Bipolar topological pre-closed neutrosophic sets

Page 1

Bipolar topological pre-closed neutrosophic sets

Article · January 2021 DOI: 10.26637/MJM0901/0026

CITATIONS 0 READ 1

5 authors, including:

Upender Reddy Ganga Osmania University 5 PUBLICATIONS 2 CITATIONS

SEE PROFILE

Vunnam Venkateswara Rao Vignan University 29 PUBLICATIONS 86 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Inconsistency, N-wise comparison in Multiple Criteria Decision Making problems View project

T. Siva Nageswara Rao Vignan University 16 PUBLICATIONS 14 CITATIONS

SEE PROFILE

All content following this page was uploaded by Vunnam Venkateswara Rao on 30 January 2021. The user has requested enhancement of the downloaded file.

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/348886176

MalayaJournalofMatematik,Vol.9,No.1,159-162,2021 https://doi.org/10.26637/MJM0901/0026

Bipolartopologicalpre-closedneutrosophicsets

G.UpenderReddy1*,T.SivaNageswaraRao2,N.SrinivasaRao 3,V.VenkateswaraRao 4

Abstract

Weextendthetopologicalspacestobipolarneutrosophicstudy.Theconceptoftopologicalspacesinneutrosophictheoryrecentlydiscussedbymanyauthorsonsemigeneralizedconditionsofopenandclosedsets.In thispresentmanuscriptthetopologicalspaceisdefinedonbipolarpre-closedneutrosophicsets(BPCNS).

Keywords

Bipolarneutrosophicclosure,Bipolarneutrosophicinterior,Bipolarpre-closedneutrosophicsets(BPCNS).

AMSSubjectClassification 18B30,03E72.

1DepartmentofMathematics,NizamCollege(A),OsmaniaUniversity,Basheerbagh,Hyderabad,TS,India. 2,3,4DepartmentofMathematics,Vignan’sFoundationforScienceTechnologyandResearch(DeemedtobeUniversity),Vadlamudi,Guntur (Dt.),A.P,India.

*Correspondingauthor:yuviganga@gmail.com. ArticleHistory:Received 24 September 2020;Accepted 21 December 2020 c 2021MJM.

sets.R.Chang[3]introducedneutrosophicgeneralizedclosed setswithgeneralizedneutrosophiccontinuousmapping.In thisarticle,toevaluatethebipolarpre-closedneutrosophicsets (BPONS)inbipolarneutrosophictopologicalspaces.

Notations:

1.Introduction

NeutrosophictechniquegivesaexactinformationaboutneutralreportsandthistechniquewasderivedbyFlorentinSmarandache[5]in1998onsets,logicandprobabilityarereciprocatedwithneutrosophictechnique.Neutrosophictechniqueis consequentobtainedfromFuzzyandintuitionisticFuzzytechnique.Neutrosophictechniquemeanstodiscoverordinary featuresonnonordinaryvalues.T,I,Fareknownasneutrosophicvaluestheystandforthetruthmembership,indeterminacymembershipandfalsemembership.Thetechniqueinthis everyintentionisprojectedtocontaintheentitlementof T ,the entitlementof Iandentitlementof F with 0 ≤ T + I + F ≤ 3as theyaremanyneutrosophicrulesofinference.

J.Dezert[8]demonstratedfuzzyconceptwhileanumericalinstrumentintendedforconsideringalluncertaintiesofelementswitheveryinputtoobtain.FuzzylogicandIntuitionisticFuzzylogicwasderivedbyL.Zadeh[11]andAtanassov[9] respectively,whentheoverviewoffuzzyanywhereaswellas thecontributionwitheachcomponent.A.A.Salamaet.al[1] establishedthemodeloftopologicalspacesonneutrosophic

Thisarticlebasedonthesoftneutrosophictopology.Here westartwithsomebasicdefinitions.

Contents 1 Introduction .......................................159 2 Preliminaries ......................................160 3
..161 4 Conclusion ........................................161 References ........................................161
Bipolarpre-closedneutrosophicsets(BPCNS)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Neutrosophicset(NS)
BipolarNeutrosophicset(BNS)
Bipolarpre-openneutrosophicsets(BPONS)
Bipolarpre-closedneutrosophicsets(BPCNS).
BipolarNeutrosophictopology(BNT)
Bipolarneutrosophicclosure(BNC)
Bipolarneutrosophicinterior(BNI)
Bipolarneutrosophicopenset(BNOS)
Bipolarneutrosophicclosedset(BNCS)
Bipolarneutrosophicsemi-closed(BNSC)
Bipolarneutrosophicsemiopen(BNSO)

2.Preliminaries

Werememberseveralessentialterminologyexactingstudy ofSmarandache[18],terminologybasedonAtanassovin[10] andnotationsbasedonA.A.Salama[2]. ThenumberoftypesofNeutrosophictopologyproblemscontainedtoresidentialthroughalotofresearcherswhoassign theweightstoedgesarenotaccurateinthatanuncertaintyis thereforthatseethereferences[4,6,7,11,12,13,14,15,16, 17,19,20,21,22].Inthissection,werecallsomedefinitions andbasicresultsoffractionalcalculuswhichwillbeused throughoutthepaper.

Definition2.1. ANeutrosophicset(NS)istripletstructure (T, I, F ) whichisthedegreeofcontributionfunctionswiththe circumstance 0 ≤ T + I + F ≤ 3 andalsoliesamong0and 1.[5]

Definition2.2. ABipolarNeutrosophicset(BNS)isthestructurehavingsixvaluesinthatthreearepositiveandremaining threearenegative.Thestructureis T N , IN , F N , T P , IP , F P andalsothenegativevaluesliesbetween[-1,0]andpositive valuesliesbetween[0,1].

Definition2.3. Let S1 =(TS1 , IS1 , FS1 ) and S2 =(TS2 , IS2 , FS2 ) aretheBNSinthatconsidertwopossiblecasesforsubsets.

1 S1 ⊆ S2 ⇔ Ts1 ≤ Ts2 , Is1 ≤ Is2 andFs1 ≥ Fs2 2.S1 ⊆ S2 ⇔ Ts1 ≤ Ts2 , Is1 ≥ Is2 andFs1 ≥ Fs2 .

Definition2.4. Let S1 =(TS1 , IS1 , FS1 )and S2 =(TS2 , IS2 , FS2 ) aretheBNSthenfollowingmaybedefinedas

(I1)S1 ∩ S2 = TS1 ∧ TS2 , IS1 ∧ IS2 , FS1 ∨ FS2 (I1)S1 ∪ S2 = TS1 ∨ TS2 , IS1 ∧ IS2 , FS1 ∧ FS2

Theorem2.5. Let S1 =(TS1 , IS1 , FS1 ) and S2 =(TS2 , IS2 , FS2 ) aretheBNSthenthesubsequentsituationareholds.

(1)BNC(S1 ∩ S2)= BNC(S1) ∪ BNC(S2)

(2)BNC(S1 ∪ S2)= BNC(S1) ∩ BNC(S2)

Definition2.6. ABNTisanon-emptyset W isafamily BτN ofaBNSinWholdingthesubsequentsituation.

(BNT1) 0, 1 ∈ BτN

(BNT2) S1 ∩ S2 ∈ BτN foranyS1, S2 ∈ BτN

(BNT3) ∪ Si ∈ BτN forevery {Si : i ∈ I} ⊆ BτN Therefore (W, BτN )isBNT.

Example2.7. LetW = {w} and P = {< w, 0 2, 0 1, 0 5:0 4, 0 4, 0 3 >: w ∈ W } Q = {< w, 0.2, 0.6, 0.4;0.3, 0.4, 0.7 >: w ∈ W } R = {< w, 0.6, 0.3, 0.2;0.4, 0.5, 0.3 >: w ∈ W } S = {< w, 0.7, 0.2, 0.5;0.4, 0.6, 0.8 >: w ∈ W }

Thenthefamily τ = {0N , 1N , P, Q, R, S} ofbipolarneutrosophicsetinWisbipolarneutrosophictopologyW.

Definition2.8. Let (W, BτN ) beBNTspace S1 = TS1 , IS1 , FS1 beaBNSin W thenBNCandBNIof S1 aredefinedasfollows

BNcl(S1)= ∩ {R1, r1 isaBNcsinWandS1 ⊆ R1}

BNint(S1)= ∪ {R2, r2 isaBNosinWandR2 ⊆ S1}

Itpreservesaswellshowthat BNcl(S1) isBNCsetand BNint(S1) isBNOsetinW. (i)S1 isBNOS⇔ S1 = BNint(S1) (ii)S1 isBNCS⇔ S1 = BNcl(S1)

Theorem2.9. Let(W, BτN ) beBNTspaceand S1 ∈ (W, BτN ) wehave

(a) BNcl (C (S1))= C (BNint (S1))

(b) BNint (C (S1))= C (BNcl (S1))

Theorem2.10. Let (W, BτN ) beBNTspaceand S1, S2 are twoBNSinWthenthesubsequentrulesarehold.

a) BNint (S1) ⊆ S1 b) S1 ⊆ BNcl (S1) c) S1 ⊆ S2 ⇒ BNint (S1) ⊆ BNint (S2) d) S1 ⊆ S2 ⇒ BNcl (S1) ⊆ BNcl (S2)

e) BNint (BNint (S1))= BNint (S1) f ) BNcl (BNcl (S1))= BNcl (S1) g) BNint (S1 ∩ S2)= BNint (S1) ∩ BNint (S2) h) BNcl (S1 ∪ S2)= BNcl (S1) ∪ BNcl (S2) i) BNint (0N )= BNcl (0N )= 0N j) BNint (1N )= BNcl (1N )= 1N k) S1 ⊆ S2 ⇒ BNC (S1) ⊆ BNC (S2)

l) BNCL (S1 ∩ S2) BNcl (S1) ∩ BNcl (S2)

m) BNint (S1 ∪ S2) ⊇ BNint (S1) ∪ BNint (S2)

Definition2.11. Let (W, BτN ) beBNTspaceand S1 =(TS1 , IS1 , FS1 ) beaBNSinWthenS1 isaBNSO ifS1 ⊆ BNcl (BNint (S1)) andalso BNSCifBNint (BNcl (S1)) ⊆ S1 ThecomplementofBNSOsetisaBNSCset.

Bipolartopologicalpre-closedneutrosophicsets—160/162
160

3.Bipolarpre-closedneutrosophicsets (BPCNS)

Definition3.1. Let S1 beBNSofaBNTspaces W .Then S1 isknownasBPCNSof W ifthereexistsa BNC setsuchthat BNcl (BNC (S1)) ⊆ S1 ⊆ BNC (S1)

Theorem3.2. Anysubset S1 ina BNTSW is BNCS setiff BNcl (BNint (S1)) ⊆ S1 Proof: consider BNcl (BNint (S1)) ⊆ S1

ThenBNC = BNcl(S1) clearlyBNcl (BNint (S1)) ⊆ S1 ⊆ BNC(S1) ThereforeS1isBNPCset

Ontheotherhand,assumethatLet S1 be BNPC containedin W

Then BNC (BNint (S1)) ⊆ S1 ⊆ BNC (S1) forsome BNS closed setBNC. butBNcl (S1) ⊆ BNC (S1). Hencethetheoremproved.

Theorem3.3. Let (W, BτN ) be BNTS and S1beaBNSof W thenS1 isaBPCNSiffBNC (S1) isBPONSinW.

Proof: LetS1 beaBPCNSsubsetofW. ClearlyBNcl (BNint (S1)) ⊆ S1

Byapplyingcomplementontogethersides

BNC (S1) ⊆ BNC (BNcl (BNint (S1)))

BNC (S1) ⊆ BNint (BNcl (BNC (S1)))

HenceBNC (S1)isBNPOset

Onthecontrary,assumethatBNC (S1) isBNPOset i.e.BNC (S1) ⊆ BNint (BNcl (BNC (S1))) Byapplyingcomplementontogethersidesobtained

BNcl (BNint (S1)) ⊆ S1 isBPCNS. Hencethetheoremproved.

Theorem3.4. Consider (W, BτN ) beaBNTspaces.Then conjunctionoftwoBPCNSisalsoaBPCNS.

Proof: Consider S2 and S2 arebipolarneutrosophicpreclosedsetson (W, BτN ). ThenBNcl (BNint (S1)) ⊆ S1,BNcl (BNint (S2)) ⊆ S2 ConsiderS1 ∩ S2 ⊇ BNcl (BNint (S1)) ∩ BNcl (BNint (S2))

S1 ∩ S2 ⊇ BNcl (BNint (S1)) ∩ (BNint (S2))

S1 ∩ S2 ⊇ BNcl (BNint (S1 ∪ S2)) BNcl (BNint (S1 ∩ S2)) ⊆ S1 ∩ S2

HenceS1 ∩ S2 isBPCNS.

Remark3.5. TheunionofanytwoBPCNSneednotbea BPCNSon (W, BτN )

Theorem3.6. Let {S1}α ∈∆ beacollectionofBPCNSon (W, BτN ) then ∩ α ∈∆ S1 α ∈∆ BPCNSon (W, BτN ) Proof: AneutrosophicsetBNCα suchthat

BNCα (BNint (S1)) ⊆ S1 α ⊆ BNCα (S1) forall α ∈ ∆ Then ∩ α ∈∆ BNCα (BNint (S1)) ⊆∩ α ∈∆ S1 α ⊆∩ α ∈∆ BNCα (S1) ∩ α ∈∆

BNclα (BNint (S1)) ⊆∩ α ∈∆ S1 α

Hence ∩ α ∈∆ S1 α isBPCNSon(W, BτN )

Theorem3.7. EveryBNCSintheBNTspaces (W, BτN ) is BPCNSin (W, BτN ) Proof: LetS1 beBNCSmeansS1 = BNcl (S1) andalso BNint (S1) ⊆ S1 Fromthat BNcl (BNint (S1)) ⊆ BNcl (S1) , BNcl (BNint (S1)) ⊆ S1, sinceS1 = BNcl (S1) HenceS1 isaBPCNS.

Theorem3.8. Let S1 beaBNCSinBNTspaces (W, BτN ) and suppose BNint (S1) ⊆ S2 ⊆ S1then S2 isBPCNSon (W, BτN ) Proof: LetS1 beaBNSinBNTspaces (W, BτN ) SupposeBNint (S1) ⊆ S2 ⊆ S1 ThereexistaBNCS,suchthat

BNC (BNint (S1)) ⊆ S2 ⊆ S1 ⊆ BNC. ThenS2 ⊆ BNCandalsoBNint(S2) ⊆ S2 ⊆ BNC. Thus,BNcl(BNint(S2)) ⊆ S2 HenceS2isbipolarneutrosophicpre-closedseton (W, BτN ).

Theorem3.9. Let W1 and W2 areBNTspaceswiththeconditions W1 isBNmultiplicationassociatedto W2 thentheBN multiplicationassociatedto S1 × S2 isaBPCNSoftheBN multiplicationassociatedtotopologicalspace W1 ×W2.Where BPCNSS1 ofW1 andaBPCNSS2 ofW2 Proof:LetS1 andS2 areBPCNS. BNC1 (BNint (S1)) ⊆ S1 ⊆ BNC1 and BNC2 (BNint (S2)) ⊆ S2 ⊆ BNC2 Formtheabove, BNC1 (BNint (S1)) × BNC2 (BNint (S2)) ⊆ S1 × S1 ⊆ BNC1 × BNC2 (BNC1 × BNC2)(BNint(S1 × S2)) ⊆ S1 × S2 ⊆ BNC1 × BNC2 HenceS1 × S2 isBPCNSinBNTspaceW1 × W2

4.Conclusion

Inthisarticle,BipolartopologicalPre-closedneutrosophic setsexplainedonpreclosedbipolarneutrosophictheory.we discussedaboutsomebasicdefinitionsaboutneutrosophic topologicalspace,bipolarpre-closedneutrosophicsetetc.,. Furtherweobtainedtheresultsbasedonpre-closedsetswith similarresults

References

[1] A.A.Salama,S.A.Alblowi,GeneralizedNeutrosophic SetandGeneralizedNeutrosophicTopologicalSpaces, Comp.Sci.Engg., (2)(2012),129–132.

[2] A.A.Salama,S.A.AL-Blowi,NeutrosophicSetandNeutrosophicTopologicalSpaces, IOSRJournalofMath., (3)(2012),31–35.

Bipolartopologicalpre-closedneutrosophicsets—161/162
161

[3] C.L.Chang,FuzzyTopologicalSpaces, J.Math.Anal Appl.,, 24(1968),182–190.

[4] Ch.ShashiKumar,T.SivaNageswaraRao,Y.Srinivasa Rao,V.VenkateswaraRao,InteriorandBoundaryvertices ofBSVNeutrosophicGraphs, Jour.ofAdv.Researchin Dynamical&ControlSystems,12(6)(2020),1510-1515.

[5] F.Smarandache,AUnifyingFieldinLogics:NeutrosophicLogic, Neutrosophy,NeutrosophicSet, 1990.

[6] G.UpenderReddy,T.SivaNageswaraRao,N.Srinivasa Rao,V.VenkateswaraRao,Bipolarsoftneutrosophic topologicalregion, MalayaJournalofMatematik, 8(4) (2020),1687–1690.

[7] G.UpenderReddy,T.SivaNageswaraRao,V. VenkateswaraRao,Y.SrinivasaRao,MinimalSpanning treeAlgorithmsw.r.t.BipolarNeutrosophicGraphs, LondonJournalofResearchinScience:NaturalandFormal, 20(8)(2020),13–24.

[8] J.Dezert,OpenQuestiontoNeutrosophicInferences Multiple-ValuedLogic, Int.J.Neutros.Neutrosop, 8 (2002),439–472.

[9] K.Atanassov,Intuitionisticfuzzysets, FuzzySetsand Systems, 20(1986),87–96.

[10] K.Atanassov,Reviewandnewresultonintuitionistic fuzzysets, Sofia, (1988).

[11] L.A.Zadeh,FuzzySets, Inform.Control, 8(1965),338–353.

[12] NeutrosophicProbability, AmericanResearchPress, Rehoboth,NM(1999).

[13] RezaSaadati,JinHanPark,Ontheintuitionisticfuzzy topologicalspace, Chaos,Solitons,&Fractals, 27(2006), 331–344.

[14] S.Broumi,A.Bakali,M.Talea,F.Smarandacheand V.VenkateswaraRao,IntervalComplexNeutrosophic GraphofType1, NeutrosophicOperationalResearch, VolumeIII,Vsubdivision,(2018),88–107.

[15] S.Broumi,A.Bakali,M.Talea,F.Smarandacheand V.VenkateswaraRao,BipolarComplexNeutrosophic GraphsofType1, NewTrendsinNeutrosophicTheory andApplications, 2(2018),189-208.

[16] S.Broumi,M.Talea,A.Bakali,F.Smarandache,Prem KumarSingh,M.Murugappan,andV.Venkateswara Rao,NeutrosophicTechniqueBasedEfficientRouting ProtocolForMANETBasedOnItsEnergyAndDistance, NeutrosophicSetsandSystems, 24(2019),61–69.

[17] S.Broumi,P.K.Singh,M.Talea,A.Bakali,F. SmarandacheandV.VenkateswaraRao,Single-valued neutrosophictechniquesforanalysisofWIFIconnection, AdvancesinIntelligentSystemsandComputing, 915(2013),405–512,DOI:10.1007/978-3-030-119287 36.

[18] Smarandache,F.,Broumi,S.,Singh,P.K.,Liu, C.,VenkateswaraRao,V.,Yang,H.-L.Elhassouny, A.,Introductiontoneutrosophyandneutrosophicenvironment, InNeutrosophicSetinMedicalImageAnalysis,

(2019),3–29.

[19] T.SivaNageswaraRao,Ch.ShashiKumar,,Y.Srinivasa Rao,V.VenkateswaraRao,DetourInteriorandBoundary verticesofBSVNeutrosophicGraphs, InternationalJournalofAdvancedScienceandTechnology, 29(8)(2020), 2382–2394.

[20] T.SivaNageswaraRao,G.UpenderReddy,V.Venkates waraRao,Y.SrinivasaRao,BipolarNeutrosophicWeakly BG∗ -ClosedSets, HighTechnologyLetters,26(8)(2020), 878–887,https://doi.org/10.37896/HTL26.08/1590.

[21] V.VenkateswaraRao,Y.SrinivasaRao,NeutrosophicPreopenSetsandPre-closedSetsinNeutrosophicTopology, InternationalJournalofChem.TechResearch, 10(10)(2017),449-458.

[22] Y.SrinivasaRao,Ch.ShashiKumar,T.SivaNageswara Rao,V.VenkateswaraRao,SingleValuedNeutrosophic detourdistance, JournalofCriticalReviews,7(8)(2020), 810–812.

ISSN(P):2319 3786 MalayaJournalofMatematik ISSN(O):2321 5666

Bipolartopologicalpre-closedneutrosophicsets—162/162
162 View publication

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.