An Innovative Grey Approach for Group Multi-Criteria Decision Analysis

Page 1

AnInnovativeGreyApproachforGroupMulti-Criteria DecisionAnalysisBasedontheMedianofRatingsby UsingPython

DragišaStanujki´c 1 ,DarjanKarabaševi´c 2,* ,GabrijelaPopovi´c 2 ,PredragS.Stanimirovi´c 3 , FlorentinSmarandache 4 ,MuzaferSaraˇcevi´c 5 ,AlptekinUluta¸s 6 andVasiliosN.Katsikis 7

1 TechnicalFacultyinBor,UniversityofBelgrade,VojskeJugoslavije12,19210Bor,Serbia; dstanujkic@tfbor.bg.ac.rs

2 FacultyofAppliedManagement,EconomicsandFinance,UniversityBusinessAcademyinNoviSad, Jevrejska24,11000Belgrade,Serbia;gabrijela.popovic@mef.edu.rs

3 FacultyofSciencesandMathematics,UniversityofNiš,Višegradska33,18000Niš,Serbia;pecko@pmf.ni.ac.rs

4 MathematicsandScienceDivision,GallupCampus,UniversityofNewMexico,705GurleyAve., Gallup,NM87301,USA;smarand@unm.edu

5 DepartmentofComputerSciences,UniversityofNoviPazar,DimitrijaTucovi´cabb,36300NoviPazar,Serbia; muzafers@uninp.edu.rs

6 DepartmentofInternationalTradeandLogistics,FacultyofEconomicsandAdministrativeSciences,Sivas CumhuriyetUniversity,Sivas58140,Turkey;aulutas@cumhuriyet.edu.tr

7 DivisionofMathematicsandInformatics,DepartmentofEconomics,NationalandKapodistrianUniversityof Athens,Panepistimiopolis,15784Ilissia,Greece;vaskatsikis@econ.uoa.gr

* Correspondence:darjan.karabasevic@mef.edu.rs

Citation: Stanujki´c,D.;Karabaševi´c, D.;Popovi´c,G.;Stanimirovi´c,P.S.; Smarandache,F.;Saraˇcevi´c,M.; Uluta¸s,A.;Katsikis,V.N.An InnovativeGreyApproachforGroup Multi-CriteriaDecisionAnalysis BasedontheMedianofRatingsby UsingPython. Axioms 2021, 10,124. https://doi.org/10.3390/ axioms10020124

AcademicEditors:Goran Cirovi´cand DraganPamuˇcar

Received:24May2021 Accepted:16June2021 Published:19June2021

Publisher’sNote: MDPIstaysneutral withregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffiliations.

Abstract: Somedecision-makingproblems,i.e.,multi-criteriadecisionanalysis(MCDA)problems, requiretakingintoaccounttheattitudesofalargenumberofdecision-makersand/orrespondents. Therefore,anapproachtothetransformationofcrispratings,collectedfromrespondents,ingrey intervalnumbersformbasedonthemedianofcollectedscores,i.e.,ratings,isconsideredinthis article.Inthisway,thesimplicityofcollectingrespondents’attitudesusingcrispvalues,i.e.,by applyingsomeformofLikertscale,iscombinedwiththeadvantagesthatcanbeachievedbyusing greyintervalnumbers.Inthisway,agreyextensionofMCDAmethodsisobtained.Theapplication oftheproposedapproachwasconsideredintheexampleofevaluatingthewebsitesoftourism organizationsbyusingseveralMCDAmethods.Additionally,ananalysisoftheapplicationofthe proposedapproachinthecaseofalargenumberofrespondents,doneinPython,ispresented.The advantagesoftheproposedmethod,aswellasitspossiblelimitations,aresummarized.

Keywords: MCDA;greyintervalnumbers;groupdecision-making;Python

1.Introduction

Copyright: ©2021bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).

Multi-criteriadecision-making(MCDM),ormulti-criteriadecisionanalysis(MCDA), hassofarbeenusedforsolvingalargenumberofnumerousdifferentdecision-makingproblems[1 4].Therefore,MCDAisdealingwithsolvingcomplexreal-worldproblemsofthe greatestinteresttotheorganizationthatcannotbesolvedbyconventional methods[5 8] Induecourseoftime,manymulti-criteriaanalysis(MCA)methodswereproposed,primarilyduetothedynamicandrapiddevelopmentofthefieldofoperationalresearch.The followingcanbementionedassomeofthemostcitedarticlesfromthisarea:Hajkowicz andCollins[9],HajkowiczandHiggins[10],Kaklauskasetal.[11],Kostrevaetal.[12],and BeltonandVickers[13].

Besidesthisresearch,therearemanystudiesinthisarea,suchas:researchand developmentprojectportfolioselection[14](MavrotasandMakryvelios,2021),assessing nationalenergysustainability[15],energyconsumptionanalysisofhigh-speedtrains[16],

Article
axioms
Axioms 2021, 10,124. https://doi.org/10.3390/axioms10020124 https://www.mdpi.com/journal/axioms

evaluationoftransportemissionsreductionpolicies[17],planningrenewableenergyuse andcarbonsaving[18],andsoforth.

MCDAhasalsobeenusedsuccessfullyforsolvingdecision-makingproblemsthat arerelatedtouncertaintiesorrequireagroupdecision-makingapproachforsolving them[19 25].Assomeexamplesofsuchapproaches,thefollowingcanbementioned: agreyabsolutedecisionanalysis[26],amultiplecriteriadecisionanalysisframework forthedispersedgroup[27],afuzzymulti-criteriaanalysis[28 30],andcollaborative decision-makinginthemulti-actormulti-criteriaanalysis[31].

Fromtheaforestated,itisclearthatsomedecision-makingproblemscanbemore adequatelysolvedifalargernumberofrespondentstakepartinsolvingthem.Insuch cases,thequestionthatarisesishowtotransformtheattitudescollectedfromrespondents intogroupattitudes.

Theapproachbasedontheuseofafive-pointLiker’sscale,orsimilar,canbementionedasoneoftheprobablysimplestapproachesforcollectingtherespondents’attitudes. Sofar,innumerousarticlespublishedinscientificjournals,numerousapproacheshave beenproposedforthetransformationofindividualattitudesacquiredinthiswayinto groupattitudes.Theresultsobtained,theadvantages,aswellastheweaknessesofthese approaches,arealsopresentedinthesejournals.

Inthisarticle,anapproachtothetransformationofcrispratings,collectedfrom respondents,asgreyintervalnumbersformbasedonthemedianofcollectedscores,i.e., ratings,isconsidered.Therefore,thearticleproposesthetransformationofindividual ratingscollectedfromrespondentsintogreyintervalswiththeaimofperformingMCDA withminimallossofinformationinrelationtocaseswhencrispratingsaretransformed intocrispgroupratings.Theapplicationoftheproposedapproachwasconsideredon theexampleofevaluatingthewebsitesoftourismorganizationsbyusingseveralMCDA methods,andalsoananalysisoftheapplicationoftheproposedapproachinthecaseofa largenumberofrespondentswasdoneinPythonanddescribed.Additionally,themain ideaofthearticlewastoproposeasimpleprocedureforgatheringrespondent’sattitudes insteadofacomplexprocedurethatissometimesdifficulttounderstandbyordinary respondents/decision-makerswhoarenotfamiliarwithMCDMandfuzzylogic.

Therefore,therestofthisarticleisorganizedasfollows:InSection 2,somebasic definitionsaboutgreynumbersaregiven,whileanewapproachisproposedinSection 3.In Section 4,anumericalillustrationispresentedinordertohighlightthebasiccharacteristics oftheproposedapproach,whileinSection 5 ananalysisoftheobtainedresultsisperformed. Finally,conclusionsaregivenattheendofthearticle.

2.Preliminaries

Definition1. Greynumber[32].Agreynumber ⊗x issuchanumberwhoseexactvalueis unknown,buttherangeinwhichvaluecanlieisknown.

Definition2. Intervalgreynumber[32].Anintervalgreynumberisagreynumberwithaknown lowerboundx andupperbound x,butwiththeunknownvalueofx,anditisshownasfollows:

Definition3. Thewhiteningfunction[33 35].Thewhiteningfunctiontransformsaninterval greynumberintoacrispnumberwhosepossiblevaluesliebetweentheboundsoftheintervalgrey number.Forthegivenintervalgreynumber,thewhitenedvaluex(λ) ofintervalgreynumber ⊗x is definedas x(λ) = (1 λ)x + λx,(2) where ∈ [0,1] denotesthewhiteningcoefficient.

Axioms 2021, 10,124 2of12
x ∈ [x, x] = [x ≤ x ≤ x].(1)

Intheparticularcase λ =0.5,thewhitenedvaluebecomesthemeanoftheinterval greynumber,asfollows:

x(0.5) = 0.5(x + x .(3)

3.TheNewlyProposedApproach

Supposethatthedecisionmatrixispresentedintheform

D =[xk ij ],(4)

where: xk ij denotestheevaluationofalternative i tocriterion j statedbythedecision-maker k; i =1, ,m,and m denotesthenumberofalternatives; j =1, ,n,and n denotesthe numberofcriteria; k =1... K,and K denotesthenumberofdecision-makers.

Suchathree-dimensionalmatrixcanbetransformedintoagrouptwo-dimensional matrixasfollows:

D =[x ij ],(5) with x ij = K ∑ k=1 xk ij /K.(6)

Essentially, x ij denotesratingofalternative i tocriterion j.Suchdefined x ij isactually themeanvalueofallassessmentsofthealternative i inrelationtothecriterion j. However,thematrixshownusingEquation(4)canbealsotransformedintoagrey groupdecisionmatrix,asfollows:

D =([xij, xij ]),(7) with xij = ∑ k∈k xk ij /n ;(8) xij = ∑ k∈k+ xk ij /n+.(9)

In(8), k denotesthesetofelementswhosevaluesarelessthanorequaltothemedian valueof xk ij,and n denotesthenumberofelementsinthisset.Similarly, k+ in(9)denotes asetofelementswhosevaluesaregreaterthanorequaltothemedianvalueof xk ij and n+ denotesthenumberofelementsinthisset.

Example

Let S beasequenceof10integersfrominterval[1,5]and S =(1,2,3,1,5,3,3,1,4,5). Then,themeanandmedianof S areasfollows: mean =2.80and median =3.00.The meanvalueofanumberwhichislessthanorequaltothemedian(1,2,3,1,3,3,1)is xl = 2.00andthemeanvalueofanumbergreaterorequaltothemedian(3,5,3,3,4,5)is xu =3.83.

Themeanvalueofsuchinterval[2.00,3.83],determinedusingEquation(3),is2.915, andthedistancebetweenitandthemeanis2.915 2.80=0.115,thatisinpercentages4.11%.

Theresultsobtainedbasedonseveralsequencesofrandomlygeneratednumbersfrom interval[1,10]areshowninTable 1.ThecalculationwasdoneinPythonusingtheseed(1).

Axioms 2021, 10,124 3of12

Table1. Differencebetweenthemeanvalueofthesequenceofnumbersandthevalueobtainedby theproposedapproach.

Sample MeanMedianxl xu xm =(xu xl)/2 d =abs(Mean xm) d (%) 55.605.004.007.005.500.101.79 107.107.505.408.807.100.000.00 155.136.002.887.505.190.051.06 206.507.005.088.006.540.040.64 254.524.002.436.504.460.061.23 505.205.003.077.145.110.091.81 1005.015.002.937.095.010.000.02 1505.165.003.056.914.980.183.45

FromTable 1,itcanbeseenthatthedifferencebetweenthemeanvalueofthesequence ofnumbersandthevalueobtainedbytheproposedapproachisnotlarge.

4.ANumericalIllustration

Inthissection,theuseoftheproposedapproachispresentedinthecaseofevaluating websitesoftouristorganizationsfromEasternSerbia.Theevaluationwasperformedon thewebsitesof5touristorganizationsfromtheTimokfrontier,ormorepreciselytourist organizationsoftheMunicipalitiesofBoljevac,Bor,Majdanpek,NegotinandKladovo (Itisimportanttostatethattheorderofmunicipalitiesdoesnotcorrespondtotheorderof alternatives,becausetheaimofthisarticleisnottofavoranyoftheabove-mentionedtourist organizations.).Theevaluationisperformedbasedonthefollowingcriteria:Visualdesign— C1,Structureandnavigability—C2,Content—C3,Innovation—C4,Personalization—C5

TheevaluationwasperformedusingARAS[36],WASPAS[37],CoCoSo[38]and WISP[39]methods.Inthefirstcase,theevaluationwasperformedusingordinaryMCDA methodsandthemeanvalueofthecollectedratings,whileinthefirstcase,theevaluation wasperformedusingtheproposedapproach.

Thisillustrationdoesnotshowallthepossibilitiesthattheproposedapproachprovidesintermsofanalysis.Themaingoalwastocomparetheresultsobtainedbyapplying themeanvalueofallassessmentsandtheproposedapproach,wherethetransformationof greynumberswasperformedusingEquation(3)and λ =0.5.

Theratingobtainedfrom10respondentsisshowninTables 2 6

Table2.

Axioms 2021, 10,124 4of12
Ratingsofalternative A1 inrelationtotheevaluationcriteriaobtainedfrom10respondents. A1 IIIIIIIVVVIVIIVIIIIXX C1 1233533432 C2 3345344424 C3 3343344554 C4 1123445232 C5 2122123432
Table3. Ratingsofalternative A2 inrelationtotheevaluationcriteriaobtainedfrom10respondents. A2 IIIIIIIVVVIVIIVIIIIXX C1 3544445322 C2 5545455434 C3 2444345333 C4 4454225353 C5 4453434324

Table4. Ratingsofalternative A3 inrelationtotheevaluationcriteriaobtainedfrom10respondents.

A3 IIIIIIIVVVIVIIVIIIIXX C1 1222222321 C2 3554223444 C3 1442224322 C4 1133114211 C5 3553443444

Table5. Ratingsofalternative A4 inrelationtotheevaluationcriteriaobtainedfrom10respondents.

A4 IIIIIIIVVVIVIIVIIIIXX C1 4445444454 C2 5545334553 C3 5544334555 C4 4455535543 C5 4453443544

Table6. Ratingsofalternative A5 inrelationtotheevaluationcriteriaobtainedfrom10respondents.

A4 IIIIIIIVVVIVIIVIIIIXX C1 4355535343 C2 4445435444 C3 5444334435 C4 4453243533 C5 3444434544

Thegroupdecisionmatrix,formedonthebasisoftheresponsesofallrespondents, isshowninTable 7.Theelementsofthismatrixrepresentthemeanvalueoftheratings obtainedfromtherespondents.

Table7. Groupdecision-makingmatrix.

CriteriaAlternatives C1 C2 C3 C4 C5

A1 2.903.603.802.702.20 A2 3.604.403.503.703.60 A3 1.903.602.601.803.90 A4 4.204.204.304.304.00 A5 4.004.103.903.603.90

AsimilardecisionmatrixisshowninTable 8,wheretheelementsofthatmatrix representthemedianofratingsobtainedfromtherespondents.

Table8. Themedianofratingsobtainedfromtherespondents.

CriteriaAlternatives C1 C2 C3 C4 C5

A1 2.963.813.922.702.11 A2 3.794.403.503.823.81 A3 1.953.792.311.403.96 A4 4.104.204.304.304.00 A5 4.004.053.963.603.95

TheresultsoftheevaluationperformedusingordinaryARAS,WASPAS,CoCoSoand WISPmethods,weightingvector wi =(0.25,0.24,0.22,0.20,0.10),andthedatafromTable 7, areshowninTable 9

Axioms 2021, 10,124 5of12

Table9. RankingofalternativesusingordinaryARAS,WASPAS,CoCoSoandWISPmethods.

ARASWASPASCoCoSoWISP

Alternatives Si Rank Si Rank Si Rank Si Rank

A1 0.7340.7341.8040.874

A2 0.8830.8832.1730.953 A3 0.6150.6051.4950.815 A4 0.9910.9912.4311.001 A5 0.9220.9222.2520.962

Inthesecondcase,basedondatafromTable 8 aswellasratingsfromTables 2 6,a greydecisionmatrixwasformedasshowninTable 10

Table10. Greygroupdecision-makingmatrix.

CriteriaAlternatives C1 C2 C3 C4 C5

A1 [2.50,3.43][3.44,4.17][3.50,4.33][1.60,3.80][1.71,2.50]

A2 [3.25,4.33][3.80,5.00][2.80,4.20][3.14,4.50][3.44,4.17]

A3 [1.78,2.13][3.25,4.33][1.83,2.78][1.00,1.80][3.62,4.29]

A4 [4.00,4.20][3.40,5.00][3.60,5.00][3.60,5.00][3.75,4.25] A5 [3.33,4.67][3.88,4.22][3.63,4.29][2.80,4.40][3.78,4.13]

TheevaluationresultsgeneratedusingthegreyARAS,WASPAS,CoCoSoandWISP methods,andthedatafromTable 10,areshowninTable 11.Itshouldbenotedagainthat thegreynumbersfromTable 10 weretransformedintocrispvalues,usingEquation(3)and λ =0.5,beforetheevaluation.

Table11. RankingofalternativesusinggreyWS,WP,WASPASandCoCoSomethods.

ARASWASPASCoCoSoWISP

Alternatives Si Rank Si Rank Si Rank Si Rank

A1 0.7640.4641.9040.744 A2 0.9130.5532.2930.893 A3 0.5950.3651.4750.625 A4 0.9910.6012.4810.991 A5 0.9220.5622.3220.922

FromTables 9 and 11,itcanbeseenthatdifferencesinrankingordersofalternatives achievedonthebasisofthemeanvalueofallassessmentsandtheproposedapproach werenotobserved.Ofcourse,itshouldbereiteratedherethattheproposedapproach providessignificantlygreateropportunitiesintermsofanalyzingvariousscenarios,such aspessimisticoroptimistic.

5.AnalysisandDiscussion

Inordertoverifytheproposedapproach,thissectionpresentstheresultsofthe evaluationbasedontheassessmentsofanumberofvirtualrespondents.Foreasier evaluation,thescoresweregeneratedasrandomnumbersfromtheinterval[1,10],using aprogramwritteninthePythonprogramminglanguage,inwhichallcalculationswere alsoperformed.Inthisanalysis,randomnumbersaregeneratedwiththeseed(1).The resultsobtainedonthebasisofseriesof10,50,100and150virtualrespondentsareshown inTables 12 20.Theweightingvector wi =(0.2,0.2,0.2,0.2,0.2)isusedinthisevaluation. Thecalculationdetailsobtainedonthebasisof10virtualrespondentsareshownin Tables 12 and 13.AscanbeseenfromTables 12 and 13,inthiscase,thesameranking ordersareobtainedbyapplyingallmethodsandapproaches.

Axioms 2021, 10,124 6of12

Alternatives

Table12. Rankingofalternativesonthebasisof10virtualrespondentsandcrispapproach.

WSWPWASPASCoCoSoWISP

Si Rank Pi Rank Qi Rank Ki Rank Si Rank

A1 0.8350.7550.7551.7750.595

A2 1.0010.9110.9112.1611.001

A3 0.9820.8720.8822.0920.882

A4 0.8440.7540.7641.7940.614

A5 0.8930.8030.8131.9130.713

Table13. Rankingofalternativesonthebasisof10virtualrespondentsandtheproposedgreyapproach.

WSWPWASPASCoCoSoWISP

Alternatives

Si Rank Pi Rank Qi Rank Ki Rank Si Rank

A1 0.8250.7450.7551.7850.585

A2 1.0010.9210.9212.1811.001

A3 0.9520.8420.8622.0420.802

A4 0.8340.7540.7541.7940.594

A5 0.8830.8030.8131.9130.693

Table14. Rankingofalternativesonthebasisof50virtualrespondentsandcrispapproach.

WSWPWASPASCoCoSoWISP

Alternatives Si Rank Pi Rank Si Si Ki Rank Si Rank

A1 0.9730.9430.9431.9030.913

A2 0.9240.8940.8941.8040.784 A3 1.0010.9710.9711.9711.001 A4 0.9150.8850.8951.7950.775 A5 0.9720.9420.9521.9120.912

Table15. Rankingofalternativesonthebasisof50virtualrespondentsandtheproposedgreyapproach.

WSWPWASPASCoCoSoWISP

Alternatives Si Rank Pi Rank Qi Rank Ki Rank Si Rank

A1 0.9820.9420.9421.9020.942 A2 0.9250.8950.8951.7950.805 A3 1.0010.9610.9611.9411.001 A4 0.9340.8940.8941.8140.824 A5 0.9730.9330.9331.8730.903

Table16. Rankingordersofalternativesobtainedonthebasisof50virtualrespondents.

Table17. Rankingordersofalternativesobtainedonthebasisof100virtualrespondents.

A1

A2

A3

A4

A5

Axioms 2021, 10,124 7of12
CrispGreyApproach
WASPAS CoCoSoWISPWSWP WASPAS CoCoSoWISP
3333322222
4444455555
1111111111
5555544444
2222233333
AlternativesWSWP
A1
A2
A3
A4
A5
CrispGreyApproach
WASPAS CoCoSoWISPWSWP WASPAS CoCoSoWISP
4444444444
3333322222
2222233333
1111111111
5555555555
AlternativesWSWP

Table18. Rankingofalternativesonthebasisof150virtualrespondentsandcrispmethods.

WSWPWASPASCoCoSoWISP

Alternatives Si Rank Pi Rank Si Si Ki Rank Si Rank

A1 0.99320.96020.96121.84020.9772

A2 0.97530.94430.94431.80830.9273

A3 0.97150.93850.93951.79950.9145

A4 1.00010.96810.96811.85411.0001 A5 0.97340.94240.94241.80540.9234

Table19. Rankingofalternativesonthebasisof150virtualrespondentsandgreymethods.

WSWPWASPASCoCoSoWISP

Alternatives Si Rank Pi Rank Qi Rank Ki Rank Si Rank

A1 0.98820.95420.95521.80620.9652

A2 0.98830.95330.95431.80530.9633

A3 0.98740.95240.95341.80440.9604

A4 1.00010.96610.96611.82811.0001 A5 0.98550.95250.95251.80150.9585

Table20. Rankingordersofalternativesobtainedonthebasisof150virtualrespondents.

CrispGreyApproach

AlternativesWSWP WASPAS CoCoSoWISPWSWP WASPAS CoCoSoWISP

A1 2222222222 A2 3333333333 A3 5555544444 A4 1111111111 A5 4444455555

Thecalculationdetailsobtainedonthebasisof50virtualrespondentsareshownin Tables 14 16.Inthiscase,thereweresomediscrepanciesintheorderofthesecondand third-placedalternatives,whichcanbeclearlyseeninFigure 1

Figure1. Rankingordersofalternativesobtainedonthebasisof50virtualrespondents.

Figure 1. Ranking orders of alternatives obtained on the basis of 50 virtual respondents.

It can be seen from Table 14 and Table 15 that differences between second-placed and third-placed alternatives are not high, which is why it can be expected that the same ranking order of alternatives could be obtained by using another weight vector.

Ranking orders of alternatives, obtained on the basis of 100 virtual respondents, are shown in Tabe 17, and presented in Figure 2. This case is similar to the previous one.

Table 17. Ranking orders of alternatives obtained on the basis of 100 virtual respondents.

Axioms 2021, 10,124 8of12
Axioms 2021, 10, x FOR PEER REVIEW 9
of 13
WSWPWASPASCoCoSoWISP WS-
WP-
CoCoSoGrey
Grey A13333322222 A24444455555 A31111111111 A45555544444 A52222233333 0 1 2
A1A2A3A4A5
Grey
Grey WASPAS -Grey
WISP-
3 4 5 6

Ranking orders of alternatives, obtained on the basis of 100 virtual respondents, are shown in Tabe 17, and presented in Figure 2. This case is similar to the previous one.

Table 17. Ranking orders of alternatives obtained on the basis of 100 virtual respondents.

Crisp

Grey Approach

Alternatives WS WP WASPAS CoCoSo WISP WS WP WASPAS CoCoSo WISP

ItcanbeseenfromTables 14 and 15 thatdifferencesbetweensecond-placedandthirdplacedalternativesarenothigh,whichiswhyitcanbeexpectedthatthesameranking orderofalternativescouldbeobtainedbyusinganotherweightvector.

Rankingordersofalternatives,obtainedonthebasisof100virtualrespondents,are showninTabe17,andpresentedinFigure 2.Thiscaseissimilartothepreviousone.

A1 4 4 4 4 4 4 4 4 4 4 A2 3 3 3 3 3 2 2 2 2 2 A3 2 2 2 2 2 3 3 3 3 3 A4 1 1 1 1 1 1 1 1 1 1 A5 5 5 5 5 5 5 5 5 5 5 WSWPWASPASCoCoSoWISP WSGrey WPGrey WASPAS -Grey CoCoSoGrey WISPGrey A14444444444 A23333322222 A32222233333 A41111111111 A55555555555

0 1 2 3 4 5 6 A1A2A3A4A5

Figure2. Rankingordersofalternativesobtainedonthebasisof100virtualrespondents.

FromTable 17 andFigure 2 itcanbeobservedthatinthiscase,thedifferencesoccur onlyinthecaseofthesecondandthird-placedalternatives.

Rankingordersofalternativesthatarisefrom150virtualrespondentsarearrangedin Tables 18 20 andpresentedinFigure 3

WSWPWASPASCoCoSoWISP

Figure3. Rankingordersofalternativesobtainedonthebasisof150virtualrespondents.

Figure 3. Ranking orders of alternatives obtained on the basis of 150 virtual respondents.

Table 20 andFigure 3 clearlyshowthatthealternative A4 isbestrankedaccordingto allmethods,withallcrispmethodsgavethesameorderofranking A4, A1, A2, A5, A3,while theproposedgreyapproachgavethefollowingrankingsorder A4, A1, A2, A3, A5.However, fromTable 20 itisobservablethatthereareverysmalldifferencesinoverallperformance

Table 20 and Figure 3 clearly show that the alternative A4 is best ranked according to all methods, with all crisp methods gave the same order of ranking A4, A1, A2, A5, A3, while the proposed grey approach gave the following rankings order A4, A1, A2, A3, A5. However, from Table 20 it is observable that there are very small differences in overall performance between the second-placed, third-placed and fourth-placed alternatives, which is why it can be expected that different ranking orders of alternatives could be obtained by using another weighting vector.

Axioms 2021, 10
9of12
,124
Axioms 2021, 10, x FOR PEER REVIEW 11 of 13
A12222222222 A23333333333 A35555544444 A41111111111 A54444455555 0 1 2 3 4 5 6 A1A2A3A4A5
WSGrey WPGrey WASPAS -Grey CoCoSoGrey WISPGrey

betweenthesecond-placed,third-placedandfourth-placedalternatives,whichiswhyit canbeexpectedthatdifferentrankingordersofalternativescouldbeobtainedbyusing anotherweightingvector.

6.Conclusions

Theadvantagesofusinggreyinsteadofcrispnumbersinmulti-criteriadecisionanalysishavebeenconsideredandproveninanumberofpreviouslypublishedstudies.One oftheadvantageswhichshouldbeemphasizedusinggreynumbersisthepossibilityof consideringvariousscenarios,suchas:pessimistic,realistic,andoptimistic.Theproposed approachallowsthetransformationofcrispratings,collectedbyemployingsurveysbased ontheuseoftheLikertscale,intogreynumbersandthusconsideringdifferentscenarios. Theproposedapproachmaybesuitablewhenitisnecessarytocollectandanalyzethe realisticattitudesofalargernumberofrespondents.Moreover,theproposedtransformationenablesgreaterrobustnessandfurtherpossibilityofanalysisandconsiderationof differentscenarios.

Theresultsofthewebsiteevaluationbasedonthemeanvalueoftheratingsobtained fromallrespondentsandtheproposedapproachdidnotindicateadifferenceinthe rankingordersofalternatives.However,theresultsoftheconductedanalysisindicate thatdifferencesmayarisebetweenthetwoapproaches,especiallyinthecaseofthelowerrankedalternatives.

Somedifferencesintheresultsareexpectedbecausetheproposedapproachisnota substituteforapplyingthemeanvalueofthescoresobtainedfromallrespondents,butan approachthatfurtherallowsthepossibilityofanalysis.Certaindifferencesintheranking resultsusingthenewlyproposedapproachandapplyingthemeanofthescoresobtained inallrespondentscanbecitedasaweaknessofthisapproach.

Finally,considerationofthetransformationofalargernumberofcrispratingsinto correspondingtriangularfuzzynumbersorinterval-valuedtriangularfuzzynumbers canbementionedasoneofthepossibledirectionsforthefurtherdevelopmentofthe proposedapproach.

AuthorContributions: Conceptualization,P.S.S.,D.K.,V.N.K.andG.P.;methodology,D.K.,D.S.and F.S.;validation,A.U.;investigation,A.U.;datacuration,G.P.;writing—originaldraftpreparation, D.S.,V.N.K.andM.S.;writing—reviewandediting,P.S.S.andM.S.;supervision,D.K.;funding acquisition,F.S.Allauthorshavereadandagreedtothepublishedversionofthemanuscript.

Funding: TheresearchpresentedinthisarticlewasdonewiththefinancialsupportoftheMinistry ofEducation,ScienceandTechnologicalDevelopmentoftheRepublicofSerbia,withinthefunding ofthescientificresearchworkattheUniversityofBelgrade,TechnicalFacultyinBor,accordingto thecontractwithregistrationnumber451-03-9/2021-14/200131.

ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.

References

1. Uluta¸s,A.;Stanujkic,D.;Karabasevic,D.;Popovic,G.;Zavadskas,E.K.;Smarandache,F.;Brauers,W.K.DevelopingofaNovel IntegratedMCDMMULTIMOOSRALApproachforSupplierSelection. Informatica 2021, 32,145–161.[CrossRef]

2. Karabasevic,D.;Radanov,P.;Stanujkic,D.;Popovic,G.;Predic,B.Goinggreen:StrategicevaluationofgreenICTadoptioninthe textileindustrybyusingbipolarfuzzyMultimooramethod. Ind.Text. 2021, 72,3–10.[CrossRef]

3. JaukovicJocic,K.;Jocic,G.;Karabasevic,D.;Popovic,G.;Stanujkic,D.;Zavadskas,E.K.;ThanhNguyen,P.Anovelintegrated piprecia–interval-valuedtriangularfuzzyarasmodel:E-learningcourseselection. Symmetry 2020, 12,928.[CrossRef]

4. Karabaševi´c,D.;Stanujki´c,D.;Zavadskas,E.K.;Stanimirovi´c,P.;Popovi´c,G.;Predi´c,B.;Uluta¸s,A.ANovelExtensionofthe TOPSISMethodAdaptedfortheUseofSingle-ValuedNeutrosophicSetsandHammingDistanceforE-CommerceDevelopment StrategiesSelection. Symmetry 2020, 12,1263.[CrossRef]

5. Amiri,M.;Hashemi-Tabatabaei,M.;Ghahremanloo,M.;Keshavarz-Ghorabaee,M.;Zavadskas,E.K.;Antucheviciene,J.Anovel modelformulti-criteriaassessmentbasedonBWMandpossibilisticchance-constrainedprogramming. Comput.Ind.Eng. 2021, 156,107287.[CrossRef]

6. Lu,K.;Liao,H.;Zavadskas,E.K.Anoverviewoffuzzytechniquesinsupplychainmanagement:Bibliometrics,methodologies, applicationsandfuturedirections. Technol.Econ.Dev.Econ. 2021, 27,402–458.[CrossRef]

Axioms 2021, 10,124 10of12

7. Stanujkic,D.;Zavadskas,E.K.;Liu,S.;Karabasevic,D.;Popovic,G.ImprovedOCRAmethodbasedontheuseofintervalgrey numbers. J.GreySyst. 2017, 29,49–60.

8. Popovic,G.;Stanujkic,D.;Brzakovic,M.;Karabasevic,D.Amultiple-criteriadecision-makingmodelfortheselectionofahotel location. LandUsePolicy 2019, 84,49–58.[CrossRef]

9. Hajkowicz,S.;Collins,K.Areviewofmultiplecriteriaanalysisforwaterresourceplanningandmanagement. WaterResour. Manag. 2007, 21,1553–1566.[CrossRef]

10. Hajkowicz,S.;Higgins,A.Acomparisonofmultiplecriteriaanalysistechniquesforwaterresourcemanagement. Eur.J.Oper. Res. 2008, 184,255–265.[CrossRef]

11. Kaklauskas,A.;Zavadskas,E.K.;Raslanas,S.Multivariantdesignandmultiplecriteriaanalysisofbuildingrefurbishments. EnergyBuild. 2005, 37,361–372.[CrossRef]

12. Kostreva,M.M.;Ogryczak,W.;Wierzbicki,A.Equitableaggregationsandmultiplecriteriaanalysis. Eur.J.Oper.Res. 2004, 158, 362–377.[CrossRef]

13. Belton,V.;Vickers,S.P.DemystifyingDEA—Avisualinteractiveapproachbasedonmultiplecriteriaanalysis. J.Oper.Res.Soc. 1993, 44,883–896.

14. Mavrotas,G.;Makryvelios,E.Combiningmultiplecriteriaanalysis,mathematicalprogrammingandMonteCarlosimulationto tackleuncertaintyinResearchandDevelopmentprojectportfolioselection:AcasestudyfromGreece. Eur.J.Oper.Res. 2021, 291, 794–806.[CrossRef]

15. Phillis,A.;Grigoroudis,E.;Kouikoglou,V.S.Assessingnationalenergysustainabilityusingmultiplecriteriadecisionanalysis. Int.J.Sustain.Dev.WorldEcol. 2021, 28,18–35.[CrossRef]

16. Peng,Y.;Zhang,H.;Wang,T.;Yang,M.;Wang,K.;Meng,W.;Wang,D.Energyconsumptionanalysisandmultiple-criteria evaluationofhigh-speedtrainswithdifferentmarshaledformsinChina. Sci.TotalEnviron. 2021, 759,143678.[CrossRef]

17. Hasan,M.A.;Chapman,R.;Frame,D.J.Acceptabilityoftransportemissionsreductionpolicies:Amulti-criteriaanalysis. Renew. Sustain.EnergyRev. 2020, 133,110298.[CrossRef]

18. Ahmed,A.;Sutrisno,S.W.;You,S.Atwo-stagemulti-criteriaanalysismethodforplanningrenewableenergyuseandcarbon saving. Energy 2020, 199,117475.[CrossRef]

19. Huang,H.;Mommens,K.;Lebeau,P.;Macharis,C.TheMulti-ActorMulti-CriteriaAnalysis(MAMCA)forMass-Participation DecisionMaking.In InternationalConferenceonDecisionSupportSystemTechnology;SpringerInternationalPublishing:Cham, Switzerland,2021;pp.3–17.

20. Salo,A.;Hämäläinen,R.;Lahtinen,T.MulticriteriaMethodsforGroupDecisionProcesses:AnOverview.In HandbookofGroup DecisionandNegotiation;Kilgour,D.M.,Eden,C.,Eds.;SpringerScience&BusinessMedia:Berlin/Heidelberg,Germany,2021.

21. Tao,R.;Liu,Z.;Cai,R.;Cheong,K.H.AdynamicgroupMCDMmodelwithintuitionisticfuzzyset:Perspectiveofalternative queuingmethod. Inf.Sci. 2021, 555,85–103.[CrossRef]

22. Hsu,W.C.J.;Liou,J.J.;Lo,H.W.Agroupdecision-makingapproachforexploringtrendsinthedevelopmentofthehealthcare industryinTaiwan. Decis.SupportSyst. 2021, 141,113447.[CrossRef]

23. Zhan,J.;Zhang,K.;Wu,W.Z.AninvestigationonWu-Leungmulti-scaleinformationsystemsandmulti-expertgroupdecisionmaking. ExpertSyst.Appl. 2021, 170,114542.[CrossRef]

24. Liu,S.;Yu,W.;Chan,F.T.;Niu,B.Avariableweight-basedhybridapproachformulti-attributegroupdecisionmakingunder interval-valuedintuitionisticfuzzysets. Int.J.Intell.Syst. 2021, 36,1015–1052.[CrossRef]

25. Biswas,S.;Pamucar,D.Facilitylocationselectionforb-schoolsinindiancontext:Amulti-criteriagroupdecisionbasedanalysis. Axioms 2020, 9,77.[CrossRef]

26. Javed,S.A.;Mahmoudi,A.;Liu,S.GreyAbsoluteDecisionAnalysis(GADA)Methodformultiplecriteriagroupdecision-making underuncertainty. Int.J.FuzzySyst. 2020, 22,1073–1090.[CrossRef]

27. Carneiro,J.;Martinho,D.;Alves,P.;Conceição,L.;Marreiros,G.;Novais,P.Amultiplecriteriadecisionanalysisframeworkfor dispersedgroupdecision-makingcontexts. Appl.Sci. 2020, 10,4614.[CrossRef]

28. AlAsbahi,A.A.M.H.;Fang,Z.;Chandio,Z.A.;Tunio,M.K.;Ahmed,J.;Abbas,M.AssessingbarriersandsolutionsforYemen energycrisistoadoptgreenandsustainablepractices:Afuzzymulti-criteriaanalysis. Environ.Sci.Pollut.Res. 2020, 27, 36765–36781.[CrossRef]

29. Musaad,O.A.S.;Zhuo,Z.;Musaad,O.A.O.;AliSiyal,Z.;Hashmi,H.;Shah,S.A.A.Afuzzymulti-criteriaanalysisofbarriersand policystrategiesforsmallandmediumenterprisestoadoptgreeninnovation. Symmetry 2020, 12,116.[CrossRef]

30. Durmi´c,E.;Stevi´c,Ž.;Chatterjee,P.;Vasiljevi´c,M.;Tomaševi´c,M.SustainablesupplierselectionusingcombinedFUCOM—Rough SAWmodel. Rep.Mech.Eng. 2020, 1,34–43.[CrossRef]

31. Huang,H.;DeSmet,Y.;Macharis,C.;Doan,N.A.V.Collaborativedecision-makinginsustainablemobility:Identifyingpossible consensusesinthemulti-actormulti-criteriaanalysisbasedoninversemixed-integerlinearoptimization. Int.J.Sustain.Dev. WorldEcol. 2021, 28,64–74.[CrossRef]

32. Deng,J.L.IntroductiontoGreySystemTheory. J.GreySyst. 1989, 1,1–24.

33. Liu,S.F.;Yang,Y.J.;Forrest,J.Y.L. GreyDataAnalysis:Methods,ModelsandApplications;Springer:Berlin/Heidelberg,Germany, 2016.

34. Liu,S.F.;Forrest,J.Y.L. GreySystems:TheoryandApplications;Springer:Berlin/Heidelberg,Germany,2010.

Axioms 2021, 10,124 11of12

35. Liu,S.;Rui,H.;Fang,Z.;Yang,Y.;Forrest,J.Explanationoftermsofgreynumbersanditsoperations. GreySyst.TheoryAppl. 2016, 6,436–441.[CrossRef]

36. Turskis,Z.;Zavadskas,E.K.Anovelmethodformultiplecriteriaanalysis:Greyadditiveratioassessment(ARAS-G)method. Informatica 2010, 21,597–610.[CrossRef]

37. Zavadskas,E.K.;Turskis,Z.;Antucheviciene,J.SelectingaContractorbyUsingaNovelMethodforMultipleAttributeAnalysis: WeightedAggregatedSumProductAssessmentwithGreyValues(WASPAS-G). Stud.Inform.Control. 2015, 24,141–150.[CrossRef]

38. Yazdani,M.;Wen,Z.;Liao,H.;Banaitis,A.;Turskis,Z.Agreycombinedcompromisesolution(COCOSO-G)methodforsupplier selectioninconstructionmanagement. J.Civ.Eng.Manag. 2019, 25,858–874.[CrossRef]

39. Stanujkic,D.;Popovic,G.;Karabasevic,D.;Meidute-Kavaliauskiene,I.;Ulutas,A.AnIntegratedSimpleWeightedSumProduct Method—WISP. IEEETrans.Eng.Manag. 2021,1–12.[CrossRef]

Axioms 2021, 10,124 12of12

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.