Bipolar soft neutrosophic topological region

Page 1

Bipolar soft neutrosophic topological region

Article · October 2020 DOI: 10.26637/MJM0804/0061

CITATIONS 0 5 authors, including:

T. Siva Nageswara Rao Vignan University 15 PUBLICATIONS 5 CITATIONS SEE PROFILE

Some of the authors of this publication are also working on these related projects: Inconsistency, N-wise comparison in Multiple Criteria Decision Making problems View project

Vunnam Venkateswara Rao Vignan University 28 PUBLICATIONS 60 CITATIONS SEE PROFILE All content following this page was uploaded by T. Siva Nageswara Rao on 17 October 2020. The user has requested enhancement of the downloaded file.

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/344690517

MalayaJournalofMatematik,Vol.8,No.4,1687-1690,2020 https://doi.org/10.26637/MJM0804/0061

Bipolarsoftneutrosophictopologicalregion

G.UpenderReddy1*,T.SivaNageswaraRao2,N.SrinivasaRao 3 andV.VenkateswaraRao 4

Abstract

Inthisarticledeals,differentareaswithuncertaintydatainformationinbipolarsoftneutrosophictopology.Inthe pasttime,somanyauthorsarediscussedaboutneutrosophicandbipolarneutrosophictheory.Softneutrosophic SettheorywasderivedbyMaji.Thepresentarticleextendedtobipolarsoftspatialregion.Alsoweobtained definitionsofSoftopen,softclosed,softpre-open,softpre-closedonthebipolarneutrosophic.

Keywords

Softneutrosophicset;bipolarsoftneutrosophictopology;bipolarsoftneutrosophicspatialareas.

AMSSubjectClassification

11B05.

1DepartmentofMathematics,NizamCollege(A),OsmaniaUniversity,Basheerbagh,Hyderabad,TS,India. 2,3,4DepartmentofMathematics,Vignan’sFoundationforScienceTechnologyandResearch(DeemedtobeUniversity),Vadlamudi,Guntur (Dt.),A.P,India.

*Correspondingauthor:yuviganga@gmail.com,shivathottempudi@gmail.com,srinudm@gmail.com,vunnamvenky@gmail.com.

ArticleHistory:Received 11 June 2020;Accepted 13 September 2020 c 2020MJM.

1.Introduction Everywhereintheworlduncertaintysituationsarethere ineachcase.Inparticularlymathematicstherearedifferent fieldswithuncertaintyproblems.EspeciallyFuzzytheory [14]andIntuitionistfuzzytheory[1]authorsfindoutdifferent problemsdealwithuncertainty.Byovercomethisuncertainty, Smarandache[8]derivedneutrosophictheory.Maji[3]collectivethetwotopicssoftsetsandneutrosophictheory.The authoralsohavethesomemoreresearchworkonneutrosophictheoryseethereferences[2,4,5,6,7,9,10,11,12, 13]. Notations:

Bipolarsoftneutrosophicpre-opensets(BSNPOS) 4. Bipolarsoftneutrosophicpre-closedsets(BSNPCS). 5. BipolarsoftNeutrosophictopology(BSNT) 6. Bipolarsoftneutrosophicclosure(BSNC) 7. Bipolarsoftneutrosophicinterior(BSNI) 8. Bipolarsoftneutrosophicopenset(BSNOS) 9. Bipolarsoftneutrosophicclosedset(BSNCS) 10. Bipolarsoftneutrosophicsemi-closed(BSNSC) 11. BipolarSoftneutrosophicsemiopen(BSNSO)

Thisarticlebasedonthesoftneutrosophictopology.Here westartwithsomebasicdefinitions.

2.Preliminaries

Inthissection,werecallsomedefinitionsandbasicresults offractionalcalculuswhichwillbeusedthroughoutthepaper. Definition2.1. (W, Z) isasoftsetin Ω where W : Z → ˜ P (Ψ) isamappingwhere ˜ P (Ψ) isapowersetof Ψ Weexpress (W, Z) by ˜ W ˜ W = {( f ,W ( f )) : f ∈ Z}

Contents 1 Introduction ......................................1687 2
.....................................1687 3 BipolarSoftneutrosophictopologicalspace ...1688 4 Bipolarsoftneutrosophicnearlyopensets
5 Bipolarsoftneutrosophicregion ................1689 6 Conclusion .......................................1690 References .......................................1690
Preliminaries
.....1689
2.
3.
1. BipolarSoftNeutrosophic(BSN)
BipolarsoftNeutrosophicset(BSNS)

Definition2.2. AbipolarneutrosophicsetBon Ψ isdefinedas: B = {< z, εBN (z) , φBN (z) , ϕBN (z) , εBP (z) , φBP (z) , ϕBP (z) >: z ∈ Ψ} where εBP, φBP, ϕBP : Ψ →] 0, 1+[ and εBN , φBN , ϕBN : Ψ →] 1, 0 [ and 3 ≤ εBN (z)+ φBN (z)+ ϕBN (z)+ εBP (z)+ φBP (z) +ϕBP (z) ≤ 3+

Definition2.3. Let Ψ bethesetandZbeparameterset. Let P (Ψ) representedthesetofallBSNSof Ψ . Then (W, Z) isknownasBSNSover Ψ where W : Z → P (Ψ) isamapping. WeexpresstheBSNS (W, Z) by ˜ WNu Thatis, ˜ WNu = {( f , {< z, εNWNu (z), φNWNu (z), ϕNWNu (z), εPWNu (z), φPWNu (z), ϕPWNu (z) >: z ∈ Ψ}) f ∈ Z}

Definition2.4. ThecomplementoftheBSNS ˜ WNu isrepresentedby ( ˜ WNu)C andisdefinedby ( ˜ WNu)C = {( f , {< z, ϕNWNu (z), φNWNu (z), εNWNu (z), ϕPWNu (z), φPWNu (z), εPWNu (z) >: z ∈ Ψ}) f ∈ Z}

Definition2.5. ForanytwoBSNS WNu and ˜ SNu over Ψ , WNu isaBSNsubsetof ˜ SNu if εNWNu (z) ≤ εNSNu (z) ; εPWNu (z) ≤ εPSNu (z) φNWNu (z) ≤ φNSNu (z);φPWNu (z) ≤ φPSNu (z) ϕNWNu (z) ≥ ϕNSNu (z) ; ϕPWNu (z) ≥ ϕPSNu (z) forallf ∈ Zandz ∈ Ψ.

Definition2.6. ABSNS ˜ WNu over Ψ issaidtobenullBSNS if ϕNWNu (z)= 0 ; ϕPWNu (z)= 0 φNWNu (z)= 0;φPWNu (z)= 0;εNWNu (z)= 1 ; εPWNu (z)= 1 forallf ∈ Zandz ∈ Ψ .Itisdenotedby Φ⊕ Nu

Definition2.7. ABSNS ˜ WNu over Ψ issaidtobeabsolute BSNSif

ϕNWNu (z)= 1 ; ϕPWNu (z)= 1 φNWNu (z)= 1; φPWNu (z)= 1; εNWNu (z)= 0 ; εPWNu (z)= 0 forallf ∈ Zandz ∈ Ψ Itisrepresentedby ΨNu Definition2.8. ThedisjunctionoftwoBSNS WNu and SNu is representedby WNu ∪ SNu andisdefinedby UNu = WNu ∪ SNu asfollows

 

 ϕNWNu (z) iff ∈ B C ϕNSNu (z) iff ∈ C B min ϕNWNu (z) , ϕNSNu (z) iff ∈ B ∩ C

ϕPUNu (z)= 

 ϕPWNu (z) iff ∈ B C ϕPSNu (z) iff ∈ C B min ϕPWNu (z) , ϕPSNu (z) iff ∈ B ∩ C

Definition2.9. TheconjunctionoftwoBSNS ˜ WNu and SNu is representedby ˜ WNu ∩ SNu andisdefinedby ˜ UNu = ˜ WNu ∩ SNu ,asfollows εNUNu (z)= min{εNWNu (z), εNSNu (z)}; εPUNu (z)= min{εPWNu (z), εPSNu (z)}

φNUNu (z)= φNWNu (z)+φNSNu (z) 2 ; φPUNu (z)= φPWNu (z)+φPSNu (z) 2 ϕNUNu (z)= max{ϕNWNu (z), ϕNSNu (z) }; ϕPUNu (z)= max{ϕPWNu (z), ϕPSNu (z) }

3.BipolarSoftneutrosophictopological space

Definition3.1. LetBSNS(Ψ, Z) bethefamilyofallBNSS over Z and NBSτ ∗ ⊂ BSNS (Ψ, Z) Then NBSτ ∗ isknownas bipolarsoftneutrosophictopology(BSNT)on (Ψ, Z) ifthe subsequentcircumstancesaresatisfied

(i) ΦBNu, ˜ ΨBNu ∈ NBSτ ∗ (ii) NBSτ ∗ isclosedunderarbitrarydisjunction. (iii) NBSτ ∗ isclosedunderinfiniteconjunction. Thenthetriplet Ψ, ˜ NBSτ ∗, Z isknownasBSNTspace. Theelementsof ˜ NBSτ ∗ areknownBSNOSin Ψ, ˜ NSτ ∗, Z ABSNS ˜ WBNu inBSNS(Ψ, Z) issoftclosedin Ψ, ˜ NBSτ ∗, Z ifitscomplement ˜ WBNu C isBSNOSin Ψ, ˜ NBSτ ∗, Z TheBSNclosureof ˜ WBNu istheBSNS, BNu ≈ SCL(WBNu)= ∩{ ˜ SBNu : ˜ SBNu isbipolarneutrosophic softclosedand WBNu ⊆ ˜ SBNu } TheBSNinteriorof WNu istheBNSS, BNu ≈ SINT (WBNu)= ∪{SBNu : SBNu isbipolarneutrosophic softclosedand WBNu ⊆ SBNu }. Itiseasytoseethat WBNu isBSNopeniff WBNu = BNu ≈ SINT WBNu andBSNclosedifandonlyifBNu ≈ SCL ˜ WBNu .

Theorem3.2. Let Ψ, ˜ NBSτ ∗, Z beaBSNTSover (Ψ, Z) and WBNu and SBNu ∈ (Ψ, Z) then (i) BNu ≈ SINT WBNu ⊂ WBNu and BNu ≈ SINT WBNu is thelargestopenset. (ii) WBNu ⊂ WBNu impliesBNu ≈ SINT WBNu ⊂ BNu ≈ SINT ˜ WBNu (iii) BNu ≈ SINT ˜ WBNu isanBSNOS. ThatisBNu ≈ SINT ˜ WBNu ∈ ˜ NBSτ ∗

Bipolarsoftneutrosophictopologicalregion—1688/1690
εNUNu
z
     εNWNu (z) iff ∈ B C εNSNu
z) iff ∈ C B max εNWNu (z) , εNSNu (z) iff ∈ B ∩ C εPUNu (z)=      εPWNu (z) iff ∈ B C εPSNu (z) iff ∈ C B max εPWNu (z) , εPSNu (z) iff ∈ B ∩ C φNUNu (z)=      φNWNu (z) iff ∈ B C φNSNu (z) iff ∈ C B max φNWNu (z) , φNSNu (z) iff ∈ B ∩ C φPUNu (z)=      φPWNu (z) iff ∈
φPSNu
z
max φPWNu
z
φPSNu
z
ϕNUNu
(
)=
(
B C
(
) iff ∈ C B
(
) ,
(
) iff ∈ B ∩ C
(z)=
1688

(iv) WBNu isBSNOBNu ≈ SINT WBNu = WBNu (v) BNu ≈ SINT BNu ≈ SINT ˜ WBNu = BNu ≈ SINT ˜ WBNu (vi) BNu ≈ SINT ΦBNu = ΦBNu, BNu ≈ SINT ˜ ΨBNu = ΨBNu (vii) BNu ≈ SINT ˜ WBNu ∩ SBNu = BNu ≈ SINT WBNu ∩ BNu ≈ SINT ˜ SBNu (viii) BNu ≈ SINT WBNu ∪ BNu ≈ SINT SBNu ⊂ BNu ≈ SINT ˜ WBNu ∪ SBNu Theorem3.3. Let Ψ, NBSτ ∗, Z beaBSNTS (Ψ, Z) and WBNu and SBNu ∈ (Ψ, Z) then (i) ˜ WBNu ⊂ BNu ≈ SCL ˜ WBNu andBNu ≈ SCL ˜ WBNu arethesmallestclosedsets

(ii) WBNu ⊂ WBNu impliesBNu ≈ SCL WBNu ⊂ BNu ≈ SCL WBNu (iii) BNu ≈ SCL WBNu isBSNCS. ThatisBNu ≈ SCL WBNu ∈ NBSτ ∗ C (iv) WBNu isbipolarneutrosophicsoftclosed BNu ≈ SCL WBNu = WBNu (v) BNu ≈ SCL BNu ≈ SCL WBNu = BNu ≈ SCL ˜ WBNu (vi) BNu ≈ SCL ΦBNu = ΦBNu, BNu ≈ SCL ˜ ΨBNu = ˜ ΨBNu (vii)BNu ≈ SCL WBNu ∩ BNu ≈ SCL SBNu ⊂ BNu ≈ SCL WBNu ∩ ˜ SBNu (viii) BNu ≈ SCL WBNu ∪ BNu ≈ SCL SBNu = BNu ≈ SCL ˜ WBNu ∪ SBNu

4.Bipolarsoftneutrosophicnearlyopen sets

Definition4.1. Let Ψ, NSτ ∗, Z beaBSNTSand WBNu beaBSNOSin (Ψ, Z),then WBNuisknownas (i)Bipolarsoftneutrosophic α -open ⇔ WBNu ⊆ BNu ≈ SINT BNu ≈ SCL BNu ≈ SINT WBNu (ii)Bipolarsoftneutrosophicpre-open ⇔ ˜ WBNu ⊆ BNu ≈ SINT BNu ≈ SCL ˜ WBNu (iii)Bipolarsoftneutrosophicsemi-open ⇔ WBNu ⊆ BNu ≈ SCL BNu ≈ SINT WBNu (iv)Bipolarsoftneutrosophic β -open ⇔ WBNu ⊆ BNu ≈ SCL BNu ≈ SINT BNu ≈ SCL WBNu (v)Bipolarsoftneutrosophicregular-open ⇔ WBNu ⊆ BNu ≈ SINT BNu ≈ SCL WBNu

Definition4.2. Let Ψ, ˜ NBSτ ∗, Z beaBSNTSand e ˜ WBNu ∈ (Ψ, Z),then ˜ WNu isknownas (i)Bipolarsoftneutrosophic α -closed ⇔ BNu ≈ SCL BNu ≈ SINT BNu ≈ SCL WBNu ⊆ WBNu

(ii)Bipolarsoftneutrosophicpre-closed ⇔ BNu ≈ SCL BNu ≈ SINT WBNu ⊆ WBNu

(iii)Bipolarsoftneutrosophicsemi-closed ⇔

BNu ≈ SINT BNu ≈ SCL WBNu ⊆ WBNu

(iv)Bipolarsoftneutrosophic β -closed ⇔ BNu ≈ SINT BNu ≈ SCL BNu ≈ SINT ˜ WBNu ⊆ ˜ WBNu

(v)Bipolarsoftneutrosophicregular-closed ⇔ ˜ WBNu = BNu ≈ SCL BNu ≈ SINT ˜ WBNu

5.Bipolarsoftneutrosophicregion

Topologydealswithsurfaceareastudyinthatanalysis ofGeographicalinformationsystems(GIS)andGeospatial databases.Thereisalotofproblemsontheuncertaintyon theregions.Further,gothroughthesomedefinitionsand proposalsforaBSNTregion,whichsupplyahypothetical structureforthemodelingofBSNTrelationssurroundedby uncertainregions.

Definition5.1. Let Ψ, ˜ NBSτ ∗, Z beaBNSTSover (Ψ, Z) and ˜ WBNu ∈ BSNS (Ψ, Z).ThenBSNboundaryof ˜ WBNu is definedby ℑWBNu = BNu ≈ SCL WBNu ∩ BNu ≈ SCL WBNu C

Definition5.2. Let Ψ, ˜ NBSτ ∗, Z beaBSNTSover (Ψ, Z) ThentheBSNexteriorof ˜ WBNu ∈ BSNS (Ψ, Z) isrepresented by WBNu ext andisdefinedby WBNu ext = BNu ≈ SINT WBNu C Theorem5.3. Let WBNu and SBNu betwoBSNSover (Ψ, Z). Then (i) WBNu ext = BNu ≈ SINT WBNu C (ii) WBNu ∪ ˜ SBNu ext = WBNu ext ∩ ˜ SBNu ext (iii) ˜ WBNu ext ∪ SBNu ext ⊂ ˜ WBNu ∩ SBNu ext Theorem5.4. Let Ψ, NBSτ ∗, Z beaBSNTSover (Ψ, Z) and ˜ WBNu, SBNu ∈ BSNS (Ψ, Z) Then (i) ℑWBNu C = BNu ≈ SINT ˜ WBNu ∪ BNu ≈ SINT ˜ WBNu C (ii)BNu ≈ SCL ˜ WBNu = BNu ≈ SINT ˜ WBNu ∪ ℑ ˜ WBNu (iii) ℑ ˜ WBNu = BNu ≈ SCL ˜ WBNu ∩ BNu ≈ SCL ˜ WBNu C (iv) ℑWBNu ∩ BNu ≈ SINT WBNu = ˜ ΦBNu (v) ℑ ℑ ℑ ℑWBNu = ℑ ℑWBNu Definition5.5. Let Ψ, ˜ NBSτ ∗, Z beaBSNTSover(Ψ, Z) Thenacoupleofnon-emptyBSNOSare WBNu, ˜ SBNu isknown asaBSNseparationof Ψ, NBSτ ∗, Z if ΨBNu = ˜ WBNu ∪ SBNu and ˜ WBNu ∩ SBNu = ΦBNu Definition5.6. ABSNTS Ψ, NBSτ ∗, Z isknownasBSN connectediftheredoesnotpresentaBSNseparationof Ψ, ˜ NBSτ ∗, Z . Otherwise Ψ, ˜ NBSτ ∗, Z isknownasBSNdisconnected. Next,wegothroughamodelforspatialBSNregionbasedon BSNconnectedness.

Definition5.7. Let Ψ, NBSτ ∗, Z beaBSNTS.AspatialBSN regionin (Ψ, Z) isanonemptyBSNsubset ˜ WBNu suchthat (i)BNu ≈ SINT ˜ WBNu isBSNconnected. (ii) ˜ WBNu = BNu ≈ SCL BNu ≈ SINT ˜ WBNu

Bipolarsoftneutrosophictopologicalregion—1689/1690
1689

6.Conclusion

Inthisarticle,Bipolarsoftneutrosophictopologicalregion explainedonsoftopen,softclosed,softpre-openandsoft pre-closedonthebipolarneutrosophictheory.Wediscussed aboutsomebasicdefinitionsaboutneutrosophictopological space,bipolarsoftneutrosophicsetetc.,.Furtherweobtained theresultsbasedonsoftopenandsoftclosedwithsimilar resultssoftpre-openandsoftpre-closedsetsontopological region.

References

[1] K.Atanassov,Intuitionsticfuzzysets, FuzzySetSyst., 20(1986),87–96.

[2] Ch.ShashiKumar,T.SivaNageswaraRao,Y.Srinivasa Rao,V.VenkateswaraRao,InteriorandBoundaryvertices ofBSVNeutrosophicGraphs, Jour.ofAdv.Researchin Dynamical&ControlSystems, 12(6)(2020),1510-1515.

[3] P.K.Maji,Neutrosophicsoftset, AnnalsofFuzzyMathematicsandInformatics, 5(1)(2013),157–168.

[4] S.Broumi,A.Bakali,M.Talea,F.Smarandacheand V.VenkateswaraRao,IntervalComplexNeutrosophic GraphofType1, NeutrosophicOperationalResearch, (2018),88–107.

[5] S.Broumi,A.Bakali,M.Talea,F.Smarandacheand V.VenkateswaraRao,BipolarComplexNeutrosophic GraphsofType1, NewTrendsinNeutrosophicTheory andApplications, 2(2018),189-208.

[6] S.Broumi,M.Talea,A.Bakali,F.Smarandache,Prem KumarSingh,M.Murugappan,andV.Venkateswara Rao,NeutrosophicTechniqueBasedEfficientRouting ProtocolForMANETBasedOnItsEnergyAndDistance, NeutrosophicSetsandSystems, 24(2019),61–69.

[7] S.Broumi,P.K.Singh,M.Talea,A.Bakali,F.SmarandacheandV.VenkateswaraRao,Single-valuedneutrosophictechniquesforanalysisofWIFIconnection, AdvancesinIntelligentSystemsandComputing, 915(2013), 405–512.

[8]

F.Smarandache,Neutrosophicset-ageneralizationof theintuitionsticfuzzyset, InternationalJournalofPure andAppliedMathematics, 24(3)(2005),287–294.

[12] V.VenkateswaraRao,Y.SrinivasaRao,NeutrosophicPreopenSetsandPre-closedSetsinNeutrosophicTopology, InternationalJournalofChemTechResearch, 10(10)(2017),449-458.

[13] Y.SrinivasaRao,Ch.ShashiKumar,T.SivaNageswara Rao,V.VenkateswaraRao,SingleValuedNeutrosophic detourdistance, JournalofCriticalReviews,7(8)(2020), 810–812.

[14] L.A.Zadeh,Fuzzysets, InformationandControl, 8(3)(1965),338–353.

ISSN(P):2319 3786 MalayaJournalofMatematik ISSN(O):2321 5666

[9]

F.Smarandache,S.Broumi,P.K.Singh,C.Liu,V. VenkateswaraRao,H.-L.YangandA.Elhassouny,Introductiontoneutrosophyandneutrosophicenvironment, InNeutrosophicSetinMedicalImageAnalysis,(2019), 3–29.

[10] T.SivaNageswaraRao,Ch.ShashiKumar,,Y.Srinivasa Rao,V.VenkateswaraRao,DetourInteriorandBoundary verticesofBSVNeutrosophicGraphs, InternationalJournalofAdvancedScienceandTechnology, 29(8)(2020), 2382-2394.

[11] T.SivaNageswaraRao,G.UpenderReddy,V.Venkates waraRao,Y.SrinivasaRao,BipolarNeutrosophicWeakly BG∗ -ClosedSets, HighTechnologyLetters,26(8)(2020), 878–887.

Bipolarsoftneutrosophictopologicalregion—1690/1690
1690 View publication

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.