Bipolar neutrosophic soft sets and applications in decision making

Page 1

Bipolarneutrosophicsoftsets andapplicationsindecisionmaking

MumtazAlia ,LeHoangSonb,∗ ,IrfanDelic andNguyenDangTiend

a UniversityofSouthernQueensland,Australia

b VNUUniversityofScience,VietnamNationalUniversity,Vietnam

c MuallimRıfatFacultyofEducation,7AralıkUniversity,Kilis,Turkey

d People’sPoliceUniversityofTechnologyandLogistics,BacNinh,Vietnam

Abstract.Neutrosophicset,proposedbySmarandacheconsidersatruthmembershipfunction,anindeterminacymembership functionandafalsitymembershipfunction.Softset,proposedbyMolodtsovisamathematicalframeworkwhichhasthe abilityofindependencyofparameterizationsinadequacy,syndromeoffuzzyset,roughset,probability.Thoseconceptshave beenutilizedsuccessfullytomodeluncertaintyinseveralareasofapplicationsuchascontrol,reasoning,gametheory,pattern recognition,andcomputervision.Nonetheless,therearemanyproblemsinreal-worldapplicationscontainingindeterminate andinconsistentinformationthatcannotbeeffectivelyhandledbytheneutrosophicsetandsoftset.Inthispaper,wepropose thenotationofbipolarneutrosophicsoftsetsthatcombinessoftsetsandbipolarneutrosophicsets.Somealgebraicoperations ofthebipolarneutrosophicsetsuchasthecomplement,union,intersectionareexamined.Wethenproposeanaggregation bipolarneutrosophicsoftoperatorofabipolarneutrosophicsoftsetanddevelopadecisionmakingalgorithmbasedonbipolar neutrosophicsoftsets.Numericalexamplesaregiventoshowthefeasibilityandeffectivenessofthedevelopedapproach.

Keywords:Algebraicoperations,bipolarneutrosophicsoftsets,decisionmaking,neutrosophicsets,softsets

1.Introduction

Tohandleuncertainty,Zadeh[34]proposedfuzzy setwhichischaracterizedbyamembershipdegree withrangeintheunitinterval [0, 1].Fromseveral decades,thisnovelconceptisutilizedsuccessfullyto modeluncertaintyinseveralareasofapplicationsuch ascontrol,reasoning,gametheory,patternrecognition,andcomputervision.Fuzzysets,especially, becomeanimportantareafortheresearchinmedicaldiagnosis,engineering,socialsciencesetc.Since infuzzyset,thedegreeofassociationofanelement issinglevalueintheunitinterval [0, 1],itmaynot beadequatethatthenon-associationofanelement

∗ Correspondingauthor.LeHoangSon,334NguyenTrai, ThanhXuan,Hanoi,Vietnam.Tel.:+84904171284;E-mail: sonlh@vnu.edu.vn.

isequalto1minustheassociationdegreeduetothe existenceofhesitationdegree.ThusAtanassov[4] coinedintuitionisticfuzzysetin1986toovercome thisissuebyincorporatingthehesitationdegreesocalledhesitationmarginwhichisdefineby1minus thesumofassociationdegreeandnon-association degree.Consequentlytheintuitionisticfuzzysetcapturedanassociationdegreeaswellasnon-association degreewhichbecamethegeneralizationoffuzzyset. Tojudgethehumandecisionmakingabilitybased onpositiveandnegativeeffects,BoscandPivert [5]saidthatbipolarityprovidesthepropensityof thehumanmindtoreasonandmakedecisionsthat dependsonpositiveandnegativeeffects.Theyargued thatbothpositiveinformationdepictswhatispossible,satisfactory,permitted,desired,orconsidered asbeingacceptablewhilethenegativestatements expresswhatisimpossible,restricted,rejected,or

JournalofIntelligent&FuzzySystems33(2017)4077–4087 DOI:10.3233/JIFS-17999 IOSPress 4077
1064-1246/17/$35.00©2017–IOSPressandtheauthors.Allrightsreserved

forbiddenandnegativityofchoicescorrespondto constraints,sincetheyparticularizethatwhatkind ofvaluesorobjectshavetoberejected(i.e.,those thatdonotsatisfytheconstraintsortotallyopposite), whereaspositivepreferencescorrespondtowishes, astheyspecifywhichobjectsaremoredesirable thanothers(i.e.,satisfyuserwishes)withoutrejectingthosethatdonotmeetthewishes.Toutilize thisidea,Lee[24,25]definedbipolarfuzzysets whichgeneralizestheconceptfuzzysets.Kangand Kang[23]appliedthebipolarfuzzysettheoryto sub-semigroupswithoperatorsinsemigroups.

Smarandache[32]in1998,introducedneutrosophicsetandneutrosophiclogicbyconsideringa truthmembershipfunction,anindeterminacymembershipfunctionandafalsitymembershipfunction. Neutrosophicsethastheabilitytogeneralizeclassical sets,fuzzysets,intuitionisticfuzzysets.Smarandache[32]andWangetal.[33]furtherdeveloped singlevaluedneutrosophicsetsinordertousethem inaneasywayinscientificandengineeringfields. Then,Delietal.[16]developedbipolarneutrosophic setsandstudytheirapplicationindecicionmaking.Alietal.[2]proposedneutrosophiccubicset withapplicationinpatternrecognition.Broumietal. [36,37]introducedBipolarSingleValuedNeutrosophicGraphtheoryanditsShortestPathproblem. Recently,AliandSmarandache[1]definecomplex neutrosophicsettorepresenttheuncertain.Some moreliteratureonneutrosophicsetandapplications canbefoundin[7,8,17–20,38–58].

Molodtsov[29]proposedsoftsettohandle uncertaintyinaparameterizedway.Softsetisa mathematicalframeworkwhichhastheabilityof independencyofparameterizationsinadequacy,syndromeoffuzzyset,roughset,probabilityetc..Soft setappliedsuccessfullyinseveralfieldstotackle theissuesandproblemssuchassmoothnessof functions,gametheory,operationreaserch,Riemann integration,Perronintegration,andprobability.Also, KaraaslanandKaratas[22]Aslametal.[3]studied bipolarsoftsetsandbipolarfuzzysoftsets,respectively.Ahugeamountofresearchworkonsoftset theorycanbeseenin[9–12,14,21,26,30].Also, someauthorsstudiedconceptofneutrosophicsoft setin[6,13,15,27,28].

Thispaperisdedicatedtoproposebipolarneutrosophicsetwhichisahybridstructureofsoftset andbipolarneutrosophicset.Firstly,weintroducethe bipolarneutrosophicsoftsetanddiscusssomebasic propertieswithillustrativeexamplesadoptingfrom KangandKang[23].Then,westudysomealgebraic

operationsofthebipolarneutrosophicsetsuchasthe complement,union,intersectionetc.Wethenpropose anaggregationbipolarneutrosophicsoftoperatorof abipolarneutrosophicsoftsetanddevelopadecision makingalgorithmbasedonbipolarneutrosophicsoft sets.Numericalexamplesaregiventoshowthefeasibilityandeffectivenessofthedevelopedapproach.

Theorganizationofthispaperisasfollows.InSection1,wepresentedtherelevantliteraturereview. Section2isdedicatedtothefundamentalconcepts. InSection3,bipolarneutrosophicsethasbeenpresented.Wealsostudiedcorepropertiesinthesame section.Section4isaboutaggregationbipolarneutrosophicsoftoperatorofabipolarneutrosophicsoftset. Inthissectiontheproposedalgorithmbasedonaggregationbipolarneutrosophicsoftoperatorofabipolar neutrosophicsoftsetispresentedwithanumerical example.ConclusionisgiveninSection5.

2.Preliminary

Inthissection,wegivethebasicdefinitionsand resultsofneutrosophicsettheory[32],softsettheory[29],neutrosophicsoftsettheory[13],bipolar fuzzyset[24],bipolarfuzzysoftset[3]andbipolar neutrosophicset[16]thatareusefulforsubsequent discussions.

Definition1. [32]Let U beauniverse.Aneutrosophicsets(NS) K in U ischaracterizedbya truth-membershipfunction TK ,anindeterminacymembershipfunction IK andafalsity-membership function FK . TK (x); IK (x)and FK (x)arerealstandardornon-standardelementsof]0 ,1+ [. Itcanbe writtenas:

K ={<x, (TK (x),IK (x),FK (x)) >: x ∈ U, TK (x),IK (x),FK (x) ∈] 0, 1[+ }

Thereisnorestrictiononthesumof TK (x), IK (x) and FK (x),so0 ≤ TK (x) + IK (x) + FK (x) ≤ 3+ Definition2. [33]Let E beauniverse.Asinglevalued neutrosophicsets(SVNS)A,whichcanbeusedin realscientificandengineeringapplications,in E is characterizedbyatruth-membershipfunction TA ,a indeterminacy-membershipfunction IA andafalsitymembershipfunction FA . TA (x), IA (x)and FA (x)are realstandardelementsof[0, 1].Itcanbewrittenas

A ={<x, (TA (x),IA (x),FA (x)) >: x ∈ E, TA (x),IA (x),FA (x) ∈ [0, 1]}.

4078

Definition3. [29]Let U beauniverse, E beaset ofparametersthatdescribetheelementsof U ,and A ⊆ E .Then,asoftset FA over U isasetdefinedby asetvaluedfunction fA representingamapping

fA : E → P (U )s.t fA (x) =∅ if x ∈ E A (1)

where fA iscalledapproximatefunctionofthesoft set FA .Inotherwords,thesoftsetisaparameterized familyofsubsetsoftheset U ,andthereforeitcanbe writtenasetoforderedpairs

FA ={(x,fA (x)): x ∈ E,fA (x) =∅ if x ∈ E A}

Definition4. [13]Let U beauniverse, N (U )bethe setofallneutrosophicsetson U , E beasetofparametersthataredescribingtheelementsof U .Then,a neutrosophicsoftset N over U isasetdefinedbya setvaluedfunction fN representingamapping

fN : E → N (U )

where fN iscalledanapproximatefunctionofthe neutrosophicsoftset N .For x ∈ E ,theset fN (x)is called x-approximationoftheneutrosophicsoftset N whichmaybearbitrary,someofthemmaybe emptyandsomemayhaveanonemptyintersection. Inotherwords,theneutrosophicsoftsetisaparameterizedfamilyofsomeelementsoftheset N (U ),and thereforeitcanbewrittenasetoforderedpairs, N ={(x, {<u,TfN (x) (u),IfN (x) (u), FfN (x) (u) >: x ∈ U } : x ∈ E } where TfN (x) (u),IfN (x) (u),FfN (x) (u) ∈ [0, 1]

Definition5. [13]Let N1 and N2 betwoneutrosophic softsetsoverneutrosophicsoftuniverses(U,A)and (U,B ),respectively.

1. N1 issaidtobeneutrosophicsoftsubset of N2 if A ⊆ B and TfN1 (x) (u) ≤ TfN2 (x) (u), IfN1 (x) (u) ≤ IfN2 (x) (u), FfN1 (x) (u) ≥ FfN2 (x) (u), ∀x ∈ A, u ∈ U .

2. N1 and N2 aresaidtobeequalif N1 neutrosophicsoftsubsetof N2 and N2 neutrosophic softsubsetof N2 Definition6. [13]Let N1 and N2 betwoneutrosophic softsets.Then,

1.Thecomplementofaneutrosophicsoftset N1 denotedby N c 1 andisdefinedby

N1 c ={(x, {<u,FfN1 (x) (u), 1 IfN1 (x) (u), TfN1 (x) (u) >: x ∈ U } : x ∈ E }

2.Theunionof N1 and N2 isdenotedby N3 = N1 ˜ ∪N2 andisdefinedby

N3 ={(x, {<u,TfN3 (x) (u),IfN3 (x) (u), FfN3 (x) (u) >: x ∈ U } : x ∈ E } where

TfN3 (x) (u) = max(TfN1 (x) (u),TfN2 (x) (u)), IfN3 (x) (u) = min(IfN1 (x) (u),IfN2 (x) (u)), FfN3 (x) (u) = min(FfN1 (x) (u),FfN2 (x) (u))

3.Theintersectionof N1 and N2 isdenotedby N4 = N1 ∩N2 andisdefinedby

N4 ={(x, {<u,TfN4 (x) (u),IfN4 (x) (u), FfN4 (x) (u) >: x ∈ U } : x ∈ E }

where

TfN4 (x) (u) = min(TfN1 (x) (u),TfN2 (x) (u)), IfN4 (x) (u) = max(IfN1 (x) (u),IfN2 (x) (u)), FfN4 (x) (u) = max(FfN1 (x) (u),FfN2 (x) (u)).

Definition7. [24]Let U beauniverse.Abipolar fuzzyset in U isdefinedas;

={(u,T + (u),T (u)): u ∈ U }

where T + → [0, 1]and T → [ 1, 0].Thepositivemembershipdegree T + (u),denotesthetruth membershipcorrespondingtoabipolarfuzzyset andthenegativemembershipdegree T (u)denotes thetruthmembershipofanelement u ∈ U tosome implicitcounter-propertycorrespondingtoabipolarfuzzyset

Definition8. [3]Let U beauniverseand E beaset ofparametersthataredescribingtheelementsof U . Abipolarfuzzysoftset in U isdefinedas; ={(e, {(u,T + (u),T (u)): u ∈ U }): e ∈ E }

where T + → [0, 1]and T → [ 1, 0].Thepositive membershipdegree T + (u),denotesthetruthmembershipcorrespondingtoabipolarfuzzysoftset andthenegativemembershipdegree T (u)denotes thetruthmembershipofanelement u ∈ U tosome implicitcounter-propertycorrespondingtoabipolar

M.Alietal./Bipolarneutrosophicsoftsetsandapplicationsindecisionmaking 4079

fuzzysoftset .

Definition9. [16]Let U beauniverse.Abipolar neutrosophicset A in U isdefinedas;

A ={(u,T + (u),I + (u),F + (u), T (u),I (u),F (u)): u ∈ U }

where T + ,I + ,F + → [0, 1]and T ,I ,F → [ 1, 0].Thepositivemembershipdegree T + (u), I + (u),F + (u),denotesthetruthmembership,indeterminatemembershipandfalsemembershipof anelementcorrespondingtoabipolarneutrosophicset A andthenegativemembershipdegree T (u),I (u),F (u)denotesthetruthmembership, indeterminatemembershipandfalsemembershipof anelement u ∈ U tosomeimplicitcounter-property correspondingtoabipolarneutrosophicset A

3.Bipolarneutrosophicsoftsets

Inthissection,weproposetheconceptofneutrosophicsoftsetsandtheiroperations.

Definition10. Let U beauniverseand E beasetof parametersthataredescribingtheelementsof U .A bipolarneutrosophicsoftset B in U isdefinedas; B ={(e, {(u,T + (u),I + (u),F + (u),T (u), I (u),F (u)): u ∈ U }): e ∈ E }

where T + ,I + ,F + → [0, 1]and T ,I ,F → [ 1, 0].Thepositivemembershipdegree T + (u), I + (u),F + (u),denotesthetruthmembership,indeterminatemembershipandfalsemembershipofan elementcorrespondingtoabipolarneutrosophic softset B andthenegativemembershipdegree T (u),I (u),F (u)denotesthetruthmembership, indeterminatemembershipandfalsemembershipof anelement u ∈ U tosomeimplicitcounter-property correspondingtoabipolarneutrosophicsoftset B.

Example1. Let U ={u1 ,u2 ,u3 }, E ={e1 ,e2 } Then,bipolarneutrosophicsoftset B1 and B2 over U isgivenas,respectively;

B1 ={(e1 , {(u1 , 0 5, 0 8, 0 1, 0 5, 0 7, 0 2),

(u2 , 0.6, 0.8, 0.7, 0.5, 0.7, 0.2),

(u3 , 0.6, 0.8, 0.1, 0.5, 0.8, 0.8)}),

(e2 , {(u1 , 0.8, 0.8, 0.7, 0.5, 0.7, 0.2), (u2 , 0.4, 0.8, 0.7, 0.5, 0.7, 0.2),

(u3 , 0.7, 0.8, 0.1, 0.4, 0.7, 0.4)}) and

B2 ={(e1 , {(u1 , 0 4, 0 8, 0 5, 0 6, 0 7, 0 2), (u2 , 0.3, 0.6, 0.7, 0.3, 0.7, 0.2), (u3 , 0.6, 0.2, 0.6, 0.5, 0.5, 0.3)}),

(e2 , {(u1 , 0.1, 0.8, 0.7, 0.2, 0.7, 0.2), (u2 , 0 1, 0 8, 0 7, 0 5, 0 5, 0 5), (u3 , 0 7, 0 6, 0 1, 0 4, 0 7, 0 3)})

Definition11. Anemptybipolarneutrosophicsoft set B∅ in U isdefinedas; B∅ ={(e, {(u, 0, 0, 1, 1, 0, 0)): u ∈ U }): e ∈ E }

Definition12. Anabsolutebipolarneutrosophicsoft set BU in U isdefinedas; BU ={(e, {(u, 1, 1, 0, 0, 1, 1)): u ∈ U }): e ∈ E }

Itisnotedthattheemptyandabsoluteneutrosophic softsetsformtheunittotheproposedsystem.

Example2. Let U ={u1 ,u2 ,u3 }, E ={e1 ,e2 ,e3 } Then,

1.Emptybipolarneutrosophicsoftset B∅ in U is givenas;

B∅ ={(e1 , {(u1 , 0, 0, 1, 1, 0, 0), (u2 , 0, 0, 1, 1, 0, 0), (u3 , 0, 0, 1, 1, 0, 0)}), (e2 , {(u1 , 0, 0, 1, 1, 0, 0), (u2 , 0, 0, 1, 1, 0, 0), (u3 , 0, 0, 1, 1, 0, 0)}), (e3 , {(u1 , 0, 0, 1, 1, 0, 0), (u2 , 0, 0, 1, 1, 0, 0), (u3 , 0, 0, 1, 1, 0, 0)})}

2.Absolutebipolarneutrosophicsoftset BU in U isgivenas;

BU ={(e1 , {(u1 , 1, 1, 0, 0, 1, 1), (u2 , 1, 1, 0, 0, 1, 1), (u3 , 1, 1, 0, 0, 1, 1)}), (e2 , {(u1 , 1, 1, 0, 0, 1, 1), (u2 , 1, 1, 0, 0, 1, 1),

4080 M.Alietal./Bipolarneutrosophicsoftsetsandapplicationsindecisionmaking

(u3 , 1, 1, 0, 0, 1, 1)}),

(e3 , {(u1 , 1, 1, 0, 0, 1, 1),

(u2 , 1, 1, 0, 0, 1, 1),

(u3 , 1, 1, 0, 0, 1, 1)})}

Definition13. Let Bi ={(e, {(u,T + i (u),I + i (u), F + i (u),Ti (u),Ii (u),Fi (u)): u ∈ U }): e ∈ E } for i = 1, 2betwobipolarneutrosophicsoftsetsover U Then, B1 isbipolarneutrosophicsoftsubsetof B2 , isdenotedby B1 B2 ,if T + 1 (u) ≤ T + 2 (u), I + 1 (u) ≥ I + 2 (u), F + 1 (u) ≥ F + 2 (u), T1 (u) ≥ T2 (u), I1 (u) ≤ I2 (u)and F1 (u) ≤ F2 (u)forall(e,u) ∈ E × U .

Example3. Let U ={u1 ,u2 }, E ={e1 ,e2 }.If B1 ={(e1 , {(u1 , 0.7, 0.8, 0.2, 0.5, 0.9, 0.3), (u2 , 0.6, 0.8, 0.7, 0.5, 0.7, 0.2)}), (e2 , {(u1 , 0.8, 0.8, 0.7, 0.5, 0.7, 0.2), (u2 , 0 4, 0 8, 0 7, 0 5, 0 7, 0 2)})} and B2 ={(e1 , {(u1 , 0 8, 0 1, 0 2, 0 6, 0 8, 0 3), (u2 , 0 9, 0 2, 0 3, 0 9, 0 7, 0 2)}), (e2 , {(u1 , 0 9, 0 8, 0 7, 0 5, 0 7, 0 2), (u2 , 0.5, 0.8, 0.7, 0.8, 0.7, 0.1)})} then,wehave B1 B2 .

Definition14. Let Bi ={(e, {(u,T + i (u),I + i (u), F + i (u),Ti (u),Ii (u),Fi (u)): u ∈ U }): e ∈ E } for i = 1, 2betwobipolarneutrosophicsoftsetsover U .Then, B1 isbipolarneutrosophicsoftequalto B2 , isdenotedby B1 = B2 ,if T + 1 (u) = T + 2 (u), I + 1 (u) = I + 2 (u), F + 1 (u) = F + 2 (u), T1 (u) = T2 (u), I1 (u) = I2 (u)and F1 (u) = F2 (u)forall(e,u) ∈ E × U

Definition15. Let B beabipolarneutrosophicsoft setsover U .Then,thecomplementofabipolarneutrosophicsoftset B,isdenotedby Bc ,isdefined as;

Bc ={(e, {(u,F + (u), 1 I + (u),T + (u),F (u), 1 I (u),T (u)): u ∈ U }): e ∈ E }

Example4. ConsidertheExample1.Then, Bc ={(e1 , {(u1 , 0.1, 0.2, 0.5, 0.2, 0.3, 0.5), (u2 , 0.7, 0.2, 0.6, 0.2, 0.3, 0.5), (u3 , 0.1, 0.2, 0.6, 0.8, 0.2, 0.5)}),

(e2 , (u1 , 0.7, 0.2, 0.8, 0.2, 0.3, 0.5), (u2 , 0 7, 0 2, 0 4, 0 2, 0 3, 0 5), (u3 , 0 1, 0 2, 0 7, 0 4, 0 3, 0 4))}

Definition16. Let Bi ={(e, {(u,T + i (u),I + i (u), F + i (u),Ti (u),Ii (u),Fi (u)): u ∈ U }): e ∈ E } for i = 1, 2betwobipolarneutrosophicsoftsetsover U . Then,theunionof B1 and B2 ,isdenotedby B1 B2 , isdefinedas; B1 B2 ={(e, {(u,maxi {T + i (u)},mini {I + i (u)}, mini {F + i (u)},mini {Ti (u)},maxi {Ii (u)}, maxi {Fi (u)}): u ∈ U }): e ∈ E,andi = 1, 2}

Example5. ConsidertheExample1.Then, B1 B2 ={(e1 , {(u1 , 0.5, 0.8, 0.1, 0.6, 0.7, 0.2), (u2 , 0 6, 0 6, 0 7, 0 5, 0 7, 0 2), (u3 , 0 6, 0 2, 0 1, 0 5, 0 5, 0 3)}), (e2 , (u1 , 0 8, 0 8, 0 7, 0 5, 0 7, 0 2), (u2 , 0 4, 0 8, 0 7, 0 5, 0 7, 0 2), (u3 , 0.7, 0.6, 0.1, 0.4, 0.7, 0.3))}

Definition17. Let Bi ={(e, {(u,T + i (u),I + i (u), F + i (u),Ti (u),Ii (u),Fi (u)): u ∈ U }): e ∈ E } for i = 1, 2,...,n be n bipolarneutrosophicsoftsetsover U .Then,theunionof n bipolarneutrosophicsoftset Bi ,isdenotedby n i=1 Bi ,isdefinedas; n i=1 Bi ={(e, {(u,maxi {T + i (u)},mini {I + i (u)}, mini {F + i (u)},mini {Ti (u)},maxi {Ii (u)}, maxi {Fi (u)}): u ∈ U }): e ∈ E, i = 1, 2,...,n}

Definition18. Let Bi ={(e, {(u,T + i (u),I + i (u), F + i (u),Ti (u),Ii (u),Fi (u)): u ∈ U }): e ∈ E } for i = 1, 2betwobipolarneutrosophicsoftsetsover U Then,theintersectionof B1 and B2 ,isdenotedby B1 B2 ,isdefinedas; B1 B2 ={(e, {(u,mini {T + i (u)},maxi {I + i (u)}, maxi {F + i (u)},maxi {Ti (u)},mini {Ii (u)},

M.Alietal./Bipolarneutrosophicsoftsetsandapplicationsindecisionmaking 4081

mini {Fi (u)}): u ∈ U }): e ∈ E,i = 1, 2}

Example6. ConsidertheExample1.Then, B1 B2 ={(e1 , {(u1 , 0.4, 0.8, 0.5, 0.5, 0.7, 0.2), (u2 , 0 3, 0 8, 0 7, 0 3, 0 7, 0 2),

(u3 , 0 6, 0 8, 0 6, 0 5, 0 8, 0 8)}),

(e2 , (u1 , 0 1, 0 8, 0 7, 0 2, 0 7, 0 2), (u2 , 0 1, 0 8, 0 7, 0 5, 0 7, 0 5), (u3 , 0.7, 0.8, 0.1, 0.4, 0.7, 0.4))}

Definition19. Let Bi ={(e, {(u,T + i (u),I + i (u), F + i (u),Ti (u),Ii (u),Fi (u)): u ∈ U }): e ∈ E } for i = 1, 2,...,n be n bipolarneutrosophicsoftsetsover U .Then,theintersectionof n bipolarneutrosophic softset Bi ,isdenotedby n i=1 Bi ,isdefinedas; n i=1 Bi ={(e, {(u,mini {T + i (u)},maxi {I + i (u)}, maxi {F + i (u)},maxi {Ti (u)}, mini {Ii (u)},mini {Fi (u)}): u ∈ U }) : e ∈ E,andi = 1, 2,...,n}

Proposition1. Let Bi ={(e, {(u,T + i (u),I + i (u), F + i (u),Ti (u),Ii (u),Fi (u)): u ∈ U }): e ∈ E } for i = 1, 2, 3 bethreebipolarneutrosophicsoftsets overU.Then,

1. B1 B2 = B2 B1

2. B1 B2 = B2 B1

3. B1 (B2 B3 ) = (B1 B2 ) B3

4. B1 (B2 B3 ) = (B1 B2 ) N3

Proof. Theproofscanbeeasilyobtainedsincethe maxfunctionsandminfunctionsarecommutative andassociative.

Proposition2. Let B1 ={(e, {(u,T + 1 (u),I + 1 (u), F + 1 (u),T1 (u),I1 (u),F1 (u)): u ∈ U }): e ∈ E } be abipolarneutrosophicsoftsetsoverU.Then,

1. Bc 1 c = B1

2. (BU )c = B∅

3. B1 BU

4. B∅ B1

5. B1 B1

Proposition3. Let Bi ={(e, {(u,T + i (u),I + i (u), F + i (u),Ti (u),Ii (u),Fi (u)): u ∈ U }): e ∈ E } for i = 1, 2, 3 bethreebipolarneutrosophicsoftsets overU.Then,

1. B1 B2 ∧ B2 B3 ⇒ B1 B3 2. B1 = B2 ∧ B2 = B2 ⇔ B1 = B3 3. B1 B2 ∧ B2 B1 ⇔ B1 = B2

Proposition4. Let B1 ={(e, {(u,T + 1 (u),I + 1 (u), F + 1 (u),T1 (u),I1 (u),F1 (u)): u ∈ U }): e ∈ E } be abipolarneutrosophicsoftsetsoverU.Then, 1. B1 B1 = B1 2. B1 B∅ = B1 3. B1 BU = BU

Proposition5. Let Bi ={(e, {(u,T + i (u),I + i (u), F + i (u),Ti (u),Ii (u),Fi (u)): u ∈ U }): e ∈ E } be abipolarneutrosophicsoftsetsoverU.Then,

1. B1 B1 = B1 2. B1 B∅ = B∅ 3. B1 BU = B1

Proposition6. Let Bi ={(e, {(u,T + i (u),I + i (u), F + i (u),Ti (u),Ii (u),Fi (u)): u ∈ U }): e ∈ E } for i = 1, 2 betwobipolarneutrosophicsoftsetsoverU. Then,DeMorgan’slawsarevalid

1. (B1 B2 )c = Bc 1 Bc 2 2. (B1 B2 )c = Bc 1 Bc 2

Proof. i. (B1 B1 )c ={(e, {(u,maxi {T + i (u)},mini {I + i (u)}, mini {F + i (u)},mini {Ti (u)}, maxi {Ii (u)},maxi {Fi (u)}): u ∈ U }) : e ∈ E,andi = 1, 2}c ={(e, {(u,mini {F + i (u)}, 1 mini {I + i (u)}, maxi {T + i (u)},maxi {Fi (u)}, 1 maxi {Ii (u)},mini {Ti (u)}): u ∈ U }) : e ∈ E,andi = 1, 2} ={(e, {(u,mini {F + i (u)},maxi {1 I + i (u)}, maxi {T + i (u)},maxi {Fi (u)}, mini {−1 Ii (u)},mini {Ti (u)}): u ∈ U }) : e ∈ E,andi = 1, 2}{(e, {(u,T + 1 (u), I + 1 (u),F + 1 (u),T1 (u),I1 (u), F1 (u)): u ∈ U }): e ∈ E }c {(e, {(u,T + 2 (u),I + 2 (u),F + 2 (u), T2 (u),I2 (u),F2 (u)): u ∈ U }): e ∈ E }c

4082 M.Alietal./Bipolarneutrosophicsoftsetsandapplicationsindecisionmaking

= Bc 1 Bc 2 ii. (B1 B1 )c

={(e, {(u,mini {T + i (u)},maxi {I + i (u)}, maxi {F + i (u)},maxi {Ti (u)}, mini {Ii (u)},mini {Fi (u)}): u ∈ U })

: e ∈ E,andi = 1, 2}c

={(e, {(u,maxi {F + i (u)}, 1 maxi {I + i (u)},mini {T + i (u)}, mini {Fi (u)}, 1 mini {Ii (u)}, maxi {Ti (u)}): u ∈ U })

: e ∈ E,andi = 1, 2}

={(e, {(u,maxi {F + i (u)}, mini {1 I + i (u)},mini {T + i (u)}, mini {Fi (u)},maxi {−1 Ii (u)}, maxi {Ti (u)}): u ∈ U })

: e ∈ E,andi = 1, 2}

={(e, {(u,T + 1 (u),I + 1 (u), F + 1 (u),T1 (u),I1 (u),F1 (u)) : u ∈ U }): e ∈ E }c {(e, {(u,T + 2 (u),I + 2 (u), F + 2 (u),T2 (u),I2 (u),F2 (u)) : u ∈ U }): e ∈ E }c

= Bc 1 Bc 2

Proposition7. Let Bi ={(e, {(u,T + i (u),I + i (u), F + i (u),Ti (u),Ii (u),Fi (u)): u ∈ U }): e ∈ E } for i = 1, 2, 3 bethreebipolarneutrosophicsoftsets overU.Then,

1. B1 (B2 B3 ) = (B1 B2 ) (B1 B3 )

2. B1 (B2 B3 ) = (B1 B2 ) (B1 B3 )

4.Aggregationbipolarneutrosophic softoperator

Inthissection,weproposeanaggregationbipolar neutrosophicsoftoperatorofabipolarneutrosophic softsets.Also,wedevelopeanalgorithmbasedon bipolarneutrosophicsoftsetsandgivenumerical

examplestoshowthefeasibilityandeffectivenessof thedevelopedapproach.

Definition20. Let B ={(e, {(u,T + (u),I + (u), F + (u),T (u),I (u),F (u)): u ∈ U }): e ∈ E }= {{(u,T + e (u),I + e (u),F + e (u),Te (u),Ie (u),Fe (u)): u ∈ U } : e ∈ E } beabipolarneutrosophicsoftsets over U .Then,aggregationbipolarneutrosophicsoft operator,denotedby Bagg ,isdefinedas; Bagg ={μB (u)/u : u ∈ U }

μB (u) = 1 2|E × U | e∈E (|1 I + e (u)(T + e (u) F + e (u)) +Ie (u)(Te (u) Fe (u))|) where |E × U | isthecardinalityof E × U .

Nowwegiveadecisionalgorithmforbipolarneutrosophicsoftsets.

Algorithm.

1.Constructthebipolarneutrosophicsoftseton U 2.Computetheaggregationbipolarneutrosophic softoperator.

3.Findanoptimumalternativeseton U .

Example7. (Itisadoptedfrom[14])Assumethatthat aworkplacewantstofillaposition.Thereare5candidateswhofillinaforminordertoapplyformally fortheposition.Thereisadecisionmaker(DM),that isfromthedepartmentofhumanresources.

Hewanttointerviewthecandidates,butitis verydifficulttomakeitallofthem.Therefore,by usingthebipolarneutrosophicsoftdecisionmakingmethod,thenumberofcandidatesarereduced toasuitableone.Assumethatthesetofcandidates U ={u1 ,u2 ,u3 ,u4 ,u5 } whichmaybecharacterized byasetofparameters E ={e1 ,e2 ,e3 } whichis “ e1 = experience”,“e2 = technicalinformation” and“e3 = age”.Now,wecanapplythemethodas follows:

1.DMconstructsabipolarneutrosophicsoft B overthealternativesset U as;

B ={(e1 , {(u1 , 0 8, 0 9, 0 4, 0 5, 0 7, 0 6), (u2 , 0 5, 0 4, 0 8, 0 5, 0 7, 0 5), (u3 , 0.5, 0.5, 0.8, 0.5, 0.8, 0.9), (u4 , 0.9, 0.8, 0.3, 0.5, 0.2, 0.7),

(u5 , 0.5, 0.5, 0.4, 0.9, 0.8, 0.8)}), (e2 , {(u1 , 0.8, 0.4, 0.7, 0.4, 0.2, 0.6),

M.Alietal./Bipolarneutrosophicsoftsetsandapplicationsindecisionmaking 4083

(u2 , 0.5, 0.3, 0.7, 0.9, 0.7, 0.8),

(u3 , 0 5, 0 9, 0 8, 0 5, 0 7, 0 6)),

(u4 , 0 5, 0 7, 0 8, 0 9, 0 3, 0 7),

(u5 , 0 4, 0 1, 0 8, 0 5, 0 8, 0 9)}),

(e3 , {(u1 , 0.7, 0.8, 0.6, 0.5, 0.1, 0.8),

(u2 , 0.8, 0.9, 0.4, 0.5, 0.4, 0.8),

(u3 , 0.2, 0.9, 0.5, 0.1, 0.9, 0.4),

(u4 , 0 5, 0 4, 0 2, 0 5, 0 6, 0 9),

(u5 , 0 9, 0 8, 0 8, 0 5, 0 7, 0 1)})}

2.DMfindstheaggregationbipolarneutrosophic softoperator Bagg of B as;

Bagg ={0 0793/u1 , 0 0923/u2 , 0 1010/u3 , 0 0797/u4 , 0 0983/u5 }

3.Finally,DMchooses u3 forthepositionfrom Bagg sinceithasthemaximumdegree0.1010 amongtheothers.

Example8. (Itisadoptedfrom[31])Let U = {o1 ,o2 ,o3 ,o4 ,o5 ,o6 } bethesetofobjectshavingdifferentcolors,sizesandsurfacetexture features.Theparameterset, E ={e1 ,e2 ,e3 } in which“e1 = colorspace”,“e2 = size”and“e3 = surfacetexture”.Wecanapplythealgorithmasfollows:

1.DMconstructsabipolarneutrosophicsoft B overthealternativesset U as;

B ={(e1 , {(o1 , 0 3, 0 4, 0 6, 0 3, 0 5, 0 4),

(o2 , 0 3, 0 9, 0 3, 0 6, 0 7, 0 4),

(o3 , 0 4, 0 5, 0 8, 0 5, 0 6, 0 7),

(o4 , 0.8, 0.2, 0.4, 0.7, 0.3, 0.5),

(o5 , 0.7, 0.3, 0.6, 0.7, 0.6, 0.6),

(o6 , 0.9, 0.2, 0.4, 0.7, 0.6, 0.6)}),

(e2 , {(o1 , 0 4, 0 2, 0 8, 0 6, 0 4, 0 8),

(o2 , 0 8, 0 6, 0 3, 0 7, 0 5, 0 6),

(o3 , 0 6, 0 4, 0 4, 0 3, 0 7, 0 8),

(o4 , 0.9, 0.8, 0.2, 0.7, 0.5, 0.6),

(o5 , 0.2, 0.1, 0.9, 0.3, 0.6, 0.7),

(o6 , 0.3, 0.2, 0.8, 0.3, 0.5, 0.7)}),

(e3 , {(o1 , 0.3, 0.4, 0.1, 0.7, 0.3, 0.6),

(o2 , 0.8, 0.9, 0.4, 0.5, 0.4, 0.8), (o3 , 0 5, 0 6, 0 3, 0 3, 0 7, 0 6), (o4 , 0 7, 0 6, 0 6, 0 3, 0 4, 0 7), (o5 , 0 6, 0 8, 0 5, 0 3, 0 5, 0 3), (o6 , 0.8, 0.7, 0.7, 0.3, 0.5, 0.3)})}

2.DMfindstheaggregationbipolarneutrosophic softoperator Bagg of B as;

Bagg ={0.1007/o1 , 0.0803/o2 , 0.0773/o3 , 0.0750/o4 , 0.0927/o5 , 0.930/o6 }

3.Finally,DMchooses o1 forthepositionfrom Bagg sinceithasthemaximumdegree0.1007 amongtheothers.

Example9. (Itisadoptedfrom[27])Weconsidertheproblemtoselectthemostsuitablehouse whichMr.Xisgoingtochooseonthebasisof hismnumberofparametersoutofnnumberof houses(wechoose n = 5and m = 5).Let U = {h1 ,h2 ,h3 ,h4 ,h5 } bethesetofhouseshaving differentfeatures E ={e1 ,e2 ,e3 ,e4 ,e5 } inwhich inwhich“e1 = beautiful”,“e2 = cheap”,“e3 = ingoodrepairing”,“e4 = moderate”and“e5 = wooden”.Wecanapplythealgorithmasfollow:

1.DMconstructsabipolarneutrosophicsoft B overthealternativesset U as;

B ={(e1 , {(h1 , 0.6, 0.3, 0.8, 0.5, 0.7, 0.6), (h2 , 0 7, 0 2, 0 6, 0 5, 0 7, 0 5), (h3 , 0 8, 0 3, 0 4, 0 5, 0 8, 0 9), (h4 , 0 7, 0 5, 0 6, 0 5, 0 2, 0 7), (h5 , 0 8, 0 6, 0 7, 0 9, 0 8, 0 8)}), (e2 , {(h1 , 0.5, 0.2, 0.6, 0.4, 0.2, 0.6), (h2 , 0.6, 0.3, 0.7, 0.9, 0.7, 0.8), (h3 , 0.8, 0.5, 0.1, 0.6, 0.8, 0.6)), (h4 , 0 6, 0 8, 0 7, 0 9, 0 3, 0 7), (h5 , 0 5, 0 6, 0 8, 0 5, 0 8, 0 9)}), (e3 , {(h1 , 0 7, 0 3, 0 4, 0 5, 0 1, 0 8), (h2 , 0.7, 0.5, 0.6, 0.5, 0.4, 0.8), (h3 , 0.3, 0.5, 0.6, 0.1, 0.9, 0.4), (h4 , 0.7, 0.6, 0.8, 0.5, 0.6, 0.9), (h5 , 0.8, 0.7, 0.6, 0.5, 0.7, 0.1)}),

4084
M.Alietal./Bipolarneutrosophicsoftsetsandapplicationsindecisionmaking

(e4 , {(h1 , 0.8, 0.5, 0.6, 0.5, 0.1, 0.8),

(h2 , 0 6, 0 8, 0 3, 0 5, 0 4, 0 8),

(h3 , 0 7, 0 2, 0 1, 0 1, 0 9, 0 4),

(h4 , 0 8, 0 3, 0 6, 0 5, 0 6, 0 9),

(h5 , 0.7, 0.8, 0.3, 0.5, 0.7, 0.1)}),

(e5 , {(h1 , 0.6, 0.7, 0.2, 0.5, 0.1, 0.8),

(h2 , 0.8, 0.1, 0.8, 0.5, 0.4, 0.8),

(h3 , 0 7, 0 2, 0 6, 0 1, 0 9, 0 4),

(h4 , 0 8, 0 3, 0 8, 0 5, 0 6, 0 9),

(h5 , 0 7, 0 2, 0 6, 0 5, 0 7, 0 1)})}

2.DMfindstheaggregationbipolarneutrosophic softoperator Bagg of B as;

Bagg ={0 1470/h1 , 0 1477/h2 , 0 1137/h3 , 0.1443/h4 , 0.1747/h5 }

3.Finally,DMchooses h5 forthepositionfrom Bagg sinceithasthemaximumdegree0.1747 amongtheothers.

IthasbeenobservedinExamples7–9thattheproposedmethodrequireslessstepsofcomputationthan therelevantworksin[14,27,31]whilstprovides moreinformationonmembershipdegrees(positive andnegative)fordecision.

5.Conclusion

Inthispaper,weintroducedthebipolarneutrosophicsoftsetthatcombinessoftsetsandbipolar neutrosophicsets.Somenewoperationsonbipolar neutrosophicsoftsetsweredesigned.Wedeveloped adecisionmakingmethodbasedonbipolarneutrosophicsoftsets.Numericalexamplestakenfrom theexistingworks[14,27,31]wereperformedto showthefeasibilityandelectivenessofthedeveloped approach.Forfurtherstudy,wewillapplyourwork torealworldproblemswithrealisticdataandextend proposedalgorithmtootherdecisionmakingmodels withvaguenessanduncertainty.Anextensionfrom BipolartoTripolarNeutrosophicSoftSetsandeven MultipolarNeutrosophicSoftSetsasinspiredin[35] willbeournexttargets.

Acknowledgments

ThisresearchisfundedbyVietnamNationalFoundationforScienceandTechnologyDevelopment (NAFOSTED)undergrantnumber102.01-2017.02.

References

[1]M.AliandF.Smarandache,Complexneutrosophic set, NeuralComputingandApplications 25 (2016), 1–18.

[2]M.AliandF.Smarandache,Thetheoryofneutrosophic cubicsetsandtheirapplicationsinpatternrecognition, JournalofIntelligentandFuzzySystems 30(4)(2016), 1957–1963.

[3]M.Aslam,S.AbdullahandK.Ullah, BipolarFuzzySoft SetsAndItsApplicationsinDecisionMakingProblem, arXiv:1303.6932v1[cs.AI]23,2013.

[4]K.T.Atanassov, IntuitionisticFuzzySets,Pysica-VerlagA Springer-VerlagCompany,NewYork,1999.

[5]P.BoscandO.Pivert,Onafuzzybipolarrelationalalgebra, InformationSciences 219 (2013),1–16.

[6]S.Broumi,I.DeliandF.Smarandache,Relationsoninterval valuedneutrosophicsoftsets, JournalofNewResultsin Science 5 (2014),1–20.

[7]S.BroumiandI.Deli,Correlationmeasureforneutrosophicrefinedsetsanditsapplicationinmedical diagnosis, PalestineJournalofMathematics 5(1)(2016), 135–143.

[8]S.Broumi,I.DeliandF.Smarandache,N-valued IntervalNeutrosophicSetsandTheirApplicationinMedicalDiagnosis,CriticalReview,CenterforMathematics ofUncertainty,CreightonUniversity,USA,10,2015, pp.46–69.

[9]N.C¸a ˘ gmanandS.Engino ˘ glu,Softsettheoryanduniintdecisionmaking, EuropeanJournalofOperational Research 207 (2010),848–855.

[10]N.C¸agman,Contributionstothetheoryofsoftsets, Journal ofNewResultsinScience 4 (2014),33–41.

[11]N.C¸a ˘ gmanandI.Deli,MeansofFP-Softsetsanditsapplications, HacettepeJournalofMathematicsandStatistics 41(5)(2012),615–625.

[12]N.C¸a ˘ gmanandI.Deli,ProductofFP-softsetsanditsapplications, HacettepeJournalofMathematicsandStatistics 41(3)(2012),365–374.

[13]I.DeliandS.Broumi,NeutrosophicsoftmatricesandNSM decisionmaking, JournalofIntelligentandFuzzySystems 28(5)(2015),2233–2241.

[14]I.DeliandN.Cagman,Intuitionisticfuzzyparameterized softsettheoryanditsdecisionmaking, AppliedSoftComputing 2 (2015),109–113.

[15]I.DeliandS.Broumi,Neutrosophicsoftrelationsandsome properties, AnnalsofFuzzyMathematicsandInformatics 9(1)(2015),169–182.

[16]I.Deli,M.AliandF.Smarandache,BipolarNeutrosophicSetsandTheirApplicationBasedonMulti-Criteria DecisionMakingProblems, Proceedingsofthe2015InternationalConferenceonAdvancedMechatronicSystems, Beijing,China,2015.

[17]I.Deli,Interval-valuedneutrosophicsoftsetsanditsdecisionmaking, InternationalJournalofMachineLearning andCybernetics.DOI:10.1007/s13042-015-0461-3

M.Alietal./Bipolarneutrosophicsoftsetsandapplicationsindecisionmaking 4085

M.Alietal./Bipolarneutrosophicsoftsetsandapplicationsindecisionmaking

[18]I.Deli,S.BroumiandS.F.Smarandache,Onneutrosophic refinedsetsandtheirapplicationsinmedicaldiagnosis, JournalofNewTheory 6 (2015),88–98.

[19] Y.Deli,NPN-softsetstheoryandapplications, Annals ofFuzzyMathematicsandInformatics 10(6)(2015), 847–862.

[20]I.DeliandY.Subas,Arankingmethodofsinglevalued neutrosophicnumbersanditsapplicationstomultiattributedecisionmakingproblems, InternationalJournal ofMachineLearningandCybernetics (2015).DOI: 10.1007/s13042-016-0505-3

[21]F.Feng,C.Li,B.Davvaz,M.IrfanandM.Ali,Softsetscombinedwithfuzzysetsandroughsets:Atentativeapproach, SoftComputing 14 (2010),899–911.

[22]F.KaraaslanandS.Karatas,Anewapproachtobipolarsoftsetsanditsapplications, DiscreteMathematics, AlgorithmsandApplications (2015).DOI:10.1142/ S1793830915500548

[23]M.K.KangandJ.G.Kang,Bipolarfuzzysettheoryapplied tosub-semigroupswithoperatorsinsemigroups, JKorean SocMathEducSerBPureApplMath 19(1)(2012), 23–35.

[24]K.M.Lee,Bipolar-valuedfuzzysetsandtheiroperations, ProcIntConfonIntelligentTechnologies,Bangkok,Thailand,2000,pp.307–312.

[25]K.J.Lee,BipolarfuzzysubalgebrasandbipolarfuzzyidealsofBCK/BCI-algebras, BullMalaysMathSciSoc 32(3) (2009),361–373.

[26]P.K.Maji,A.R.RoyandR.Biswas,Intuitionisticfuzzy softsets, TheJournalofFuzzyMathematics 9(3)(2001), 677–692.

[27]P.K.Maji,Aneutrosophicsoftsetapproachtoadecision makingproblem, AnnalsofFuzzyMathematicsandInformatics 3(2)(2012),313–319.

[28]P.K.Maji,Neutrosophicsoftset, AnnalsofFuzzyMathematicsandInformatics 5(1)(2013),157–168.

[29]D.A.Molodtsov,Softsettheory-firstresults, ComputMath Appl 37 (1999),19–31.

[30]J.I.MondalandT.K.Roy,Somepropertiesonintuitionistic fuzzysoftmatrices, InternationalJournalofMathematics Research 5(2)(2013),267–276.

[31]A.R.RoyandP.K.Maji,Afuzzysoftsettheoreticapproach todecisionmakingproblems, JComputApplMath 203 (2007),412–418.

[32]F.Smarandache, AUnifyingFieldinLogics,Neutrosophy: NeutrosophicProbability,SetandLogic,Rehoboth:AmericanResearchPress,1998.

[33]H.Wang,F.Smarandache,Q.ZhangandR.Sunderraman, Singlevaluedneutrosophicsets, MultispaceandMultistructure 4 (2010),410–413.

[34]L.A.Zadeh,Fuzzysets, InformandControl 8 (1965), 338–353.

[35]F.Smarandache,NeutrosophicOverset,Neutrosophic Underset,andNeutrosophicOffset.SimilarlyforNeutrosophicOver-/Under-/Off-Logic,Probability,andStatistics, arXivpreprintarXiv:1607.00234,2016.

[36]S.Broumi,F.Smarandache,M.TaleaandA.Bakali,An introductiontobipolarsinglevaluedneutrosophicgraphtheory, AppliedMechanicsandMaterials 841 (2016),184–191.

[37]S.Broumi,A.Bakali,M.Talea,F.SmarandacheandM.Ali, Shortestpathproblemunderbipolarneutrosphicsetting, AppliedMechanicsandMaterials 859 (2016),59–66.

[38]L.H.Son,B.C.CuongandH.V.Long,Spatialinteraction modificationmodelandapplicationstogeo-demographic analysis, Knowledge-BasedSystems 49 (2013),152–170.

[39]L.H.Son,N.D.LinhandH.V.Long,AlosslessDEMcompressionforfastretrievalmethodusingfuzzyclustering andMANFISneuralnetwork, EngineeringApplicationsof ArtificialIntelligence 29 (2014),33–42.

[40]L.H.Son,Enhancingclusteringqualityofgeo-demographic analysisusingcontextfuzzyclusteringtype-2andparticleswarmoptimization, AppliedSoftComputing 22 (2014), 566–584.

[41]L.H.Son,HU-FCF:Ahybriduser-basedfuzzycollaborative filteringmethodinrecommendersystems, ExpertSystems WithApplications 41(15)(2014),6861–6870.

[42]L.H.Son,DPFCM:Anoveldistributedpicturefuzzyclusteringmethodonpicturefuzzysets, ExpertSystemsWith Applications 42(1)(2015),51–66.

[43]L.H.SonandN.T.Thong,Intuitionisticfuzzyrecommendersystems:Aneffectivetoolformedicaldiagnosis, Knowledge-BasedSystems 74 (2015),133–150.

[44]N.T.ThongandL.H.Son,HIFCF:Aneffectivehybrid modelbetweenpicturefuzzyclusteringandintuitionistic fuzzyrecommendersystemsformedicaldiagnosis, Expert SystemsWithApplications 42(7)(2015),36823701.

[45]L.H.Son,HU-FCF++:Anovelhybridmethodforthenew usercold-startprobleminrecommendersystems, EngineeringApplicationsofArtificialIntelligence 41 (2015), 207–222.

[46]L.H.Son,Anovelkernelfuzzyclusteringalgorithmforgeodemographicanalysis, InformationSciences 317 (2015), 202–223.

[47]L.H.SonandT.M.Tuan,Acooperativesemi-supervised fuzzyclusteringframeworkfordentalX-rayimagesegmentation, ExpertSystemsWithApplications 46 (2016), 380–393.

[48]L.H.Son,Dealingwiththenewusercold-startproblemin recommendersystems:Acomparativereview, Information Systems 58 (2016),87–104.

[49]A.W.Wijayanto,A.PurwariantiandL.H.Son,Fuzzygeographicallyweightedclusteringusingartificialbeecolony: Anefficientgeo-demographicanalysisalgorithmandapplicationstotheanalysisofcrimebehaviorinpopulation, AppliedIntelligence 44(2)(2016),377–398.

[50]P.H.ThongandL.H.Son,Picturefuzzyclustering:Anew computationalintelligencemethod, SoftComputing 20(9) (2016),3549–3562.

[51]L.H.SonandP.V.Hai,Anovelmultiplefuzzyclustering methodbasedoninternalclusteringvalidationmeasures withgradientdescent, InternationalJournalofFuzzySystems 18(5)(2016),894–903.

[52]T.M.Tuan,T.T.NganandL.H.Son,Anovelsemisupervisedfuzzyclusteringmethodbasedoninteractive fuzzysatisficingfordentalX-Rayimagesegmentation, AppliedIntelligence 45(2)(2016),402–428.

[53]L.H.SonandP.H.Phong,Ontheperformanceevaluationof intuitionisticvectorsimilaritymeasuresformedicaldiagnosis, JournalofIntelligentandFuzzySystems 31 (2016), 1597–1608.

[54]L.H.Son,Generalizedpicturedistancemeasureandapplicationstopicturefuzzyclustering, AppliedSoftComputing 46 (2016),284–295.

[55]P.H.ThongandL.H.Son,Anovelautomaticpicturefuzzy clusteringmethodbasedonparticleswarmoptimizationand picturecompositecardinality, Knowledge-BasedSystems 109 (2016),48–60.

[56]P.H.ThongandL.H.Son,Picturefuzzyclusteringforcomplexdata, EngineeringApplicationsofArtificialIntelligence 56 (2016),121130.

4086

[57]T.T.Ngan,T.M.Tuan,L.H.Son,N.H.MinhandN.Dey, Decisionmakingbasedonfuzzyaggregationoperatorsfor medicaldiagnosisfromdentalX-rayimages, Journalof MedicalSystems 40(12)(2016),1–7.

[58]L.H.SonandP.H.Thong,Somenovelhybridforecast methodsbasedonpicturefuzzyclusteringforweathernowcastingfromsatelliteimagesequences, AppliedIntelligence 46(1)(2017),1–15.

M.Alietal./Bipolarneutrosophicsoftsetsandapplicationsindecisionmaking 4087

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.