Certain Competition Graphs Based on Intuitionistic Neutrosophic Environment

Page 1

Article

CertainCompetitionGraphsBasedonIntuitionistic NeutrosophicEnvironment

MuhammadAkram* ID andMaryamNasir

DepartmentofMathematics,UniversityofthePunjab,NewCampus,Lahore54590,Pakistan; maryamnasir912@gmail.com

* Correspondence:m.akram@pucit.edu.pk;Tel.:+92-42-99231241

Received:7September2017;Accepted:19October2017;Published:24October2017

Abstract: Theconceptofintuitionisticneutrosophicsetsprovidesanadditionalpossibilitytorepresent imprecise,uncertain,inconsistentandincompleteinformation,whichexistsinrealsituations.Thisresearch articlefirstpresentsthenotionofintuitionisticneutrosophiccompetitiongraphs.Then, p-competition intuitionisticneutrosophicgraphsand m-stepintuitionisticneutrosophiccompetitiongraphsarediscussed. Further,applicationsofintuitionisticneutrosophiccompetitiongraphsinecosystemandcareercompetition aredescribed.

Keywords: intuitionisticneutrosophiccompetitiongraphs;intuitionisticneutrosophicopen-neighborhood graphs; p-competitionintuitionisticneutrosophicgraphs; m-stepintuitionisticneutrosophiccompetition graphs

MSC: 03E72;68R10;68R05

1.Introduction

Euler[1]introducedtheconceptofgraphtheoryin 1736,whichhasapplicationsinvariousfields, includingimagecapturing,datamining,clusteringandcomputerscience[2–5].Agraphisalsousedto developaninterconnectionbetweenobjectsinaknownsetofobjects.Everyobjectcanbeillustratedby avertex,andinterconnectionbetweenthemcanbeillustratedbyanedge.Thenotionofcompetition graphswasdevelopedbyCohen[6]in 1968,dependingonaprobleminecology.Thecompetition graphshavemanyutilizationsinsolvingdailylifeproblems,includingchannelassignment,modelingof complexeconomic,phytogenetictreereconstruction,codingandenergysystems.

Fuzzysettheoryandintuitionisticfuzzysetstheoryareusefulmodelsfordealingwithuncertainty andincompleteinformation.However,theymaynotbesufficientinmodelingofindeterminateand inconsistentinformationencounteredintherealworld.Inordertocopewiththisissue,neutrosophic settheorywasproposedbySmarandache[7]asageneralizationoffuzzysetsandintuitionisticfuzzy sets.However,sinceneutrosophicsetsareidentifiedbythreefunctionscalledtruth-membership (t), indeterminacy-membership (i) andfalsity-membership ( f ),whosevaluesaretherealstandardor non-standardsubsetofunitinterval ]0 ,1+ [.Therearesomedifficultiesinmodelingofsomeproblems inengineeringandsciences.Toovercomethesedifficulties,Smarandachein1998[8]andWangetal.[9] in2010definedtheconceptofsingle-valuedneutrosophicsetsandtheiroperationsasageneralizationof intuitionisticfuzzysets.Yangetal.[10]introducedtheconceptofthesingle-valuedneutrosophicrelation basedonthesingle-valuedneutrosophicset.Theyalsodevelopedkernelsandclosuresofasingle-valued neutrosophicset.Theconceptofthesingle-valuedintuitionisticneutrosophicsetwasproposedby BhowmikandPal[11,12].

Information 2017, 8,132;doi:10.3390/info8040132

www.mdpi.com/journal/information

information

Thevaluablecontributionoffuzzygraphandgeneralizedstructureshasbeenstudiedbyseveral researchers[13–22].Smarandache[23]proposedthenotionoftheneutrosophicgraphandseparatedthem intofourmaincategories.Wu[24]discussedfuzzydigraphs.Fuzzy m-competitionand p-competition graphswereintroducedbySamantaandPal[25].Samantaetal.[26]introduced m-stepfuzzycompetition graphs.Dhavaseelanetal.[27]definedstrongneutrosophicgraphs.AkramandShahzadi[28]introduced thenotionofasingle-valuedneutrosophicgraphandstudiedsomeofitsoperations.Theyalsodiscussed thepropertiesofsingle-valuedneutrosophicgraphsbylevelgraphs.AkramandShahzadi[29]introduced theconceptofneutrosophicsoftgraphswithapplications.Broumietal.[30]proposedsingle-valued neutrosophicgraphsanddiscussedsomeproperties.Ye[31–33]haspresentedseveralnovelconcepts ofneutrosophicsetswithapplications.Inthispaper,wefirstintroducetheconceptofintuitionistic neutrosophiccompetitiongraphs.Wethendiscuss m-stepintuitionisticneutrosophiccompetitiongraphs. Further,wedescribeapplicationsofintuitionisticneutrosophiccompetitiongraphsinecosystemand careercompetition.Finally,wepresentourdevelopedmethodsbyalgorithms.

Ourpaperisdividedintothefollowingsections:InSection 2,weintroducecertaincompetition graphsusingtheintuitionisticneutrosophicenvironment.InSection 3,wepresentapplicationsof intuitionisticneutrosophiccompetitiongraphsinecosystemandcareercompetition.Finally,Section 4 providesconclusionsandfutureresearchdirections.

2.IntuitionisticNeutrosophicCompetitionGraphs

Wehaveusedstandarddefinitionsandterminologiesinthispaper.Forothernotations,terminologies andapplicationsnotmentionedinthepaper,thereadersarereferredto[34–44].

Definition1. [38]Let X beafixedset.Ageneralizedintuitionisticfuzzyset I of X isanobjecthavingthe form I={(u, µ I (u), νI (u))|u ∈ U},wherethefunctions µ I (u) :→ [0,1] and νI (u) :→ [0,1] definethedegreeof membershipanddegreeofnon-membershipofanelementu ∈ X,respectively,suchthat:

min{µ I (u), νI (u)}≤ 0.5,forallu ∈ X.

Thisconditioniscalledthegeneralizedintuitionisticcondition.

Definition2. [11]Anintuitionisticneutrosophicset(IN-set)isdefinedas ˘ A =(w,tA(w),iA(w),fA(w)),where: t ˘ A (w) ∧ f ˘ A (w) ≤ 0.5, tA (w) ∧ iA (w) ≤ 0.5, i ˘ A (w) ∧ f ˘ A (w) ≤ 0.5, forall,w ∈ X,suchthat: 0 ≤ t ˘ A (w)+ i ˘ A (w)+ f ˘ A (w) ≤ 2.

Definition3. [12]Anintuitionisticneutrosophicrelation(IN-relation)isdefinedasanintuitionisticneutrosophic subsetofX × Y,whichhasoftheform: R = {((w,z),tR (w,z),iR (w,z),fR (w,z)) : w ∈ X,z ∈ Y}, wheretR,iR andfR areintuitionisticneutrosophicsubsetsofX × Ysatisfyingtheconditions: 1. oneofthesetR (w,z),iR (w,z) andfR (w,z) isgreaterthanorequalto 0.5, 2. 0 ≤ tR (w, z)+ iR (w, z)+ fR (w, z) ≤ 2

Definition4. Anintuitionisticneutrosophicgraph(IN-graph) G =(X, h, k) (inshort G)on X (vertexset)is atripletsuchthat:

Information
2017, 8,132 2of26

1. tk (w, z) ≤ th (w) ∧ th (z),ik (w, z) ≤ ih (w) ∧ ih (z),fk (w, z) ≤ fh (w) ∨ fh (z), 2. tk (w, z) ∧ ik (w, z) ≤ 0.5,tk (w, z) ∧ fk (w, z) ≤ 0.5,ik (w, z) ∧ fk (w, z) ≤ 0.5, 3. 0 ≤ tk (w, z)+ ik (w, z)+ fk (w, z) ≤ 2,forallw, z ∈ X, where, th,ih andfh → [0,1]

denotethetruth-membership,indeterminacy-membershipandfalsity-membershipofanelementw ∈ Xand: tk,ik andfk → [0,1]

denotethetruth-membership,indeterminacy-membershipandfalsity-membershipofanelement (w, z) ∈ E (edgeset).

Wenowillustratethiswithanexample.

Example1. ConsiderIN-graph G onnon-emptysetX,asshowninFigure 1. a(0 1, 0 4, 0 5)

(0. 1, 0. 2, 0. 4) (0 .5 , 0 .2 , 0 .1) (0.1, 0.2, 0.3) (0 . 5, 0 . 2, 0 . 2) (0 5, 0 2, 0 1)

b(0 6, 0 3, 0 2) c(0 8, 0 3, 0 4) d(0 7, 0 4, 0 2)

Figure1. Intuitionisticneutrosophicgraph(IN-graph).

Definition5. Let −→ G beanintuitionisticneutrosophicdigraph(IN-digraph),thenintuitionisticneutrosophic out-neighborhoods(IN-out-neighborhoods)ofavertexwareanIN-set: N+ (w)=(X+ w ,t+ w ,i+ w ,f + w ), where, X+ w = {z|k1 −−−→ (w, z) > 0,k2 −−−→ (w, z) > 0,k3 −−−→ (w, z) > 0}, suchthat t+ w : X+ w → [0,1] definedby t+ w (z)= k1 −−−→ (w, z), i+ w : X+ w → [0,1] definedby i+ w (z)= k2 −−−→ (w, z) and f + z : X+ z → [0,1] definedbyf + w (z)= k3 −−−→ (w, z)

Definition6. Let −→ G beanIN-digraph,thentheintuitionisticneutrosophicin-neighborhoods(IN-in-neighborhoods) ofavertexwareanIN-set:

N (w)=(Xw ,tw ,iw ,fw ), where, Xw = {z|k1 −−−→ (z, w) > 0,k2 −−−→ (z, w) > 0,k3 −−−→ (z, w) > 0}, suchthat tw : Xw → [0,1] definedby tw (z)= k1 −−−→ (z, w), iw : Xw → [0,1] definedby iw (z)= k2 −−−→ (z, w) and fw : Xw → [0,1] definedbyfw (z)= k3 −−−→ (z, w)

Information 2017
3of26
, 8,132

2017, 8,132

Example2. Consider −→ G =(X, h, k) tobeanIN-digraph,suchthat, X = {a, b, c, d, e}, h = {(a, 0.5, 0.3, 0.1), (b, 0.6, 0.4, 0.2), (c, 0.8, 0.3, 0.1), (d, 0.1, 0.9, 0.4), (e, 0.4, 0.3, 0.6)} andk = {(−→ ab, 0.3, 0.3, 0.1), (−→ ae, 0.3, 0.2, 0.4), (−→ bc, 0.5, 0.2, 0.1), (−→ ed, 0.1, 0.2, 0.5), (−→ dc, 0.1, 0.2, 0.3), (−→ bd, 0.1, 0.3, 0.3)},asshowninFigure 2

(0 . 3 , 0 . 2 , 0 4) (0 3, 0 3, 0 1) (0 .5 , 0.2 , 0.1) (0 . 1 , 0 . 3 , 0 . 3) (0 1, 0 2, 0 5) (0. 1,0. 2,0. 3)

a(0 5, 0.3, 0 1) b(0 6, 0 4, 0 2) c(0 8, 0 3, 0 1) d(0 1, 0 9, 0 4) e(0 4, 0 3, 0 6)

Figure2. IN-digraph. Then, N+ (a)= {(b, 0.3, 0.3, 0.1), (e, 0.3, 0.2, 0.4)}, N+ (c)= ∅, N+ (d)= {(c, 0.1, 0.2, 0.3)}, and N (b)= {(a, 0.3, 0.3, 0.1)}, N (c)= {(b, 0.5, 0.2, 0.1), (d, 0.1, 0.2, 0.3)}.Similarly,wecancalculate IN-outandin-neighborhoodsoftheremainingvertices.

Definition7. TheheightofanIN-set ˘ A =(w,tA,iA,f A ) isdefinedas: H( ˘ A)=(sup w∈X t ˘ A (w), sup w∈X i ˘ A (w), inf w∈X f ˘ A (w))=(H1( ˘ A),H2( ˘ A),H3( ˘ A))

Forexample,theheightofanIN-set ˘ A = {(a, 0.5, 0.7, 0.2), (b, 0.1, 0.2, 1), (c, 0.3, 0.5, 0.3)} in X = {a,b,c} isH( ˘ A)=(0.5, 0.7, 0.2).

Definition8. Anintuitionisticneutrosophiccompetitiongraph(INC-graph) C(−→ G ) ofanIN-digraph −→ G =(X,h,k) isanundirectedIN-graph G =(X, h, k),whichhasthesameintuitionisticneutrosophicsetofverticesasin −→ G and hasanintuitionisticneutrosophicedgebetweentwovertices w, z ∈ X in C(−→ G ) ifandonlyif N+(w) ∩ N+(z) is anon-emptyIN-setin −→ G .Thetruth-membership,indeterminacy-membershipandfalsity-membershipvaluesofedge (w,z) in C(−→ G ) are: tk (w, z)=(th (w) ∧ th (z))H(N+ (w) ∩ N+ (z)), ik (w, z)=(ih (w) ∧ ih (z))H(N+ (w) ∩ N+ (z)), fk (w, z)=( fh (w) ∨ fh (z))H(N+ (w) ∩ N+ (z)), respectively.

Example3. Consider −→ G =(X, h, k) tobeanIN-digraph,suchthat, X = {a, b, c, d}, h = {(a, 0.1, 0.4, 0.5), (b, 0.6, 0.3, 0.2), (c, 0.8, 0.3, 0.4), (d, 0.7, 0.4, 0.2)} and k = {(−→ ab, 0.1, 0.2, 0.4), (−→ ac , 0.1, 0.2, 0.3), (−→ bc , 0.5, 0.2, 0.2), (−→ bd, 0.5, 0.2, 0.1), (−→ cd, 0.5, 0.2, 0.1)},asshowninFigure 3.

Information
4of26

a(0 1, 0 4, 0 5)

(0. 1, 0. 2, 0. 4) (0 .5 , 0 .2 , 0 .1) (0 1, 0 2, 0 3) (0 5, 0 . 2, 0 . 2) (0 5, 0 2, 0 1)

b(0 6, 0 3, 0 2) c(0 8, 0 3, 0 4) d(0 7, 0 4, 0 2)

Figure3. IN-digraph.

Bydirectcalculations,wehaveTables 1 and 2 representingIN-outandin-neighborhoods,respectively.

Table1. IN-out-neighborhoods. w N+ (w) a{(b,0.1,0.2,0.4),(c,0.1,0.2,0.3)} b{(d,0.5,0.2,0.1)} c{(b,0.5,0.2,0.2),(d,0.5,0.2,0.1)} d ∅

Table2. IN-in-neighborhoods. w N (w) a ∅ b{(a,0.1,0.2,0.4),(c,0.1,0.2,0.3)} c{(a,0.1,0.2,0.3)} d{(b,0.5,0.2,0.1),(c,0.5,0.2,0.1)}

TheINC-graphofFigure 3 isshowninFigure 4

a(0 1, 0 4, 0 5)

(0 3, 0 06, 0 16) (0 01, 0 06, 0 2)

b(0 6, 0 3, 0 2) c(0 8, 0 3, 0 4) d(0.7, 0.4, 0.2)

Figure4. Intuitionisticneutrosophiccompetitiongraph(INC-graph). Therefore,thereisanedgebetweentwoverticesinINC-graph C(−→ G ),whosetruth-membership, indeterminacy-membershipandfalsity-membershipvaluesaregivenbytheaboveformula.

Information
5of26
2017, 8,132

Definition9. ForanIN-graph G =(X, h, k),where h =(h1, h2, h3) and k =(k1, k2, k3),thenanedge (w, z), w,z ∈ Xiscalledindependentstrongif: 1 2 [h1(w) ∧ h1(z)] < k1(w, z), 1 2 [h2(w) ∧ h2(z)] > k2(w, z), 1 2 [h3(w) ∨ h3(z)] > k3(w, z)

Otherwise,itiscalledweak.

Theorem1. Suppose −→ G isanIN-digraph.If N+ (w) ∩ N+ (z) containsonlyoneelementof −→ G ,thentheedge (w,z) of C(−→ G ) isindependentstrongifandonlyif:

|[N+ (w) ∩ N+ (z)]|t > 0.5, |[N+ (w) ∩ N+ (z)]|i < 0.5, |[N+ (w) ∩ N+ (z)]| f < 0.5.

Proof. Suppose, −→ G isanIN-digraph.Suppose N+ (w) ∩ N+ (z)=(a, ˘ p, q, r),where ˘ p, q and r arethe truth-membership,indeterminacy-membershipandfalsity-membershipvaluesofeithertheedge (w, a) ortheedge (z, a),respectively.Here,

|[N+ (w) ∩ N+ (z)]|t = ˘ p = H1(N+ (w) ∩ N+ (z)), |[N+ (w) ∩ N+ (z)]|i = q = H2(N+ (w) ∩ N+ (z)), |[N+ (w) ∩ N+ (z)]| f = r = H3(N+ (w) ∩ N+ (z))

Then, k1(w, z)= ˘ p × [h1(w) ∧ h1(z)], k2(w, z)= q × [h2(w) ∧ h2(z)], k3(w, z)= r × [h3(w) ∨ h3(z)]

Therefore,theedge (w, z) in C(−→ G ) isindependentstrongifandonlyif ˘ p > 0.5, q < 0.5 and r < 0.5 Hence,theedge (w, z) of C(−→ G ) isindependentstrongifandonlyif:

|[N+ (w) ∩ N+ (z)]|t > 0.5, |[N+ (w) ∩ N+ (z)]|i < 0.5, |[N+ (w) ∩ N+ (z)]| f < 0.5.

WeillustratethetheoremwithanexampleasshowninFigure 5.

Information 2017, 8,132 6of26

a(0 7, 0 5, 0 4)

b(0 8, 0 4, 0 5)

a(0 7, 0 5, 0 4)

b(0 8, 0 4, 0 5)

c(0 8, 0 5, 0 4) d(0 3, 0 4, 0 5)

(0 6, 0 4, 0 4) (0 . 7 , 0 3 , 0 3) (0 2, 0 3, 0 4) (0 . 2 , 0 3 , 0 . 3) (b) (a)

(0 .42 , 0 .15 , 0 .12)

d(0 3, 0 4, 0 5) c(0 8, 0 5, 0 4)

Figure5. INC-graph.(a)IN-digraph;(b)correspondingINC-graph. Theorem2. IfalltheedgesofanIN-digraph −→ G areindependentstrong,then:

k1(w, z) (h1(w) ∧ h1(z))2 > 0.5, k2(w, z) (h2(w) ∧ h2(z))2 < 0.5, k3(w, z) (h3(w) ∨ f3(z))2 < 0.5 foralledges (w,z) in C(−→ G )

Proof. SupposealltheedgesofIN-digraph −→ G areindependentstrong.Then:

1 2 [h1(w) ∧ h1(z)] < k1 −−−→ (w, z), 1 2 [h2(w) ∧ h2(z)] > k2 −−−→ (w, z), 1 2 [h3(w) ∨ h3(z)] > k3 −−−→ (w, z),

foralltheedges (w, z) in −→ G .LetthecorrespondingINC-graphbe C(−→ G ).

Case(1):When N+ (w) ∩ N+ (z)= ∅ forall w, z ∈ X,thentheredoesnotexistanyedgein C(−→ G ) between w and z.Thus,wehavenothingtoproveinthiscase.

Case(2):When N+(w) ∩ N+(z) = ∅,let N+(w) ∩ N+(z)= {(a1, m1, n1, ˘ p1), (a2, m2, n2, ˘ p2),..., (al, ml, nl, ˘ pl )},where mi, ni and ˘ pi arethetruth-membership,indeterminacy-membershipand falsity-membershipvaluesofeither −−−→ (w, ai) or −−−→ (z, ai) for i = 1,2,..., l,respectively.Therefore, mi =[k1 −−−→ (w, ai ) ∧ k1 −−−→ (z, ai )], ni =[k2 −−−→ (w, ai ) ∧ k2 −−−→ (z, ai )], ˘ pi =[k3 −−−→ (w, ai ) ∨ k3 −−−→ (z, ai )], fori = 1,2,..., l

Suppose, H1(N+ (w) ∩ N+ (z))= max{mi, i = 1,2,..., l} = mmax, H2(N+ (w) ∩ N+ (z))= max{ni, i = 1,2,..., l} = nmax, H3(N+ (w) ∩ N+ (z))= min{ ˘ pi, i = 1,2,..., l} = ˘ pmin

Information
7of26
2017, 8,132

Obviously, mmax > k1 −−−→ (w, z) and nmax < k2 −−−→ (w, z) and ˘ pmin < k3 −−−→ (w, z) foralledges −−−→ (w, z) showthat:

mmax h1(w) ∧ h1(z) > k1 −−−→ (w, z) h1(w) ∧ h1(z) > 0.5, nmax h2(w) ∧ h2(z) < k2 −−−→ (w, z) h2(w) ∧ h2(z) < 0.5, pmin h3(w) ∨ h3(z) < k3 −−−→ (w, z) h3(w) ∧ h3(z) < 0.5, therefore,

k1(w, z)=(h1(w) ∧ h1(z))H1(N+ (w) ∩ N+ (z)), k1(w, z)=[h1(w) ∧ h1(z)] × mmax, k1(w, z) (h1(w) ∧ h1(z)) = mmax, k1(w, z) (h1(w) ∧ h1(z))2 = mmax (h1(w) ∧ h1(z)) > 0.5,

k2(w, z)=(h2(w) ∧ h2(z))H2(N+ (w) ∩ N+ (z)), k2(w, z)=[h2(w) ∧ h2(z)] × nmax, k2(w, z) (h2(w) ∧ h2(z)) = nmax, k2(w, z) (h2(w) ∧ h2(z))2 = nmax (h2(w) ∧ h2(z)) < 0.5, and: k3(w, z)=(h3(w) ∨ h3(z))H3(N+ (w) ∩ N+ (z)), k3(w, z)=[h3(w) ∨ h3(z)] × ˘ pmin, k3(w, z) (h3(w) ∨ h3(z)) = ˘ pmin, k3(w, z) (h3(w) ∨ h3(z))2 = ˘ pmin (h3(w) ∨ h3(z)) < 0.5. Hence, k1(w,z) (h1(w)∧h1(z))2 > 0.5, k2(w,z) (h2(w)∧h2(z))2 < 0.5,and k3(w,z) (h3(w)∨h3(z))2 < 0.5 foralledges (w, z) in C(−→ G ) Theorem3. Let C(−→

Information 2017, 8,132 8of26
G1)=(h1, k1) and C(−→ G2)=(h2, k2) betwoINC-graphofIN-digraphs −→ G1 =(h1, −→ l1 ) and −→ G2 =(h2, −→ l2 ),respectively.Then, C(−→ G1 −→ G2)= GC(−→ G1)∗ C(−→ G2)∗ ∪ G where, GC(−→ G1)∗ C(−→ G2)∗ isanIN-graph onthecrispgraph (X1 × X2, EC(−→ G1)∗ EC(−→ G2)∗ ), C(−→ G1)∗ and C(−→ G2)∗ arethecrispcompetitiongraphsof −→ G1 and −→ G2,respectively. D isanIN-graphon (X1 × X2, E ) suchthat: 1. E = {(w1, w2)(z1, z2) : z1 ∈ N (w1)∗ , z2 ∈ N+ (w2)∗} EC(−→ G1)∗ EC(−→ G2)∗ = {(w1, w2)(w1, z2) : w1 ∈ X1, w2z2 ∈ EC(−→ G2)∗ }∪{(w1, w2)(z1, w2) : w2 ∈ X2, w1z1 ∈ EC(−→ G1)∗ }

2. th1 h2 = th1 (w1) ∧ th2 (w2),ih1 h2 = ih1 (w1) ∧ ih2 (w2),fh1 h2 = fh1 (w1) ∨ fh2 (w2). 3. tk ((w1, w2)(w1, z2))=[th1 (w1) ∧ th2 (w2) ∧ th2 (z2)] ×∨x2 {th1 (w1) ∧ t−→ l2 (w2 x2) ∧ t−→ l2 (z2 x2)}, (w1, w2)(w1, z2) ∈ EC(−→ G1)∗ EC(−→ G2)∗ , x2 ∈ (N+ (w2) ∩ N+ (z2))∗

4. ik ((w1, w2)(w1, z2))=[ih1 (w1) ∧ ih2 (w2) ∧ ih2 (z2)] ×∨x2 {ih1 (w1) ∧ i−→ l2 (w2 x2) ∧ i−→ l2 (z2 x2)}, (w1, w2)(w1, z2) ∈ EC(−→ G1)∗ EC(−→ G2)∗ , x2 ∈ (N+ (w2) ∩ N+ (z2))∗

5. fk ((w1, w2)(w1, z2))=[ fh1 (w1) ∨ fh2 (w2) ∨ fh2 (z2)] ×∨x2 { fh1 (w1) ∨ f−→ l2 (w2 x2) ∨ f−→ l2 (z2 x2)}, (w1, w2)(w1, z2) ∈ EC(−→ G1)∗ EC(−→ G2)∗ , x2 ∈ (N+ (w2) ∩ N+ (z2))∗ .

6. tk ((w1, w2)(z1, w2))=[th1 (w1) ∧ th1 (z1) ∧ th2 (w2)] ×∨x1 {th2 (w2) ∧ t−→ l1 (w1 x1) ∧ t−→ l1 (z1 x1)}, (w1, w2)(z1, w2) ∈ EC(−→ G1)∗ EC(−→ G2)∗ , x1 ∈ (N+ (w1) ∩ N+ (z1))∗ .

7. ik ((w1, w2)(z1, w2))=[ih1 (w1) ∧ ih1 (z1) ∧ ih2 (w2)] ×∨x1 {ih2 (w2) ∧ i−→ l1 (w1 x1) ∧ i−→ l1 (z1 x1)}, (w1, w2)(z1, w2) ∈ EC(−→ G1)∗ EC(−→ G2)∗ , x1 ∈ (N+ (w1) ∩ N+ (z1))∗ .

8. fk ((w1, w2)(z1, w2))=[ fh1 (w1) ∨ fh1 (z1) ∨ fh2 (w2)] ×∨x1 { fh2 (w2) ∨ f−→ l1 (w1 x1) ∨ t−→ l1 (z1 x1)}, (w1, w2)(z1, w2) ∈ EC(−→ G1)∗ EC(−→ G2)∗ , x1 ∈ (N+ (w1) ∩ N+ (z1))∗ .

9. tk ((w1, w2)(z1, z2))=[th1 (w1) ∧ th1 (z1) ∧ th2 (w2) ∧ th2 (z2)] × [th1 (w1) ∧ t−→ l1 (z1w1) ∧ th2 (z2) ∧ t−→ l2 (w2z2)], (w1, z1)(w2, z2) ∈ E

10. ik ((w1, w2)(z1, z2))=[ih1 (w1) ∧ ih1 (z1) ∧ ih2 (w2) ∧ ih2 (z2)] × [ih1 (w1) ∧ i−→ l1 (z1w1) ∧ ih2 (z2) ∧ i−→ l2 (w2z2)], (w1, z1)(w2, z2) ∈ E 11. fk ((w1, w2)(z1, z2))=[ fh1 (w1) ∨ fh1 (z1) ∨ fh2 (w2) ∨ fh2 (z2)] × [ fh1 (w1) ∨ f−→ l1 (z1w1) ∨ fh2 (z2) ∨ f−→ l2 (w2z2)], (w1, z1)(w2, z2) ∈ E .

Proof. UsingsimilarargumentsasinTheorem2.1.[39],itcanbeproven. Example4. Consider −→ G1 =(X1, h1, l1) and −→ G2 =(X2, h2, l2) tobetwoIN-digraphs,respectively,asshown inFigure 6.Theintuitionisticneutrosophicoutandin-neighborhoodsof −→ G1 and −→ G2 aregiveninTables 3 and 4 TheINC-graphs C(−→ G1) and C(−→ G2) aregiveninFigure 7

Table3. IN-outandin-neighborhoodsof −→ G1 w ∈ X1 N+ (w) N (w) w1 {w2(0.2,0.2,0.3)} ∅ w2 ∅ {w1(0.2,0.2,0.3), w3(0.3,0.1,0.1)} w3 {w2(0.3,0.2,0.1)}{w4(0.3,0.1,0.1)} w4 {w3(0.3,0.1,0.1)} ∅

Table4. IN-outandin-neighborhoodsof −→ G2 w ∈ X2 N+ (w) N (w) z1 {z3(0.3,0.2,0.2)} ∅ z2 {z3(0.3,0.1,0.1)} ∅ z3 ∅ {z1(0.3,0.2,0.2), z2(0.3,0.1,0.1)}

Information
9of26
2017, 8,132

z1 (0 4, 0 3, 0 2)

w1 (0 3, 0 4, 0 5)

w2 (0 4, 0 3, 0 1) w3 (0 5, 0 2, 0 1) w4 (0 4, 0 3, 0 1)

z2 (0 4, 0 3, 0 5)

(0 .3 ,0 .2 ,0 . 2) (0 . 3 , 0 . 1 , 0 1)

z3 (0 7, 0 2, 0 3)

→G1 →G2 (0 .2 ,0 .2 ,0 . 3) (0 . 3, 0. 2, 0. 1) (0 .2 ,0 .2 ,0 . 3)

Figure6. IN-digraphs.

w1 (0.3, 0.4, 0.5) w2 (0 4, 0 3, 0 1) w3 (0 5, 0 2, 0 1) w4 (0 4, 0 3, 0 1)

z1 (0 4, 0 3, 0 2)

C ( →G2 )

C ( →G1 ) (0 . 12 , 0 03 , 0 . 1) (0 . 06, 0. 04, 0. 15)

z2 (0 4, 0 3, 0 5)

z3 (0 7, 0 2, 0 3)

Figure7. INC-graphsof −→ G1 and −→ G2

WenowconstructtheINC-graph GC(−→ G1)∗ C(−→ G2)∗ ∪ G =(w, k),where w =(tw, iw, fw) and k =(tk,ik,fk), from C(−→ G1)∗ and C(−→ G2)∗ usingTheorem 2.14.WeobtainedtwosetsofedgesbyusingCondition (1)

Information
10of26
2017, 8,132

EC(−→ G1)∗ EC(−→ G2)∗ ={(w1, z1)(w1, z2), (w2, z1)(w2, z2), (w3, z1)(w3, z2), (w4, z1)(w4, z2), (w1, z1)(w3, z1), (w1, z2)(w3, z2), (w1, z3)(w3, z3)}, E ={(w2, z1)(w1, z3), (w2, z1)(w3, z3), (w2, z2)(w1, z3) (w2, z2)(w3, z3), (w3, z1)(w4, z3), (w3, z2)(w4, z3)}.

Thetruth-membership,indeterminacy-membershipandfalsity-membershipofedgescanbecalculatedbyusing Conditions (3) to (11) as, k((w1, z1)(w1, z2))=(th1 (w1) ∧ th2 (z1) ∧ th2 (z2), ih1 (w1) ∧ ih2 (z1) ∧ ih2 (z2), fh1 (w1) ∨ fh2 (z1) ∨ fh2 (z2)) ×(th1 (w1) ∧ tl2 (z1z3) ∧ tl2 (z2z3), ih1 (w1) ∧ il2 (z1z3) ∧ il2 (z2z3), fh1 (w1) ∨ fl2 (z1z3) ∨ fl2 (z2z3) =(0.3,0.3,0.5) × (0.3,0.1,0.5) =(0.09,0.03,0.25), k((w2, z1)(w1, z3))=(th1 (w2) ∧ th2 (z1) ∧ th1 (w1) ∧ th2 (z3), ih1 (w2) ∧ ih2 (z1) ∧ ih1 (w1) ∧ ih2 (z3), fh1 (w2) ∨ fh2 (z1) ∨ fh1 (w1) ∨ fh2 (z3)) ×(th1 (w2) ∧ tl1 (w1w2) ∧ tl2 (z3) ∧ tl2 (z1z3), ih1 (w2) ∧ il1 (w1w2) ∧ il2 (z3) ∧ il2 (z1z3), fh1 (w2) ∨ fl1 (w1w2) ∨ fl2 (z3) ∨ fl2 (z1z3)) =(0.3,0.2,0.5) × (0.2,0.2,0.3) =(0.06,0.04,0.15)

Allthetruth-membership,indeterminacy-membershipandfalsity-membershipdegreesofadjacentedgesof GC(−→ G1)∗ C(−→ G2)∗ and G aregiveninTable 5.

Table5. Adjacentedgesof GC(−→ G1 )∗ C(−→ G2 )∗ ∪ G .

(w, ´ w)(z, ´ z) k (w, ´ w)(z, ´ z)

(w1, z1)(w1, z2)(0.09,0.03,0.25) (w2, z1)(w2, z2)(0.12,0.03,0.1) (w3, z1)(w3, z2)(0.12,0.02,0.1) (w4, z1)(w4, z2)(0.12,0.03,0.1) (w1, z1)(w3, z1)(0.06,0.04,0.15)

(w1, z3)(w3, z3)(0.06,0.04,0.15)

(w2, z1)(w1, z3)(0.06,0.04,0.15)

(w2, z1)(w3, z3)(0.12,0.04,0.09)

(w2, z2)(w1, z3)(0.06,0.02,0.15)

(w2, z2)(w3, z3)(0.12,0.02,0.15)

(w3, z1)(w4, z3)(0.12,0.02,0.09)

(w3, z2)(w4, z3)(0.12,0.02,0.15) (w1, z2)(w3, z2)(0.06,0.04,0.25)

TheINC-graphobtainedbyusingthismethodisgiveninFigure 8 wheresolidlinesindicatepartofINC-graph obtainedfrom GC(−→ G1)∗ C(−→ G2)∗ ,andthedottedlinesindicatethepartof G . TheCartesianproduct −→ G1 −→ G2 ofIN-digraphs −→ G1 and −→ G2 isshowninFigure 9.TheIN-out-neighborhoods of −→ G1 −→ G2 arecalculatedinTable 6.TheINC-graphsof −→ G1 −→ G2 areshowninFigure 10

Information
11of26
2017, 8,132

w1 w2 w3 w4

w1 w2 w3 w4

(0 09, 0 03, 0 25) (0 06, 0 04, 0 15) (0 06, 0 04, 0 25)

(0 12, 0 02, 0 1) (0 12, 0 03, 0 1)

(0. 06,0. 02,0. 15) (0. 06, 0. 02, 0. 15) (0 12, 0 03, 0 1) (0 .12, 0.04 , 0.09) (0 .12 , 0 .02 , 0 .15) (0 .12, 0.02, 0.09)

z1 z2 z3 (0 3, 0 3, 0 5) (0 4, 0 3, 0 2) (0.4, 0.2, 0.2) (0 4, 0 3, 0 2)

(0 3, 0 3, 0 5) (0 4, 0 3, 0 5) (0 4, 0 2, 0 5) (0 4, 0 3, 0 5)

(0 .12 , 0 .02 , 0 .15)

(0.3, 0.2, 0.5) (0 4, 0 2, 0 3) (0 5, 0 2, 0 3) (0 4, 0 2, 0 3)

(0 . 06 , 0 . 04 , 0 . 15)

z1 z2 z3

(0 2, 0 2, 0 3) (0 3, 0 2, 0 2) (0.3, 0.1, 0.2)

(0.3,0.2,0.5) (0.3,0.2,0.2) (0 3,0.2,0.2) (0.3,0.2,0.2)

Figure8. GC(−→ G1 )∗ C(−→ G2 )∗ ∪ G (0 3, 0 3, 0 5) (0 4, 0 3, 0 2) (0 4, 0 2, 0 2) (0 4, 0 3, 0 2)

(0 2, 0 2, 0 5)

(0 4, 0 3, 0 5)

(0.3, 0.2, 0.5)

(0.4, 0.2, 0.5)

(0 3, 0 1, 0 5)

(0.3, 0.3, 0.5) (0 3, 0 1, 0 5) (0.3, 0.1, 0.1) (0 3, 0 1, 0 1) (0 3, 0 1, 0 1)

Figure9. −→ G1 −→ G2

(0 2, 0 2, 0 3) (0 3, 0 2, 0 3) (0 3, 0 1, 0 3)

(0 3, 0 2, 0 5) (0 4, 0 2, 0 3) (0 5, 0 2, 0 3) (0 4, 0 2, 0 3) (0.4, 0.3, 0.5)

Information 2017, 8,132 12of26

Table6. IN-out-neighborhoodsof −→ G1 −→ G2

(w, z) N+ (w, z)

(w1, z1) {((w2, z1),0.2,0.2,0.3), ((w1, z3),0.3,0.2,0.5)} (w1, z2) {((w1, z3),0.3,0.1,0.5), ((w2, z2),0.2,0.2,0.5)}

(w1, z3) {((w2, z3),0.2,0.2,0.3)}

(w2, z1) {((w2, z3),0.3,0.2,0.2)}

(w2, z2) {((w2, z3),0.3,0.1,0.1)}

(w2, z3) ∅

(w3, z1) {((w3, z3),0.3,0.2,0.2), ((w2, z1),0.3,0.2,0.2)} (w3, z2) {((w2, z2),0.3,0.2,0.5), ((w3, z3),0.3,0.1,0.1)}

(w3, z3) {((w2, z3),0.3,0.2,0.3)}

(w4, z1) {((w4, z3),0.3,0.2,0.2), ((w3, z1),0.3,0.1,0.2)} (w4, z2) {((w4, z3),0.3,0.1,0.1), ((w3, z2),0.3,0.1,0.5)} (w4, z2) {((w3, z3),0.3,0.1,0.3)} w1 w2 w3 w4

(0 09, 0 03, 0 25) (0 06, 0 04, 0 15) (0 06, 0 04, 0 25)

(0. 06,0. 02,0. 15) (0. 06, 0. 02, 0. 15) (0 12, 0 03, 0 1) (0 .12, 0.04 , 0.09) (0 .12 , 0 .02 , 0 .15) (0 .12, 0.02, 0.09)

z1 z2 z3 (0 3, 0 3, 0 5) (0 4, 0 3, 0 2) (0 4, 0 2, 0 2) (0 4, 0 3, 0 2)

(0 3, 0 3, 0 5) (0 4, 0 3, 0 5) (0 4, 0 2, 0 5) (0 4, 0 3, 0 5)

(0 12, 0 02, 0 1) (0 12, 0 03, 0 1)

(0 .12 , 0 .02 , 0 .15)

(0 3, 0 2, 0 5) (0 4, 0 2, 0 3) (0 5, 0 2, 0 3) (0 4, 0 2, 0 3)

(0 06 , 0 04 , 0 15) Figure10. C(−→ G1 −→ G2). Itcanbeseenthat C(−→ G1 −→ G2) ∼ = GC(−→ G1)∗ C(

G fromFigures 8 and 10 Definition10. Theintuitionisticneutrosophicopen-neighborhoodofavertex w ofanIN-graph G =(X, h, k) is IN-set N(w)=(Xw,tw,iw,fw ),where, Xw

{z|k1(w, z) > 0,k2(w, z) > 0,k3(w, z) > 0}, and tw : Xw → [0,1] definedby tw (z)= k1(w, z), iw : Xw → [0,1] definedby iw (z)= k2(w, z) and fz : Xw → [0,1] definedby fw (z)= k3(w, z).Foreveryvertex w ∈ X,theintuitionisticneutrosophic singletonset, Aw =(w, h1, h2, h3),suchthat: h1 : {w}→ [0,1], h2 : {w}→ [0,1], h3 : {w}→ [0,1] definedby h1(w)= h1(w), h2(w)= h2(w) and h3(w)= h3(w),respectively.Theintuitionisticneutrosophic closed-neighborhoodofavertexwis N[w]= N(w) ∪ Aw

Information 2017, 8,132 13of26
−→ G2)∗ ∪
=

Definition11. Suppose G =(X, h, k) isanIN-graph.Thesingle-valuedintuitionisticneutrosophic open-neighborhoodgraphof G isanIN-graph N(G)=(X,h,k ),whichhasthesameintuitionisticneutrosophic setofverticesin G andhasanintuitionisticneutrosophicedgebetweentwovertices w, z ∈ X in N(G) if andonlyif N(w) ∩ N(z) isanon-emptyIN-setin G.Thetruth-membership,indeterminacy-membershipand falsity-membershipvaluesoftheedge (w,z) aregivenby:

k1(w, z)=[h1(w) ∧ h1(z)]H1(N(w) ∩ N(z)), k2(w, z)=[h2(w) ∧ h2(z)]H2(N(w) ∩ N(z)), k3(w, z)=[h3(w) ∨ h3(z)]H3(N(w) ∩ N(z)), respectively

Definition12. Suppose G =(X, h, k) isanIN-graph.Thesingle-valuedintuitionisticneutrosophic closed-neighborhoodgraphof G isanIN-graph N(G)=(X, h, k ),whichhasthesameintuitionisticneutrosophic setofverticesin G andhasanintuitionisticneutrosophicedgebetweentwovertices w, z ∈ X in N[G] if andonlyif N[w] ∩ N[z] isanon-emptyIN-setin G.Thetruth-membership,indeterminacy-membershipand falsity-membershipvaluesoftheedge (w,z) aregivenby: k1(w, z)=[h1(w) ∧ h1(z)]H1(N[w] ∩ N[z]), k2(w, z)=[h2(w) ∧ h2(z)]H2(N[w] ∩ N[z]), k3(w, z)=[h3(w) ∨ h3(z)]H3(N[w] ∩ N[z]), respectively

Example5. Consider G =(X, h, k) tobeanIN-graph,suchthat X = {a, b, c, d}, h = {(a, 0.5, 0.4, 0.3), (b, 0.6, 0.3, 0.1), (c, 0.7, 0.3, 0.1), (d, 0.5, 0.6, 0.3)},and k = {(ab, 0.3, 0.2, 0.2), (ad, 0.4, 0.3, 0.2), (bc, 0.5, 0.2, 0.1), (cd, 0.4, 0.2, 0.2)},asshowninFigure 11.Then,correspondingintuitionisticneutrosophicopenand closed-neighborhoodgraphsareshowninFigure 12. a(0 5, 0 4, 0 3) b(0 6, 0 3, 0 1) c(0 7, 0 3, 0 1) d(0 5, 0 6, 0 3)

(0 . 4 , 0 . 3 , 0 . 2)

(0 3, 0 2, 0 2) (0 . 5 , 0 . 2 , 0 . 1) (0 4, 0 2, 0 2)

Figure11. IN-digraph.

Information 2017, 8,132 14of26

2017, 8,132

a(0 5, 0 4, 0 3)

b(0 6, 0 3, 0 1)

d(0 5, 0 6, 0 3)

(0 2, 0 06, 0 06) (0 2, 0 06, 0 06) (0 15, 0 06, 0 06)

c(0 7, 0 3, 0 1)

a(0 5, 0 4, 0 3)

(a) (b)

b(0 6, 0 3, 0 1)

(0 .2 , 0 .06 , 0 .06)

c(0 7, 0 3, 0 1) d(0 5, 0 6, 0 3)

(0 2 , 0 12 , 0 09) (0 2, 0 06, 0 06)

(0 . 3 , 0 06 , 0 01) (0 2, 0 06, 0 06)

Figure12. (a) N(G); (b) N[G]

Theorem4. ForeachedgeofanIN-graph G,thereexistsanedgein N[G] Proof. Suppose (w, z) isanedgeofanIN-graph G =(V, h, k).Suppose N[G]=(V, h, k ) isthe correspondingclosedneighborhoodofanIN-graph.Suppose w, z ∈ N[w] and w, z ∈ N[z].Then, w, z ∈ N[w] ∩ N[z].Hence, H1(N[w] ∩ N[z]) = 0, H2(N[w] ∩ N[z]) = 0, H3(N[w] ∩ N[z]) = 0. Then, k1(w, z)=[h1(w) ∧ h1(z)]H1(N[w] ∩ N[z]) = 0, k2(w, z)=[h2(w) ∧ h2(z)]H2(N[w] ∩ N[z]) = 0, k3(w, z)=[h3(w) ∨ h3(z)]H3(N[w] ∩ N[z]) = 0.

Thus,foreachedge (w, z) inIN-graph G,thereexistsanedge (w, z) in N[G]. Definition13. ThesupportofanIN-set ˘ A =(w,tA,iA,f A ) inXisthesubset ˆ AofXdefinedby: ˆ A = {w ∈ X:t ˘ A (w) = 0,i ˘ A (w) = 0,f ˘ A (w) = 1} and |supp( ˆ A)| isthenumberofelementsintheset.

Wenowdiscuss p-competitionintuitionisticneutrosophicgraphs. Suppose p isapositiveinteger.Then, p-competitionIN-graph Cp (−→ G ) oftheIN-digraph −→ G =(X, h, k) isanundirectedIN-graph G =(X, h, k),whichhasthesameintuitionisticneutrosophic setofverticesasin −→ G andhasanintuitionisticneutrosophicedgebetweentwovertices w, z ∈ X in

15of26
Information

Cp (−→ G ) ifandonlyif |supp(N+ (w) ∩ N+ (z))|≥ p.Thetruth-membershipvalueofedge (w, z) in Cp (−→ G ) is t(w, z)= (i p)+1 i [h1(w) ∧ h1(z)]H1(N+ (w) ∩ N+ (z));theindeterminacy-membershipvalueofedge (w, z) in Cp (−→ G ) is i(w, z)= (i p)+1 i [h2(w) ∧ h2(z)]H2(N+ (w) ∩ N+ (z));andthefalsity-membership valueofedge (w, z) in Cp (−→ G ) is f (w, z)= (i p)+1 i [h3(w) ∨ h3(z)]H3(N+ (w) ∩ N+ (z)) where i = |supp(N+ (w) ∩ N+ (z))|

Thethree-competitionIN-graphisillustratedbythefollowingexample. Example6. Consider −→ G =(X, h, k) tobeanIN-digraph,suchthat X = {w1, w2, w3, z1, z2, z3}, h = {(w1, 0.5, 0.1, 0.2), (w2, 0.1, 0.6, 0.3), (w3, 0.1, 0.2, 0.5), (z1, 0.7, 0.2, 0.1), (z2, 0.5, 0.2, 0.3), (z3, 0.3, 0.7, 0.2)} and k = {( −−−−→ (w1, z1),0.4, 0.1, 0.1), ( −−−−→ (w1, z2),0.5, 0.1, 0.3), ( −−−−→ (w1, z3),0.2, 0.1, 0.1), ( −−−−→ (w2, z1),0.1, 0.1, 0.2), ( −−−−→ (w2, z2),0.1, 0.1, 0.2), ( −−−−→ (w2, z3),0.1, 0.5, 0.2), ( −−−−→ (w3, z1),0.1, 0.1, 0.1)( −−−−→ (w3, z2),0.1, 0.1, 0.2)},asshownin Figure 13.Then, N+ (w1)= {(z1, 0.4, 0.1, 0.1), (z2, 0.5, 0.1, 0.3), (z3, 0.2, 0.1, 0.1)}, N+ (w2)= {(z1, 0.1, 0.1, 0.2), (z2, 0.1, 0.1, 0.2), (z3, 0.1, 0.5, 0.2)} and N+ (w3)= {(z1, 0.1, 0.1, 0.1), (z2, 0.1, 0.1, 0.2)} Therefore, N+ (w1) ∩ N+ (w2)= {(z1, 0.1, 0.1, 0.2), (z2, 0.1, 0.1, 0.3), (z3, 0.1, 0.1, 0.2)}, N+ (w1) ∩ N+ (w3)= {(z1, 0.1, 0.1, 0.1), (z2, 0.1, 0.1, 0.3)} and N+ (w2) ∩ N+ (w3)= {(z1, 0.1, 0.1, 0.2), (z2, 0.1, 0.1, 0.2)}

Now, i = |supp(N+ (w1) ∩ N+ (w2))| = 3.For p = 3, t(w1, w2)= 0.003, i(w1, w2)= 0.003 and f (w1,w2)= 0.02.AsshowninFigure 14

w1 (0 5, 0 1, 0 2)

z1 (0 7, 0 2, 0 1)

w2 (0 1, 0 6, 0 3) w3 (0 1, 0 2, 0 5)

Figure13. IN-digraph.

z2 (0 5, 0 2, 0 3)

z3 (0 3, 0 7, 0 2)

w1 (0 5, 0 1, 0 2)

z1 (0 7, 0 2, 0 1)

(0 003 , 0 . 003 , 0 02)

w2 (0 1, 0 6, 0 3)

z2 (0 5, 0 2, 0 3)

w3 (0 1, 0 2, 0 5)

z3 (0 3, 0 7, 0 2)

Figure14. Three-competitionIN-graph.

Information
16of26
2017, 8,132

2017, 8,132

WenowdefineanotherextensionofINC-graphknownasthe m-stepINC-graph. −→ P m z,w:adirectedintuitionisticneutrosophicpathoflength m from z to w. N+ m (z):single-valuedintuitionisticneutrosophic m-stepout-neighborhoodofvertex z. Nm (z):single-valuedintuitionisticneutrosophic m-stepin-neighborhoodofvertex z. Cm −→ (G): m-stepINC-graphoftheIN-digraph −→ G

Definition14. Suppose −→ G =(X, h, k) isanIN-digraph.The m-stepIN-digraphof −→ G isdenotedby −→ G m =(X,h,k) wheretheintuitionisticneutrosophicsetofverticesof −→ G isthesameastheintuitionisticneutrosophicsetofverticesof −→ G m andhasanedgebetween z and w in −→ G m ifandonlyifthereexistsanintuitionisticneutrosophicdirectedpath −→ P m z,w in −→ G

Definition15. Theintuitionisticneutrosophic m-stepout-neighborhoodofvertex z ofanIN-digraph −→ G =(X,h,k) isIN-set: N+ m (z)=(X+ z ,t+ z ,i+ z ,f + z ),where X+ z = {w| thereexistsadirectedintuitionisticneutrosophicpathoflength m from z to w, −→ P m z,w }, t+ z : X+ z → [0, 1], i+ z : X+ z → [0, 1] and f + z : X+ z → [0, 1] aredefinedby t+ z = min{t −−−−−→ (w1,w2), (w1, w2) isanedgeof −→ P m z,w }, i+ z = min{i −−−−−→ (w1,w2), (w1, w2) isanedgeof −→ P m z,w } and f + z = max{ f −−−−−→ (w1,w2), (w1, w2) isanedgeof −→ P m z,w },respectively.

Definition16. Theintuitionisticneutrosophic m-stepin-neighborhoodofvertex z ofanIN-digraph −→ G =(X,h,k) isIN-set: Nm (z)=(Xz ,tz ,iz ,fz ),where Xz = {w| thereexistsadirectedintuitionisticneutrosophicpathoflength m from w to z, −→ P m w,z }, tz : Xz → [0, 1], iz : Xz → [0, 1] and fz : Xz → [0, 1] aredefinedby tz = min{t −−−−−→ (w1,w2), (w1, w2) isanedgeof −→ P m w,z }, iz = min{i −−−−−→ (w1,w2), (w1, w2) isanedgeof −→ P m w,z } and fz = max{ f −−−−−→ (w1,w2), (w1, w2) isanedgeof −→ P m w,z },respectively.

Definition17. Suppose −→ G =(X, h, k) isanIN-digraph.The m-stepINC-graphofIN-digraph −→ G isdenoted by Cm (−→ G )=(X, h, k),whichhasthesameintuitionisticneutrosophicsetofverticesasin −→ G andhasan edgebetweentwovertices w, z ∈ X in Cm (−→ G ) ifandonlyif (N+ m (w) ∩ N+ m (z)) isanon-emptyIN-setin −→ G .Thetruth-membershipvalueofedge (w, z) in Cm (−→ G ) is t(w, z)=[h1(w) ∧ h1(z)]H1(N+ m (w) ∩ N+ m (z)); theindeterminacy-membershipvalueofedge (w, z) in Cm (−→ G ) is i(w, z)=[h2(w) ∧ h2(z)]H2(N+ m (w) ∩ N+ m (z)); andthefalsity-membershipvalueofedge (w,z) in Cm (−→ G ) isf (w,z)=[h3(w) ∨ h3(z)]H3(N+ m (w) ∩ N+ m (z)).

Thetwo-stepINC-graphisillustratedbythefollowingexample. Example7. Consider −→ G =(X, h, k) isanIN-digraph,suchthat, X = {w1, w2, z1, z2, z3}, h = {(w1, 0.3, 0.4, 0.6), (w2, 0.2, 0.5, 0.3), (z1, 0.4, 0.2, 0.3), (z2, 0.7, 0.2, 0.1), (z3, 0.5, 0.1, 0.2), (z4, 0.6, 0.3, 0.2)}, and k = {( −−−−→ (w1,z1), 0.2, 0.1, 0.2), ( −−−−→ (w2,z4), 0.1, 0.2, 0.3), ( −−−−→ (z1,z3), 0.3, 0.1, 0.2), ( −−−−→ (z1,z2), 0.3, 0.1, 0.2), ( −−−−→ (z4,z2), 0.2, 0.1, 0.1),and ( −−−−→ (z4,z3), 0.4, 0.1, 0.4)},asshowninFigure 15 Then, N+ 2 (w1)= {(z2, 0.2, 0.1, 0.2), (z3, 0.2, 0.1, 0.2)} and N+ 2 (w2)= {(z2, 0.1, 0.1, 0.3), (z3, 0.1, 0.1, 0.4)}.Therefore, N+ 2 (w1) ∩ N+ 2 (w2)= {(z2, 0.1, 0.1, 0.3), (z3, 0.1, 0.1, 0.4)}.Thus, t(w1, w2)= 0.02, i(w1, w2)= 0.04 andf (w1, w2)= 0.18.ThisisshowninFigure 16.

17of26
Information

2017, 8,132

w1 (0 3, 0 4, 0 6)

w2 (0 2, 0 5, 0 3)

z1 (0 4, 0 2, 0 3)

w1 (0 3, 0 4, 0 6)

z1 (0 4, 0 2, 0 3)

z4 (0 6, 0 3, 0 2) (0 . 2 , 0 1 , 0 2) (0 . 1 , 0 . 2 , 0 . 3) (0. 2, 0. 1, 0. 1) (0 .3 , 0 .1 , 0 .2) (0 . 4, 0. 1, 0. 4) (0 .3 ,0 .1 ,0 . 2)

z2 (0 7, 0 2, 0 1)

z3 (0 5, 0 1, 0 2)

Figure15. IN-digraph.

(0 02, 0 04, 0 18)

w2 (0 2, 0 5, 0 3)

z2 (0 7, 0 2, 0 1)

z4 (0 6, 0 3, 0 2)

z3 (0 5, 0 1, 0 2)

Figure16. Two-stepINC-graph.

Definition18. Theintuitionisticneutrosophic m-stepout-neighborhoodofvertex z ofanIN-digraph −→ G =(X,h,k) isIN-set:

Nm (z)=(Xz,tz,iz,fz ),where

Xz = {w| thereexistsadirectedintuitionisticneutrosophicpathoflength m from z to w, Pm z,w }, tz : Xz → [0, 1], iz : Xz → [0, 1] and fz : Xz → [0, 1] aredefinedby tz = min{t(w1, w2), (w1, w2) isanedgeof Pm z,w }, iz = min{i(w1,w2), (w1, w2) isanedgeof Pm z,w } and fz = max{ f (w1, w2), (w1, w2) isanedgeof Pm z,w },respectively.

18of26
Information

Definition19. Suppose G =(X, h, k) isanIN-graph.Then,the m-stepintuitionisticneutrosophic neighborhoodgraph(IN-neighborhood-graph) Nm (G) isdefinedby Nm (G)=(X, h, κ),where h =(h1, h2, h3), κ =(κ1, κ2, κ3), κ1 : X × X → [0, 1], κ2 : X × X → [0, 1] and κ3 : X × X → [0,1] aresuchthat:

κ1(w, z)= h1(w) ∧ h1(z)H1(Nm (w) ∩ Nm (z)),

κ2(w, z)= h2(w) ∧ h2(z)H2(Nm (w) ∩ Nm (z)), κ3(w, z)= h3(w) ∨ h3(z)H3(Nm (w) ∩ Nm (z)), respectively

Theorem5. IfalltheedgesofIN-digraph −→ G =(X, h, k) areindependentstrong,thenalltheedgesof Cm (−→ G ) areindependentstrong.

Proof. Suppose −→ G =(X, h, k) isanIN-digraphand Cm (−→ G )=(X, h, k) isthecorresponding m-stepINC-graph.Sincealltheedgesof −→ G areindependentstrong,then H1(N+ m (w) ∩ N+ m (z)) > 0.5, H2(N+ m (w) ∩ N+ m (z)) < 0.5 and H3(N+ m (w) ∩ N+ m (z)) < 0.5.Then, t(w, z)=(h1(w) ∧ h1(z))H1(N+ m (w) ∩ N+ m (z)),or t(w, z) > 0.5(h1(w) ∧ h1(z)),or t(w,z) (h1(w)∧h1(z)) > 0.5, i(w, z)=(h2(w) ∧ h2(z))H2(N+ m (w) ∩ N+ m (z)),or i(w, z) < 0.5(h2(w) ∧ h2(z)),or i(w,z) (h2(w)∧h2(z)) < 0.5 and f (w, z)=(h3(w) ∨ h3(z))H3(N+ m (w) ∩ N+ m (z)),or f (w, z) < 0.5(h3(w) ∨ h3(z)),or f (w,z) (h3(w)∨h3(z)) < 0.5.

Hence,theedge (w, z) isindependentstrongin Cm (−→ G ).Since, (w, z) istakentobethearbitrary edgeof Cm (−→ G ),thusalltheedgesof Cm (−→ G ) areindependentstrong.

3.Applications

Competitiongraphsareveryimportanttorepresentthecompetitionbetweenobjects.However, still,theserepresentationsareunsuccessfultodealwithallthecompetitionsofworld;forthatpurpose, INC-graphsareintroduced.Now,wediscusstheapplicationsofINC-graphstostudythecompetition alongwithalgorithms.TheINC-graphshavemanyutilizationsindifferentareas.

3.1.Ecosystem

Considerasmallecosystem:humaneatstrout;baldeagleeatstroutandsalamander;trouteats phytoplankton,mayflyanddragonfly;salamandereatsdragonflyandmayfly;snakeeatssalamanderandfrog; frogeatsdragonflyandmayfly;mayflyeatsphytoplankton;dragonflyeatsphytoplankton.Theseninespecies human,baldeagle,salamander,snake,frog,dragonfly,trout,mayflyandphytoplanktonaretakenasvertices. Letthedegreeofexistenceintheecosystemofhumanbe 60%,thedegreeofindeterminacyofexistencebe 30% andthedegreeoffalse-existencebe 10%,i.e.,thetruth-membership,indeterminacy-membershipand falsity-membershipvaluesofthevertexhumanare (0.6, 0.3, 0.1).Similarly,weassumethetruth-membership, indeterminacy-membershipandfalsity-membershipvaluesofotherverticesas (0.7, 0.3, 0.2), (0.4, 0.3, 0.5), (0.3, 0.5, 0.1), (0.3, 0.4, 0.5), (0.3, 0.5, 0.2), (0.7, 0.3, 0.2), (0.6, 0.4, 0.2) and (0.3, 0.5, 0.2).Supposethathuman likestoeattrout 20%,indeterminatetoeat 10% anddisliketoeat,say 10%.Thelikeness,indeterminacyand dislikenessofpreysforpredatorsareshowninTable 7

Itisclearthatiftroutisremovedfromthefoodcycle,thenhumanmustbelifeless,andinsuchasituation baldeagle,phytoplankton,dragonflyandmayflygrowinanundisciplinedmanner.Thus,wecanevaluate thefoodcyclewiththehelpofINC-graphs.

Information 2017
19of26
, 8,132

Table7. Likeness,indeterminacyanddislikenessofpreysandpredators.

NameofPredatorNameofPreyLiketoEatIndeterminatetoEatDisliketoEat

HumanTrout 201010

BaldeagleTrout 202020

BaldeagleSalamander 302030 SnakeSalamander 202010 SnakeFrog 302040 SalamanderDragonfly 202020 SalamanderMayfly 202040

FrogDragonfly 303030

TroutDragonfly 204010

TroutMayfly 301010

TroutPhytoplankton 201010 DragonflyPhytoplankton 101010 MayflyPhytoplankton 303020 FrogMayfly 101010

ForthisfoodwebFigure 17,wehavethefollowingTable 8 ofIN-out-neighborhoods.

Human

(0 6, 0 3, 0 1) (0 7, 0 3, 0 2) (0 4, 0 3, 0 5)

(0 2 , 0 1 , 0 1) (0 2, 0 2, 0 2)

Trout

Baldeagle Salamander

(0 3, 0 5, 0 2) (0 6, 0 4, 0 2) (0 3, 0 5, 0 2)

Phytoplankton

Dragonfly

Snake Frog Mayfly

(0 . 1, 0. 1, 0. 1) (0 2 , 0 .1 , 0 . 1) (0 . 1, 0. 1, 0. 1)

(0 3, 0 2, 0 3) (0 2, 0 2, 0 1) (0 . 3, 0. 2, 0. 4) (0 2, 0 4, 0 1) (0 2, 0 2, 0 . 2) (0 .2 ,0 .2 ,0 . 4) (0 3, 0 3, 0 2) (03 , 0 .1 , 01)

Figure17. IN-foodweb. Table8. IN-out-neighborhoods.

w ∈ X N+ (w)

(0 3, 0 3, 0 3)

(0 3, 0 5, 0 1) (0 3, 0 4, 0 5) (0 7, 0 3, 0 2)

Human {(Trout,0.2,0.1,0.1)}

Baldeagle {(Trout,0.2,0.2,0.2), (Salamander,0.3,0.2,0.3)}

Salamander {(Dragonfly,0.2,0.2,0.2), (Mayfly,0.2,0.2,0.4)} Snake {(Salamander,0.2,0.2,0.1), (Frog,0.3,0.2,0.4)} Frog {(Dragonfly,0.3,0.3,0.3), (Mayfly,0.1,0.1,0.1)} Mayfly {(Phytoplankton,0.3,0.3,0.2)}

Phytoplankton ∅

Dragonfly {(Phytoplankton,0.1,0.1,0.1)}

Trout {(Phytoplankton,0.2,0.1,0.1), (Mayfly,0.3,0.1,0.1), (Dragonfly,0.2,0.4,0.1)}

Information 2017, 8,132 20of26

Therefore, N+(Human ∩ Baldeagle)= {(Trout, 0.2, 0.1, 0.2)}, N+(Baldeagle ∩ Snake)= {(Salamander, 0.2, 0.2, 0.3)}, N+(Salamander ∩ Frog)= {(Dragonfly, 0.2, 0.2, 0.3), (Mayfly, 0.1, 0.1, 0.4)}, N+(Salamander ∩ Trout)= {(Dragonfly, 0.2, 0.2, 0.2), (Mayfly, 0.2, 0.1, 0.4)}, N+(Trout ∩ Frog)= {(Dragonfly, 0.2, 0.3, 0.3), (Mayfly, 0.1, 0.1, 0.1)}, N+(Mayfly ∩ Trout)= {(Phytoplankton, 0.2, 0.1, 0.2)}, N+(Mayfly ∩ Dragonfly)= {(Phytoplankton, 0.1, 0.1, 0.2)} and N+(Dragonfly ∩ Trout)= {(Phytoplankton,0.1,0.1,0.1)}

Now,thereisanedgebetweenhumanandbaldeagle;snakeandbaldeagle;salamanderandtrout; salamanderandfrog;troutandfrog;troutanddragonfly;troutandmayfly;dragonflyandmayflyinthe INC-graph,whichhighlightsthecompetitionbetweenthem;andfortheotherpairofspecies,thereisno edge,whichindicatesthatthereisnocompetitionintheINC-graphFigure 18.Forexample,thereisan edgebetweenhumanandbaldeagleindicatinga 12% degreeoflikenesstopreyonthesamespecies, a3%degreeofindeterminacyanda4%degreeofnon-likenessbetweenthem.

Human

(0 6, 0 3, 0 1) (0 7, 0 3, 0 2) (0 4, 0 3, 0 5)

(0 12, 0 03, 0 04)

Trout

(0 06, 0 06, 0 06) (0 06, 0 06, 0 15) (0 03, 0 04, 0 02)

Phytoplankton

Algorithm1: Ecosystem.

(0 3, 0 5, 0 1) (0 3, 0 4, 0 5) (0 7, 0 3, 0 2)

(0 06, 0 06, 0 1) (0 06, 0 12, 0 05) (0 06, 0 05, 0 04)

(0 03, 0 04, 0 04)

(0 3, 0 5, 0 2) (0 6, 0 4, 0 2) (0 3, 0 5, 0 2)

Figure18. CorrespondingINC-graph

Wepresentourmethod,whichisusedinourecosystemapplicationinAlgorithm 1

Step1. Inputthetruth-membership,indeterminacy-membershipandfalsity-membershipvalues forsetof n species.

Step2. Ifforanytwodistinctvertices wi and wj, t(wi wj ) > 0, i(wi wj ) > 0, f (wi wj ) > 0,then (wj, t(wi wj ), i(wi wj ), f (wi wj )) ∈ N+ (wi ).

Step3. RepeatStep2forallvertices wi and wj tocalculateIN-out-neighborhoods N+ (wi )

Step4. Calculate N+ (wi ) ∩ N+ (wj ) foreachpairofdistinctvertices wi and wj.

Step5. Calculate H[N+ (wi ) ∩ N+ (wj )].

Step6. If N+ (wi ) ∩ N+ (wj ) = ∅,thendrawanedge wi wj

Step7. RepeatStep6forallpairsofdistinctvertices.

Step8. Assignmembershipvaluestoeachedge wi wj usingtheconditions:

t(wi wj )=(wi ∧ wj )H1[N+ (wi ) ∩ N+ (wj )] i(wi wj )=(wi ∧ wj )H2[N+ (wi ) ∩ N+ (wj )] f (wi wj )=(wi ∨ wj )H3[N+ (wi ) ∩ N+ (wj )]

Information 2017
21of26
, 8,132
Baldeagle Salamander Snake Frog Mayfly Dragonfly

3.2.CareerCompetition

ConsidertheIN-digraphFigure 19 representingthecompetitionbetweenapplicantsforacareer. Let {Rosaleen, Nazneen, Abner, Amara, Casper} bethesetofapplicantsfortheparticularcareers {Medicine, Pharmacy, Anatomy, Surgery}.Thetruth-membershipvalueofeachapplicantrepresentsthe degreeofloyaltyquality;theindeterminacy-valuerepresentstheindeterminatestateofloyalty;andthe false-membershipvaluerepresentsthedisloyaltyofeachapplicanttowardstheircareers.Letthedegreeof truth-membershipofNazneenofherloyaltytowardshercareerbe 30%:degreeofindeterminacyis 50%, anddegreeofdisloyaltyis 10%,i.e.,thetruth-membership,indeterminacyandfalsity-membershipvalues ofthevertexNazneenare (0.3, 0.5, 0.1).Thetruth-membershipvalueofeachdirectededgebetween anapplicantandacareerrepresentstheeligibilityforthatcareer;theindeterminacy-valuerepresents theindeterminatestateofthatcareer;andthefalse-membershipvaluerepresentsnon-eligibilityforthat particularcareer.

Abner (0 3, 0 5, 0 6)

Surgery (0 3, 0 4, 0 5)

Nazneen (0 3, 0 5, 0 1)

(0. 2, 0. 2, 0. 2) (0 .1 , 0 .4 , 0 . 2) (0 2, 0 3, 0 4) (0 2, 0 4, 0 5) (0 .3 , 0 .4 , 0 .5)

Pharmacy Medicine

(0 7, 0 3, 0 2)

(0.2, 0 4, 0.5) (0 .1 ,0 .2 ,0 . 3) (0. 1,0. 5,0. 2)

(0 .5 , 0 .3 , 0 .1)

(0 2, 0 5, 0 3) (0 3, 0 6, 0 2)

Amara (0 6, 0 5, 0 2)

Figure19. IN-digraph.

Anatomy

(0 .2 , 0 .5 , 0 . 3)

Rosaleen (0 3, 0 5, 0 2) Casper (0 1, 0 6, 0 3)

Thus,inTable 9, N+ (Nazneen) ∩ N+ (Rosaleen)= {(Surgery, 0.2, 0.2, 0.4)}, N+ (Nazneen) ∩ N+ (Amara)= {(Pharmacy, 0.1, 0.4, 0.3)}, N+ (Nazneen) ∩ N+ (Abner)= {(Pharmacy, 0.1, 0.4, 0.5)}, N+ (Nazneen) ∩ N+ (Casper)= ∅, N+ (Rosaleen) ∩ N+ (Amara)= ∅, N+ (Rosaleen) ∩ N+ (Casper)= ∅, N+ (Rosaleen) ∩ N+ (Abner)= ∅, N+ (Amara) ∩ N+ (Casper)= {(Medicine, 0.1, 0.2, 0.3)}, N+ (Amara) ∩ N+ (Abner)= {(Medicine, 0.3, 0.3, 0.5), (Pharmacy, 0.2, 0.4, 0.5)} and N+ (Casper) ∩ N+ (Abner)= {(Medicine,0.1,0.2,0.5), (Anatomy,0.1,0.4,0.5)}.

Table9. IN-out-neighborhoods.

w ∈ X N+ (w)

Nazneen {(Surgery,0.2,0.2,0.2), (Pharmacy,0.1,0.4,0.2)} Rosaleen {(Surgery,0.2,0.3,0.4)}

Amara {(Medicine,0.5,0.3,0.1), (Pharmacy,0.2,0.5,0.3)} Casper {(Medicine,0.1,0.2,0.3), (Anatomy,0.1,0.5,0.2)} Abner {(Medicine,0.3,0.4,0.5), (Anatomy,0.2,0.4,0.5), (Pharmacy,0.2,0.4,0.5)}

Information 2017, 8,132 22of26

TheINC-graphisshowninFigure 20.Thesolidslinesindicatethestrengthofcompetitionbetween twoapplicants,anddashedlinesindicatetheapplicantcompetingfortheparticularcareer.Forexample, NazneenandRosaleenbotharecompetingforthecareer,surgery,andthestrengthofcompetition betweenthemis (0.06, 0.1, 0.08).InTable 10, W(z, c) representsthecompetitionofapplicant z forcareer c withrespecttoloyaltyquality,indeterminacyanddisloyaltytocompetewiththeothers.Thestrength tocompetewiththeotherapplicantswithrespecttoaparticularcareeriscalculatedinTable 10

FromTable 10,NazneenandRosaleenhaveequalstrengthtocompetewiththeotherforthecareer, surgery.AbnerandCasperhaveequalstrengthofcompetitionforthecareer,anatomy.Amaracompetes withtheothersforthecareer,pharmacyandmedicine.

Nazneen (0 3, 0 5, 0 1)

Abner (0 3, 0 5, 0 6)

(0 .09 , 0 .20 , 0 . 30)

(0 .01 , 0 .20 , 0 . 30)

Surgery (0 3, 0 4, 0 5)

Medicine

(0 7, 0 3, 0 2)

Casper (0 1, 0 6, 0 3)

(0. 03, 0. 20, 0. 3) (0 01, 0 10, 0 09)

Amara (0 6, 0 5, 0 2)

(0 .06, 0.1, 0.08) (0 .03 ,0 .20 ,0 . 06)

Pharmacy

(0 2, 0 5, 0 3) (0 3, 0 6, 0 2)

Rosaleen (0 3, 0 5, 0 2)

Anatomy

Figure20. CorrespondingINC-graph.

Table10. Strengthofcompetitionoftheapplicantforaparticularcareer.

(Applicant,Career)InCompetitionW(Applicant,Career)S(Applicant,Career)

(Nazneen, Surgery) Rosaleen (0.06,0.1,0.08) 0.88 (Rosaleen, Surgery) Nazneen (0.06,0.1,0.08) 0.88

(Abner, Anatomy) Casper (0.01,0.20,0.30) 0.51 (Casper, Anatomy) Abner (0.01,0.20,0.30) 0.51

(Nazneen, Pharmacy) Abner, Amara (0.03,0.20,0.18) 0.65

(Abner, Pharmacy) Amara, Nazneen (0.06,0.20,0.30) 0.56

(Amara, Pharmacy) Nazneen, Abner (0.06,0.20,0.18) 0.68

(Amara, Medicine) Abner, Casper (0.05,0.15,0.195) 0.705

(Casper, Medicine) Abner, Amara (0.01,0.15,0.195) 0.665

(Abner, Medicine) Casper, Amara (0.05,0.20,0.30) 0.55

Wepresentourmethod,whichisusedinourcareercompetitionapplicationinAlgorithm 2

Information 2017
23of26
, 8,132

Algorithm2: CareerCompetition

Step1. Inputthetruth-membership,indeterminacy-membershipandfalsity-membership valuesforsetof n applicants.

Step2. Ifforanytwodistinctvertices zi and zj, t(zi zj ) > 0, i(zi zj ) > 0, f (zi zj ) > 0,then (zj, t(zi zj ), i(zi zj ), f (zi zj )) ∈ N+ (zi )

Step3. RepeatStep2forallvertices zi and zj tocalculateIN-out-neighborhoods N+ (zi ) Step4. Calculate N+ (zi ) ∩ N+ (zj ) foreachpairofdistinctvertices zi and zj. Step5. Calculate H[N+ (zi ) ∩ N+ (zj )] Step6. If N+ (zi ) ∩ N+ (zj ) = ∅,thendrawanedge zi zj Step7. RepeatStep6forallpairsofdistinctvertices. Step8. Assignmembershipvaluestoeachedge zi zj usingtheconditions:

t(zi zj )=(zi ∧ zj )H1[N+ (zi ) ∩ N+ (zj )] i(zi zj )=(zi ∧ zj )H2[N+ (zi ) ∩ N+ (zj )] f (zi zj )=(zi ∨ zj )H3[N+ (zi ) ∩ N+ (zj )]

Step9. If z, r1, r2, r3,..., rn aretheapplicantscompetingforcareer c,thenthestrengthof competition W(z, c)=(t(z, c), i(z, c), f (z, c)) ofeachapplicant z forthecareer c is: W(z, c)= (t(zr1)+t(zr2)+ +t(zrn ),i(zr1)+i(zr2)+ +i(zrn ), f (zr1)+ f (zr2)+ + f (zrn )) n Step10. Calculate S(z, c),thestrengthofcompetitionofeachapplicant z forcareer c. S(z, c)= t(z, c) (i(z, c)+ f (z, c))+ 1.

4.Conclusions

Graphsserveasmathematicalmodelstoanalyzemanyconcretereal-worldproblemssuccessfully. Certainproblemsinphysics,chemistry,communicationscience,computertechnology,sociology andlinguisticscanbeformulatedasproblemsingraphtheory.Intuitionisticneutrosophicsettheory isamathematicaltooltodealwithincompleteandvagueinformation.Intuitionisticneutrosophicset theorydealswiththeproblemofhowtounderstandandmanipulateimperfectknowledge.Inthis researchpaper,wehavedescribedtheconceptofintuitionisticneutrosophiccompetitiongraphs.Wehave alsopresentedapplicationsofintuitionisticneutrosophiccompetitiongraphsinecosystemandcareer competition.Weaimtoextendourresearchworkoffuzzificationto(1)fuzzysoftcompetitiongraphs, (2)fuzzyroughsoftcompetitiongraphs,(3)bipolarfuzzysoftcompetitiongraphsand(4)theapplication offuzzysoftcompetitiongraphsindecisionsupportsystems.

AuthorContributions: MuhammadAkramandMaryamNasirconceivedanddesignedtheexperiments; MaryamNasirperformedtheexperiments;MuhammadAkramandMaryamNasiranalyzedthedata;MaryamNasir contributedreagents/materials/analysistools;MuhammadAkramwrotethepaper.

ConflictsofInterest: Theauthorsdeclarethattheyhavenoconflictofinterestregardingthepublicationofthis researcharticle.

References

1. Euler,L.Solutioproblemsadgeometriamsituspertinentis. Comment.Acad.Sci.Imp.Petropolitanae 1736, 8, 128–140.(InLatin)

2. Marcialis,G.L.;Roli,F.;Serrau,A. GraphBasedandStructuralMethodsforFingerprintClassification;Springer: Berlin/Heidelberg,Germany,2007.

Information 2017, 8,132 24of26

Information 2017, 8,132 25of26

3. Mordeson,J.N.;Nair,P.S. FuzzyGraphsandFuzzyHypergraphs1998,2nded.;PhysicaVerlag:Berlin/Heidelberg, Germany,2001.

4. Schenker,A.;Last,M.;Banke,H.;Andel,A. ClusteringofWebDocumentsUsingaGraphModel;Springer: Berlin/Heidelberg,Germany,2007.

5. Shirinivas,S.G.;Vetrivel,S.;Elango,N.M.Applicationsofgraphtheoryincomputerscienceanoverview. Int.J. Eng.Sci.Technol. 2010, 2,4610–4621.

6. Cohen,J.E. IntervalGraphsandFoodWebs:AFindingandaProblems;Document17696-PR;RANDCorporation: SantaMonica,CA,USA,1968.

7. Smarandache,F.Neutrosophicset-ageneralizationoftheintuitionisticfuzzyset.InProceedingsoftheIEEE InternationalConferenceGranularComputing,Atlanta,GA,USA,10–12May2006;pp.38–42.

8. Smarandache,F. Neutrosophy.NeutrosophicProbability,Set,andLogic,ProQuestInformation&Learning;InfoLearnQuest: AnnArbor,MI,USA,1998.

9. Wang,H.;Smarandache,F.;Zhang,Y.;Sunderraman,R.Singlevaluedneutrosophicsets. MultisapaceMultistruct. 2010, 4,410–413.

10. Yang,H.-L.;Guo,Z.-L.;She,Y.;Liao,X.Onsinglevaluedneutrosophicrelations. J.Intell.FuzzySyst. 2016, 30,1045–1056.

11. Bhowmik,M.;Pal,M.Intuitionisticneutrosophicset. J.Inf.Comput.Sci. 2009, 4,142–152.

12. Bhowmik,M.;Pal,M.Intuitionisticneutrosophicsetrelationsandsomeofitsproperties. J.Inf.Comput.Sci. 2010, 5,183–192.

13. Kauffman,A. IntroductionaLaTheorieDesSousemsemblesFlous;Masson:Paris,France,1973.(InFrench)

14. Rosenfeld,A.Fuzzygraphs.In FuzzySetsandtheirApplication;Zadeh,L.A.,Fu,K.S.,Shimura,M.,Eds.; AcademicPress:NewYork,NY,USA,1975;pp.77–95.

15. Bhattacharya,P.Someremarkonfuzzygraphs. PatternRecognit.Lett. 1987, 6,297–302.

16. Akram,M.;Davvaz,B.Strongintuitionisticfuzzygraphs. Filomat 2012, 26,177–196.

17. Akram,M.;Dudek,W.A.Intuitionisticfuzzyhypergraphswithapplications. Inf.Sci. 2013, 218,182–193.

18. Akram,M.;Al-Shehrie,N.O.Intuitionisticfuzzycyclesandintuitionisticfuzzytrees. Sci.WorldJ. 2014, 7,654–661.

19. Akram,M.;Siddique,S.Neutrosophiccompetitiongraphswithapplications. J.Intell.FuzzySyst. 2017, 33,921–935.

20. Akram,M.;Luqman,A.Bipolarneutrosophichypergraphswithapplications. J.Intell.FuzzySyst. 2017, 33,1699–1713.

21. Al-Shehrie,N.O.;Akram,M.Bipolarfuzzycompetitiongraphs. ArsComb. 2015, 121,385–402.

22. Sahoo,S.;Pal,M.Intuitionisticfuzzycompetitiongraphs. J.Appl.Math.Comput.Sci. 2016, 52,37–57. 23. Smarandache,F. TypesofNeutrosophicGraphsandNeutrosophicAlgebraicStructurestogetherwithTheirApplications inTechnologySeminar;UniversitateaTransilvaniadinBrasov,FacultateadeDesigndeProdussiMediu:Brasov, Romania,2015. 24. Wu,S.Y.Thecompositionsoffuzzydigraphs. J.Res.Educ.Sci. 1986, 31,603–628. 25. Samanta,S.;Pal,M.Fuzzy k-competitionandp-competitiongraphs. FuzzyInf.Eng. 2013, 2,191–204. 26. Samanta,S.;Akram,M.;Pal,M. m-stepfuzzycompetitiongraphs. J.Appl.Math.Comput. 2015, 47,461–472. 27.

Dhavaseelan,R.;Vikramaprasad,R.;Krishnaraj,V.Certaintypesofneutrosophicgraphs. Int.J.Math.Sci.Appl. 2015, 5,333–339.

28. Akram,M.;Shahzadi,G.Operationsonsingle-valuedneutrosophicgraphs. J.UncertainSyst. 2017, 11,176–196. 29. Akram,M.;Shahzadi,S.Neutrosophicsoftgraphswithapplication. J.Intell.FuzzySyst. 2017, 32,841–858.

30. Broumi,S.;Talea,M.;Bakali,A.;Smarandache,F.Singlevaluedneutrosophicgraphs. J.NewTheory 2016, 10,86–101.

31. Ye,J.Single-valuedneutrosophicminimumspanningtreeanditsclusteringmethod. J.Intell.Syst. 2014, 23,311–324.

32. Ye,J.Improvedcorrelationcoefficientsofsingle-valuedneutrosophicsetsandintervalneutrosophicsetsfor multipleattributedecisionmaking. J.Intell.FuzzySyst. 2014, 27,2453–2462.

Information 2017, 8,132 26of26

33. Ye,J.Amulticriteriadecision-makingmethodusingaggregationoperatorsforsimplifiedneutrosophicsets. J.Intell.FuzzySyst. 2014, 26,2459–2466.

34. Atanassov,K.T.Intuitionisticfuzzysets.VIIITKR’sSession,DepositedinCentralforSciencesTechnicalLibrary ofBulgarianAcademyofScience,1697/84,Sofia,Bulgaria1983. Int.J.Bioautom. 2016, 20,S1–S6. 35. Liang,R.;Wang,J.;Li,L.Multi-criteriagroupdecisionmakingmethodbasedoninterdependentinputsof singlevaluedtrapezoidalneutrosophicinformation. NeuralComput.Appl. 2016,doi:10.1007/s00521-016-2672-2. 36. Liang,R.;Wang,J.;Zhang,H.Amulti-criteriadecision-makingmethodbasedonsingle-valuedtrapezoidalneutrosophic preferencerelationswithcompleteweightinformation. NeuralComput.Appl. 2017,doi:10.1007/s00521-017-2925-8. 37. Lundgren,J.R.;Maybee,J.S.FoodWebsWithIntervalCompetitionGraph.In GraphsandApplication,Proceedings oftheFirstColoradoSymposiumonGraphTheory;Wiley:NewYork,NY,USA,1984.

38.

Mondal,T.K.;Samanta,S.K.Generalizedintuitionisticfuzzysets. J.FuzzyMath. 2002, 10,839–862.

39. Nasir,M.;Siddique,S.;Akram,M.Novelpropertiesofintuitionisticfuzzycompetitiongraphs. J.UncertainSyst. 2017, 2,49–67.

40. Peng,H.;Zhang,H.;Wang,J.Probabilitymulti-valuedneutrosophicsetsanditsapplicationinmulti-criteria groupdecision-makingproblems. NeuralComput.Appl. 2016,doi:10.1007/s00521-016-2702-0.

41. Sarwar,M.;Akram,M.Novelconceptsofbipolarfuzzycompetitiongraphs. J.Appl.Math.Comput. 2017, 54,511–547.

42. Tian,Z.;Wang,J.;Wang,J;Zhang,H.Simplifiedneutrosophiclinguisticmulti-criteriagroupdecision-making approachtogreenproductdevelopment. GroupDecis.Negot. 2017, 26,597–627.

43. Wang,H.;Madiraju,P.;Zang,Y.;Sunderramn,R.Intervalneutrosophicsets. Int.J.Appl.Math.Stat. 2005, 3,1–18.

44. Zadeh,L.A.Fuzzysets. Inf.Control 1965, 8,338–353.

c 2017bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution(CC BY)license(http://creativecommons.org/licenses/by/4.0/).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.