxy TxTxTy    (ii)                       1212 122
1212122 2222min,,,min,, AAAAAAA TxxTxyTxTxTy
          1212122 2222min,,,min,, AAAAAAA IxxIxyIxIxIy   c)               1212122 2222max,,,max,, AAAAAAA FxxFxyFxFxFy   Hence the equations (3.1), (3.2) and (3.3) becomes             1212122222 ,,,min,,, BBAAAA TxxxyTxxTxy   ,             1212122222 ,,,min,,, BBAAAA IxxxyIxxIxy   and             1212122222 ,,,max,,, BBAAAA FxxxyFxxFxy   Therefore 12GGG  is a strongneutrosophic complex graph.
4. Balanced and Strictly Balanced Neutrosophic Complex Graphs
Definition 4.1:. Let   , GAB  be any neutrosophic complex graph of a crisp graph   *, GVE  . Then the density of a neutrosophic complex graph G is defined by         ,, DDD DGTGIGFG  where         ,
2 B xyV D AA xyE
Txy TG TxTy  

Proposition 4.1:

Every complete neutrosophic complex graph is a balanced neutrosophic complex graph.

Proof: Let 

, GAB

be any complete neutrosophic complex graph

Bythe definition, we have (i) ()min[(),()] BAA TxyTxTy

(ii) ()min[(),()] BAA IxyIxIy

be a be a nonempty neutrosophic complex subgraph of G. Then ()(2,2,2)DH  for every HG  . Hence G is a balanced neutrosophic complex graph.

Remark 4.4: Every strong neutrosophic complex graph is a balanced neutrosophic complex graph.

Definition 4.3: A neutrosophic complex graph G is strictly balanced (inshort., NCGStrt-balanced ) if for every , xyV  and for all nonempty neutrosophic complex subgraph (,),,()() jj HABjJDHDG 

Example 4.2: Consider NCG G for a crisp graph *G where V={a,b,c} and E={ab,bc,ac} . Let 111(,)HAB  , 222(,)HAB  , 333(,)HAB  , 444(,)HAB  , 555(,)HAB  and 666(,)HAB  be six NCSubG s of G whose vertex sets and edge sets are given by 11{,},{},VabEab  223{,},{},{,}, VbcEbcVac  3 {},Eac  , 44{,,},{,}, VabcEacab  55{,,},{,} VabcEabbc  , 6 {,,}Vabc  and 6 {,}Ebcac  respectively. Therefore the density of a neutrosophic complex graph G is equal to the density of all the above neutrosophic complex subgraphs of G, that is., ()(2,2,2)() j DGDH  where {1,2,3,4,5,6} j  . Hence G is a strictlybalanced neutrosophic complex graph.

Proposition 4.2:

The complement of a strictlybalanced neutrosophic complex graph is a strictlybalanced neutrosophic complex graph.

Definition 4.4:. Let   , GAB  be any neutrosophic complex graph of a crisp graph   *, GVE  . Then the total degree of a vertex xV  Then (i) T-degree of a vertex uV  is defined as     degG B xy TxTxy 

  , (ii) T-degree of a vertex uV  is defined as     degG B xy IxIxy 

  , (iii) F-degree of a vertex uV  is defined as     deg , G B xy FxFxyxyE   

Definition 4.5:. Let   , GAB  be any neutrosophic complex graph of a crisp graph   *, GVE  . Then the total degree of a vertex xV  is defined by         ,, GGG Gddd dxTxIxFx  where       deg GG dA TxTxTx  ,       deg GG dA IxIxIx  and       deg GG dA FxFxFx 

Definition 4.6:. Let   , GAB  be any neutrosophic complex graph of a crisp graph   *, GVE  . Then the total degree of a vertex xV  . Then the size of neutrosophic complex graph G is defined by         ,, SSS SGTGIGFG  where     SB xyV TGTxy 

Figure 2: Strictly balanced neutrosophic complex graph

  and     , SB xyV FGFxy 

  .

  ,     , SB xyV IGIxy 

Definition 4.7: Let   , GAB  be any neutrosophic complex graph of a crisp graph   *, GVE  . Then the total degree of a vertex xV  is defined by         ,, OrdOrdOrd OrdGTGIGFG  where     i

OrdAi xV TGTx 

  ,     i

OrdAi xV FGFx 

OrdAi xV IGIx 

 

  and     i

Proposition 4.3:.

If   , GAB  is neutrosophic complex graph of a crisp graph   *, GVE  , then for every xyE  , (i)       2 SSB xyV TGTGTxy    , (ii)       ,

2 SSB xyV IGIGIxy    , (iii)       ,

2 SSB xyV FGFGFxy   

Proof: (i)       min, BAA TxyTxTy   ,

596 International Journal of Engineering & Technology
xyVxyE
 
xyVxyE
  (iii) , ()[()()] BAA xyVxyE
  Now , 2() () [()()] B xyV D AA xyE Txy TG TxTy       , , 2() () [()()] B xyV D AA xyE Ixy IG
      and , 2() () [()()] B xyV D AA xyE Fxy FG FxFy      
(iii) ()max[(),()] BAA FxyFxFy
for every , xyV  . This implies that (i) , ()[()()] BAA
TxyTxTy
 (ii) , ()[()()] BAA
IxyIxIy
FxyFxFy
IxIy
This implies that ()(2,2,2)DG
. Let 11 (,)HAB

(ii)       min, BAA IxyIxIy   ,

(iii)       min, BAA FxyFxFy  

(iv)         min,AAB B TxyTxTyTxy   ,

(v)         min,AAB B IxyIxIyIxy   and

(vi)         max,AAB B FxyFxFyFxy  

We know that order of a neutrosophic complex graph G is equal to neutrosophic complex graph G This implies that    OrdGOrdG  and we have   

max,AA B FxyFxFy   . But

5. Conclusion

Nowadays, medical diagnosis comprises of uncertainties and increased volume of information available to physicians from new medical technologies. So, all collected information may be in neutrosophic complex form. The three components of a neutrosophic complex set are the combinations of real-valued truth amplitude term in association with phase term, real-valued indeterminate amplitude term with phase term, and real-valued false amplitude term with phase term respectively. So, to deal more indeterminacy situations in medical diagnosis neutrosophic complex environment is more acceptable.

References

[1] T. AL- Hawary, “Complete fuzzy graph”, International J.Math. Combin. , 4(2011), 26-34.

[2] S. Broumi, M. Talea, A. Bakali, F. Smarandache, “Single Valued Neutrosophic Graphs”, Journal of New Theory,10(2016), 86-101.

[3] S. Broumi, M. Talea, F. Smarandache and A. Bakali, “Single Valued Neutrosophic Graphs: Degree, Order and Size”, IEEE International Conference on Fuzzy Systems (FUZZ),(2016),2444-2451.

[4] S.Broumi, M. Talea, A. Bakali, F. Smarandache, “Interval Valued Neutrosophic Graphs”, SISOM and ACOUSTICS ,10 (2016), 533.

[5] D. Ramot, R..Milo, M. Friedman, A.Kandel, “Complex Fuzzy sets”, IEEE Trans. fuzzy syst., 10(2),(2002),171-186.

[6] D. Ramot, M. Friedman, G.Langholz, A.Kandel, “Complex Fuzzy Logic”, IEEE Trans. fuzzy syst., 11(2),(2003),450-461.

[7] R.Narmada Devi, “Neutrosophic Complex -Continuity”,Annals of Fuzzy Mathematics and Informatics ,13(1),(2017),109-122.

[8] L.A.Zadeh, “Fuzzy Sets”,Infor. and Control,9(1965),338-353.

[9] G.Zhang, ST. Dilon, YK. Cau, J. Ma, J. Lu, “Operations properties and -equalities of complex Fuzzy Sets”,International J. Approx. Reason ,50(2009),1227-1249.

International Journal of Engineering & Technology 597
                       
  
                      ,,, ,,,
BAA B xyVxyVxyV BAA B xyVxyVxyV BAA B xyVxyVxyV TxyTxyTxTy IxyIxyIxIy FxyFxyFxFy             This implies that                   ,, ,, ()()2min,2, ()()2min,2 and()()2max,2. SSAAB xyVxyV SSAAB xyVxyV SSAAB xyVxyV TGTGTxTyTxy IGIGIxIyIxy FGFGFxFyFxy            
         min,,min, BBAAAA TxyTxTyIxyIxIy   and      
min,, min, and max, BAA B BAA B BAA B TxyTxyTxTy IxyIxyIxIy FxyFxyFxFy       This implies that  
                 2min,, 2min, and 2max, BAA B BAA B BAA B TxyTxyTxTy IxyIxyIxIy FxyFxyFxFy       Taking summation on both side,we have  
2min,, 2min, and 2max,.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.