Bounds for Poisson and Neutrosophic Poisson Distributions Associated with Chebyshev Polynomials

Page 1

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/344931132
FOR POISSON AND NEUTROSOPHIC POISSON DISTRIBUTIONS ASSOCIATED WITH CHEBYSHEV
Article in Palestine Journal of Mathematics · January 2021 CITATIONS 0 READS 23 3 authors, including: Some of the authors of this publication are also working on these related projects: Certain New Classes Of Analytic And Univalent Functions (Negative Coefficients) With Respect To Other Points View project Coefficient Inequalities View project
BOUNDS
POLYNOMIALS
43 PUBLICATIONS 132 CITATIONS SEE PROFILE
uploaded by
downloaded
Abiodun Oladipo Ladoke Akintola University of Technology
All content following this page was
Abiodun Oladipo on 28 October 2020. The user has requested enhancement of the
file.

Vol.10(1)(2021) ,169–174

©PalestinePolytechnicUniversity-PPU2021

BOUNDSFORPOISSONANDNEUTROSOPHICPOISSON DISTRIBUTIONSASSOCIATEDWITHCHEBYSHEV POLYNOMIALS

AbiodunTinuoyeOladipo

CommunicatedbyProfessorP.K.Banerji

MSC2010Classifications:30C45,30C50

Keywordsandphrases:analyticfunction,Poisson,univalentfunctions,distributionseries,subordination,Fekete-Szego. Theauthoracknowledgesandthanktherefereesfortheirusefulandvaluablesuggestions.

Abstract ThepaperinvestigatesPoissonandneutrosophicPoissondistributionseries.The firstfewcoefficientboundsforPoissondistributionwhoseparametertakesadefiniteanddeterminedvalueswerestudied,whilecoefficientboundsforneutrosophicPoissondistributionwhose parametertakesundeterminedvaluesorinaccuratestatisticaldatawereinvestigated.Examples todemonstrateourargumentforneutrosophicPoissondistributionwereprovided.

1Introduction

Let A denotetheclassoffunctionsoftheform f (z)= z + ∞ n=2 anzn (1.1)

whichareanalyticintheopenunitdisk U = {z : z ∈ C, |z| < 1},andlet S ∈ A consistingof univalentfunctionsin U normalizedwith f (0)= f (z) 1 = 0.. Afunction f oftheform(1.1)issaidtobestarlikeoforder α if Re zf (z) f (z) >α,z ∈ U andconvexoforder α if Re 1 + zf (z) f (z) >α,z ∈ U

andarerespectivelydenotedby S∗(α) and K(α) for0 ≤ α< 1.

Let P denotethewellknownclassofCaratheodoryfunctionswiththepositiverealpartin U Let P (pk), 0 ≤ k< ∞ denotethefamilyoffunctionsp,suchthat p ∈ P ,and p ≺ pk in U ; wherethefunction pk mapstheunitdiskconformallyontotheregion Ωk suchthat1 ∈ Ωk and δΩ = {u + iv : u 2 = k2(u 1)2 + k2 v 2}

Thedomain Ωk iselliptic,hyperbolic,parabolicandpossiblycoverstherighthalfplanewhenever k> 1, 0 ≤ k< 1,k = 1, and k = 0respectively.

Recently,severalauthorshaveinvestigatedvarioussublcassesofanalyticfunctionsassociated withChebyshevpolynomialsduetoitsimportanceinboththeoreticalandpracticalapplications (seefordetail[2,5,11])andthereferencestherein.Inthisworkweshallconcernourselveswith Chebyshevpolynomialofthefirstandsecondkinds.Inthecaseofrealvariable x ∈ [ 1, 1] we have Tn(x)= cosnθ,Un(x)= sin(n + 1)θ sinθ ,

PalestineJournalofMathematics

where n isthedegreeofpolynomialand x = cosθ.Itisobservedthatfor t = cosα,α ∈ ( π 3 , π 3 ), then H (z,t)= 1 1 2tz + z2 = 1 + ∞ n=1

sin(n + 1)α sinα zn

Thatis H (z,t)= 1 + 2cosαz +(3cos 2 α sin2 α)z 2 + ...,z ∈ U.

Theabovecanbefurtherexpressedasfollows

H (z,t)= 1 + U1(t)+ U2(t)z 2 + (z ∈ U,t ∈ [ 1, 1]) (1.2) Itisobservedthat U1(t)= 2t,U2(t)= 4t2 1,U3(t)= 8t3 4t,... (1.3)

ItisimportanttorecallthatChebyshevpolynomialsofthefirstkindandsecondkindareconnectedasfollows Tn(t) dt = nUn 1(t),Tn = Un(t) tUn 1(t), 2Tn(t)= Un(t) Un 2(t)

Recently,Poissondistributionseriesgatheredmomentumingeometricfunctiontheory.Porwal andSrivastava[12],Murugusundaramoorthyet.al[8],Porwal[9]SrivastavaandPorwal[3], extensivelystudiedPoissondistributionseriesbyestablishingvariousgeometricpropertiesin termsofunivalency,starlikeness,convexityandharmonicstructures.Detailcanbefoundinthe abovementionedliteraturesandthereferencestherein. Meanwhile,Poissondistributionseriesisdefinedas K(m,z)= z + ∞ n=2

mn 1 (n 1)! e mzn (1.4) andbyratiotesttheradiusofconvergenceoftheaboveseriesisinfinity. Theconvolutionoftwoseries f (z) and g(z)= z + ∞ n=2 bnzn isdefinedbypowerseriesgiven by (f ∗ g)(z)= z + ∞ n=2 anbnzn =(g ∗ f )(z); [1].

Letthelinearoperator I(m) : A → A defineby Φ(z)= K(m,z) ∗ f (z)= z + ∞ n=2

mn 1 (n 1)! e manzn (1.5)

Let f and g beanalyticin U ,then f issaidtobesubordinateto g writtenas f (z) ≺ g(z),ifthere existsafunction w(0)= 0and |w(z)| < 1suchthat f (z)= g(w(z))(z ∈ U ) [7]. Definition1.1 Let λ ≥ 0,t ∈ ( 1 2 , 1],m> 0,afunction f ∈ A oftheform(1.1)issaidtobelong totheclass M m λ (H (z,t)) ifthefollowingconditionholds (1 λ) zΦ (z) Φ(z) + λ 1 + zΦ (z) Φ (z) ≺ H (z,t)= 1 1 2tz + z2 , (z ∈ U )

TheauthorismotivatedbytheearlierworksofSrivastavaandPorwal[3],wemakeuseof Chebyshevpolynomialsexpansionstoestimatethefirstfewcoefficientsoffunctionsin M m λ (H (z,t)). Theauthorsin[3]investigatedcoefficientinequalitiesofPoissondistributionseriesinconicdomainrelatedtouniformlyconvex, k-spiralikeandstarlikefunctions.Intheirresults m isaprecise parameterforexamplewecansay m = 1,thatis m isaccuratelydefined.Sectin2ofthepresent investigationfurthertheworkin[3]byestimatingtheboundonthefirstfewcoefficientsand classicalFekete-SzegetheoremviasubordinationprincipleinconnectionwithChebyshevpolynomials.Insection3ofthepresentinvestigationtheworkin[3]isfurtherextendedtoasituation when m isnotpreciselydefined.Classicalprobabilitydistributionsonlydealswithspecifieddata anditsparametersarealwaysgivenwithaspecifiedvalue,whileneutrosophicprobabilitydistributiongivesamoregeneralandclearityofthestudyissueswhen m isaninterval.Summarily theworkin[3]andsection2ofthepresentinvestigationareparticularcasesoronesolutionof ourinvestigationinsection3.

170 AbiodunTinuoyeOladipo

2BoundsforPoissonDistributionSeries

Forthepurposeofourinvestigationthefollowinglemmashallbeemployed. Lemma2.1 [7]If ω ∈ Ω then ω2 tω2 1 ≤ max{1, |t|}

foranycomplexnumber t.Theresultissharpforthefunction ω(z)= z or ω(z)= z2,(seealso [4,6]).

NextweshallconsiderthefirstfewcoefficientboundsfortheclassdefinedinDefinition2.1. Theorem2.1 Letthefunction f givenby(1.1)beintheclass M m λ (H (z,t)), m> 0,λ ≥ 0.Then wehave |a2|≤ 2t m(1 + λ)e m |a3|≤ 2t m2(1 + 2λ)e m max 1, 4t2 1 2t + 2t(1 + 3λ) (1 + λ)2 a3 µa 2 2 ≤ 2t m2(1 + 2λ)e m max 1, 4t2 1 2t + 2t(e m µ) 2tλ(3e m 2µ) e m(1 + λ)2

Proof. If f ∈ M m λ (H (z,t)),and ω ∈ Ω suchthat (1 λ) zΦ (z) Φ(z) λ 1 + zΦ (z) Φ (z) = H (z,t). (2.1) Itisobservedfrom(1.3)and(2.1)that 1 +(1 + λ)me ma2z +[(1 + 2λ)m 2 e ma3 (1 + 3λ)m 2 e 2ma 2 2]z 2 + = 1 + U1(t)c1z +(U1(t)c2 + U2(t))z 2 + (2.2) Henceby(2.2)wehave a2 = U1(t)c1 (1 + λ)me m (2.3) and a3 = U1(t) m2(1 + 2λ)e m c2 + U2 U1 + (1 + 3λ)U1(t) (1 + λ)2 c 2 1 (2.4) By(2.3)and(2.4)wehave a3 µa 2 2 = U1 m2(1 + 2λ)e m c2 + ρc 2 1 where ρ = U2 U1 + (e m(1 + 3λ) µ(1 + 2λ))U1(t) (1 + λ)2

ThedesiredresultisobtainedbyapplyingLemma2.1 Corolllary2.1 k ∈ [0, ∞), 0 ≤ α< 1,λ = 0inTheorem2.1andif f ∈ M m 0 (H (z,t)) thenwe have |a2|≤ 2t me m |a3|≤ 2t m2e m max 1, 8t2 1 2t

BOUNDFORPOISSONANDNEUTROSOPHICPOISSON 171

3NeutrosophicPoissonDistributionSeries

Recently,preciselyin1995,Smarandacheintroducedtheconceptofneutrosophictheory.Itis anewbranchofphilosophyasageneralizationforthefuzzylogic,alsoasageneralizationof theintrinsticfuzzylogic.Thisnewbranchofphilosophyinthefuzzylogicprovidesanew foundationfordealingwithissuesthathaveindeterminatedata,whichmaybenumbers,(see [10]forneutrosophicnumbers)andthereferencestherein. Theuseofneutrosophiccrispsetstheorywiththeclassicalprobabiltydistributionsparticularly Poissondistribusion,exponentialdistibutionsanduniformdistributionsopensanewstairway fordealingwithissuesthatfollowtheclassicaldistributionsandatthesametimecontaindata notspecifiedaccurately.Theextensionofclassicaldistributionsaccordingtologic,meansthat parametersofclassicaldistributiontakeundeterminedvalues,whichallowsdealingwithevery situationsthatareencounteredwhiledealingwithstatisticaldata,especiallywhenworkingwith vagueandinaccuratestatisticaldata.

NeutrosophicPoissondistributionofadiscretevariable X isaclassicalPoissondistributionof x,butitsparameterisimprecise.ForexampleandfromourearlierdiscussioninSection2 m can besetwithtwoormoreelements.Themostcommonofsuchdistributioniswhen m isinterval. Let NP (x = k)= e mN . (mN )k k! ,k = 0, 1, 2... where mN isthedistributionparameterandisequaltotheexpectedvalueandthevariance.That is NE(x)= NV (x)= mN and N = d + I isaneutrosophicstatisticalnumber(see[10])andthereferencestherein. Nowwemodifiy(1.4)asfollows K(mN ,z)= z + ∞ n=2

(mN )n 1 (n 1)! e mN zn (3.1)

Ourquestinthissectionistoinvestigatethepossibilityofhavingarangeofvaluesforthefirst fewcoefficientsforneutrosophicPoissondistributionserieswhoseparameterisindeterminate. WeshalluseexamplestodemonstratetheconceptofneutrosophicPoissondistributionusing Theorem2.1. Theorem3.1 Letthefunction f givenby(1.1)beintheclass M m λ (H (z,t)), m ∈ [1, ∞].Then wehave |a2|≤ 2t mN (1 + λ)e mN |a3|≤ 2t m2 N (1 + 2λ)e mN max 1, 4t2 1 2t + 2t(1 + 3λ) (1 + λ)2

172 AbiodunTinuoyeOladipo
a3 µa 2 2 ≤ 2t m2e m max 1, 4t2 1 2t + 2t(e m µ) e m Corollary2.2 For k ∈ [0, ∞), 0 ≤ α< 1,λ = 1,t = 1 2 inTheorem3.1,andif f ∈ M m 1 (H (z, 1 2 )) thenwehave |a2|≤ em 2m |a3|≤ em 3m2 a3 µa 2 2 ≤ em 3m2 max 1, µ 2e m 4e m

a3 µa 2 2 ≤ 2t m2 N (1 + 2λ)e mN max 1, 4t2 1 2t + 2t(e mN µ) 2tλ(3e mN 2µ) e mN (1 + λ)2

Exampleforcasestudy

Inacompany,phoneemployeereceivesphonecalls,thecallsarrivewithrateof[1,3]callsper minute,wewillcalculatetheprobabilitythattheemployeewillnotreceiveanycallwithina minute.

Corollary3.1 Letthefunction f givenby(1.1)beintheclass M m λ (H (z,t)), m ∈ [1, 3].Then wehave |a2|≤ 2t [1, 3](1 + λ)e [1,3] |a3|≤ 2t [1, 3]2(1 + 2λ)e [1,3] max 1, 4t2 1 2t + 2t(1 + 3λ) (1 + λ)2 a3 µa 2 2 ≤ 2t [1, 3]2(1 + 2λ)e [1,3] max 1, 4t2 1 2t + 2t(e [1,3] µ) 2tλ(3e [1,3] 2µ) e [1,3](1 + λ)2 .

Corollary3.2 Letthefunction f givenby(1.1)beintheclass M m 0 (H (z,t)), m ∈ [1, 3] and λ = 0.Thenwehave |a2|≤ 2t [1, 3]e [1,3] |a3|≤ 2t [1, 3]2e [1,3] max 1, 4t2 1 2t + 2t a3 µa 2 2 ≤ 2t [1, 3]2e [1,3] max 1, 4t2 1 2t + 2t(e [1,3] µ) e [1,3]

Conclusion: Weconcludethattheneutrosophicprobabilitydistributiongivesamoregeneral andclaritystudyoftheproblemunderinvestigation.Thatistheclassicalprobabilitydistribution discussedinsection2isonesolutionamongthesolutionsresultingfromthestudyinsection3, thisisasaresultofgivingthedistributionparametersseveraloptionspossiblewhichdoesnot remainlinkedtoasinglevalue.Wehopethisworkwillserveasastairwaytostudyothertypes ofprobabilitydistributionsaccordingtotheneutrosophiclogic.

References

[1] Al-Shaqsi,KandDarusM. Anoperatordefinedbyconvolutioninvolvingthepolylogarithmsfunctions, JournalofMathematicsandStatistics,4(1)(2008),46-50.

[2] BulutS.andMageshN. Onthesharpboundsforacomprehensiveclassofanalyticandunivalent functionsbymeansofChebyshevpolynomialss,KhayyamJ.Math.2(2016),no.2,194-200DOI: 10.22034/kjm.2017.43707.

[3] DiveshSrivastavaandSaurabhPorwal SomesufficientconditionsforPoissondistributionseriesassociatedwithconicregions InternationalJournalofAdvancedTechnologyinEngineeringScience,Volume No03,SpecialIssueNo01,March(2015),229-236.

[4] El-Ashwah,R.-Kanas,S.: Fekete-Szegoinequalitiesforquasi-subordinationfunctionsclassesofcomplexorder,KyungpookMath.J.55(2005),679-688.

[5] Fadipe-Joseph,O.A.,Kadir,B.B,Akinwumi,S.E.andAdeniran,E.O. Polynomialboundsforaclass ofunivalentfunctioninvolvingsigmoidfunction,KhayyamJ.Math.,4(2018),no.1,88-101,DOI: 10.22034/kjm.2018.57721

BOUNDFORPOISSONANDNEUTROSOPHICPOISSON 173

[6] HajiMohd,M-Darius,M. Fekete-Segoproblemsforquasi-subordinationclasses,Abstr.Appl.Anal. 2012,ArticleID192956,14pp.

[7] Jahangiri,J.M.,Ramachandran,C.Annamalai,S. Fekete-Szegoproblemforcertainanalyticfunctions definedbyhypergeometricfunctionsandJacobipolynomials JournalofFractionalCalculusandApplications,Vol.9(1),(2018),1-7.

[8] Murugusundaramoorthy,G.Vijaya,K.andPorwalS. Someinclusionresultsofcertainsubclassofanalytic functionsassociatedwithPoissondistributionseries,HacettepeUnitBulletinofNaturalSciencesand EngineeringSeriesB.MathematicsandStatistics(2016),1-6.Doi:101567241HJMS20164513110.

[9] Porwal,S. AnapplicationofaPoissondistributionseriesoncertainanalyticfunctions,JournalofComplexAnalysis,Volume2014,ArticleID984135http://dx.doi.org/10.1155/2014/984135,pp3.

[10] RafifAlhabib,MoustafaMzherRanna,HaithamFarahandSalama,A.A. Someneutrosophicprobability distributions.NeutrosophicSetsandSystems,Vol.22,(2018),30-37.

[11] SahseneAltinkayaandSibelYalcin OntheChebyshevpolynomialboundsforclassesofunivalentfunctions,KhayyamJ.Math.2(2016),no.1,1-5DOI:10.22034/kjm.2016.13993.

[12] SaurabhPorwalandDiveshSrivastava Someconnectionsbetweenvarioussubclassesofplanarharmonic mappingsinvolvingPoissondistributionseries,ElectronicJournalofMathematicalAnalysisandApplications,Vol.6(2)July2018,pp.163-171.

Authorinformation

AbiodunTinuoyeOladipo,DepartmentofPureandAppliedMathematics,LadokeAkintolaUniversityof Technology,Ogbomoso,P.M.B.4000Ogbomoso,Nigeria.

E-mail:

174 AbiodunTinuoyeOladipo
View publication stats

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.