Test Bank for Elementary Linear Algebra, 12th Edition Howard Anton

Page 1


Chapter1:SystemsofLinearEquationsandMatrices

MultipleChoiceQuestions

1. Whichofthefollowingequationsislinear?

(A)2x2 1 +3x3 2 +4x4 3 =5

(B) √3x1 √2x2 + x3 =5

(C) √5x1 +5√x2 x3 =1

(D)22 x1 +cos(x2 )+4x3 =7

2. Whichsystemcorrespondstothefollowingaugmentedmatrix?

(A) x1 +11x2 = 3 9x1 +4x2 = 2

(B) x1 +11x2 +6x3 =3 9x1 +4x2 = 2

(C) x1 +11x2 +6x3 +3x4 =0 9x1 +4x2 2x4 =0

(D) x1 +9x2 =0 11x1 +4x2 =0 6x1 =0 3x1 2x2 =0

3. Whichofthefollowingstatementsbestdescribesthefollowingaugmentedmatrix?

(A) A isconsistentwithauniquesolution.

(B) A isconsistentwithinfinitelymanysolutions.

(C) A isinconsistent.

(D)noneoftheabove.

4. Whichofthefollowingmatricesisin reduced rowechelonform? (A)

⎢ ⎣ 10 11 0120 0131 ⎤ ⎥ ⎥

(B) ⎡ ⎢ ⎢ ⎣ 1025 01 75 00114

⎥ ⎥ ⎦ (C) 10011 3 00014

10 5 013 000

5. Ifthematrix A is4 × 2, B is3 × 4, C is2 × 4, D is4 × 3,and E is2 × 5,whichofthe followingexpressionsis not defined?

(A) AT D + CB T (B)(B + D T )A (C) CA + CB T (D) DBAE

6. Whatisthesecondrowoftheproduct AB ?

(A) 183325 (B) 644891 (C) 508999 (D) 488933

7. Whichofthefollowingisthedeterminantofthe2 × 2matrix A = ab cd ?

(A) ad bc (B) bc ad (C) 1 bc ad (D) 1 ad bc

8. Whichofthefollowingmatricesis not invertible?

(A) 36 24 (B) 77 23 (C) 90 44 (D) 93 65

9. Whichofthefollowingmatricesis not anelementarymatrix?

10 51 (B) 11 02 (C) ⎡

10. Forwhichelementarymatrix E willtheequation EA = B hold?

11. Whichmatrixwillbeusedastheinvertedcoefficientmatrixwhensolvingthefollowing system?

12. Whatvalueof b makesthefollowingsystemconsistent?

(A) b = 1(B) b =0(C) b =1(D) b =2

13. If A isa3 × 3diagonalmatrix,whichofthefollowingmatricesis not apossiblevalue of Ak forsomeinteger k ?

14. Thematrix

(A)uppertriangular. (B)lowertriangular. (C)both(A)and(B). (D)neither(A)nor(B).

15. If A isa4 × 5matrix,findthedomainandcodomainofthetransformation TA (x)= Ax.

(A)Notenoughinformation

(B)Domain: R4 ,Codomain: R5

(C)Domain: R5 ,Codomain: R5

(D)Domain: R5 ,Codomain: R4

16. Whichofthefollowingisamatrixtransformation?

(A) T (x,y,z )=(yx2 ,yz 2 )

(B) T (x,y,z,w )=(xy,yz,zw,wx)

(C) T (x,y,z )=(x +1,x +2,x + z,y + z )

(D) T (x,y )=(4x, 5x, x, 0)

17. Whichmatrixrepresentsreflectionaboutthe xy -plane?

18. Usematrixmultiplicationtofindtheimageofthevector 2, 1 whenitisrotated counterclockwiseabouttheoriginthroughanangle θ =45◦ .

19. Whichofthefollowingpairsofoperators T1 ,T2 : R2 → R2 commute?(Thatis,for whichpairisittruethat T1 ◦ T2 = T2 ◦ T1 ?)

(A) T1 isthereflectionaboutthe x-axis.

T2 isthereflectionaboutline y = x

(B) T1 istheorthogonalprojectionontothe x-axis.

T2 isthereflectionaboutline y = x.

(C) T1 isthecounterclockwiserotationabouttheoriginthroughanangleof π

T2 istheprojectionontothe y -axis.

(D) T1 isthereflectionaboutthe x-axis.

T2 isthecounterclockwiserotationabouttheoriginthroughanangleof π/2.

FreeResponseQuestions

1. Findtherelationshipbetween a and b suchthatthefollowingsystemhasinfinitelymany solutions.

x +2y = a 3x +6y = b

2. Solvethefollowingsystemanduseparametricequationstodescribethesolutionset.

3. Determinewhetherthefollowingsystemhasnosolution,exactlyonesolution,orinfinitely manysolutions.

4. Findthevalueof k thatmakesthesystem 15 36 10 k 9 inconsistent.

5. SolvethefollowingsystemusingGaussianelimination.

6. Solvethefollowingsystemfor x, y ,and z

7. Thecurve y = ax3 + bx2 + x + c passesthroughthepoints(0, 0), (1, 1), and( 1, 2). Findandsolveasystemoflinearequationstodeterminethevaluesof a,b, and c

8. Solvethefollowingsystemfor x and y x2 + y 2 =6 x2 y 2 =2

9. Given C = 1 1 20 ,find CC T

10. Expressthefollowingmatrixequationasasystemoflinearequations.

11. Findthe3 × 3matrix A =[aij ]whoseentriessatisfythecondition aij = i2 j .

12. Let A and B be n × n matrices.Provethattr(c A B )= c tr(A) tr(B ).

13. Whatistheinverseof 40 92 ?

14. Giventhepolynomial p(x)= x2 3x +1andthematrix A = 44 61 ,compute p(A).

15. Let A,B,C, and D be n × n invertiblematrices.Solvefor A giventhatthefollowing equationholds.

C 2 DA 1 CB 1 = BCB 1

16. Provethatforany m × n matrices A and B ,(A B )T = AT B T

17. Usetheinversionalgorithmtofindtheinverseofthefollowingmatrix.

18. Whichelementaryrowoperationwilltransformthefollowingmatrixintotheidentity matrix?

19. Findthe3 × 3elementarymatrixthatadds c timesrow3torow1.

20. Findtheelementarymatrix E thatsatisfies

21. Solvethefollowingsystembyinvertingthecoefficientmatrix.

22. Solvethefollowingmatrixequationfor X .

23. Giventhat A

24. Findanonzerosolutiontothefollowingequation.

25. Findthevaluesof a, b,and c thatmakethefollowingmatrixsymmetric.

26. Let A =

Findthediagonalentries c11 ,c22 , and c33 .

27. Lettheentriesofamatrix A =[aij ]bedefinedas aij =2i2 i + j + g (j ),where g isa functionof j .If A isasymmetricmatrix,whatis g (j )?

28. Provethatforanysquarematrix A,thematrix B =(A + AT )issymmetric.

29. Findthedomainandcodomainofthetransformationdefinedby

30. Findthestandardmatrixfortheoperator T : R2 → R2 definedby

31. Findthestandardmatrixforthetransformation T definedbytheformula

32. Findthestandardmatrix A forthelineartransformation T : R 2 → R2 forwhich

33. Provethatthecompositionoftworotationoperatorsabouttheoriginof R 2 isanother rotationabouttheorigin.

34. Provethatif TA : R3 → R3 and TA (x)= 0 foreveryvector x in R3 ,then A isthe3 × 3 zeromatrix.

35. Writeabalancedequationforthefollowingchemicalreaction.

36. Findthequadraticpolynomialwhosegraphpassesthroughthepoints 0, 3 , 1, 8 , and 1, 0

37. Usematrixinversiontofindtheproductionvector x thatmeetsthedemand d forthe consumptionmatrix C

FreeResponseAnswers 1. 3a = b

(B)
(B)
(C)
(D)
(C)
(C) 7. (A) 8. (A) 9. (B) 10. (C) 11. (A) 12. (B) 13. (B) 14. (C) 15. (D) 16. (D) 17. (C)
18. (A) 19. (C)

2. x1 = t +3, x2 = t +4, x3 = t

3. nosolution

4. k =2

5. x1 =5, x2 =11, x3 = 1

6. x =1, y = 1 2 , z = 1 3

7. System: c =0 a + b + c =0 a + b + c = 1

Solution: a = 1 2 ,b = 1 2 ,c =0

8. x = ±2, y = ±√2

9. CC T = 22 24

10. x +7y =0 4y +3z =0 6x 2z =0

11. A = ⎡ ⎢ ⎢ ⎣ 0 1 2 321 876 ⎤ ⎥ ⎥ ⎦ 13. 1 4 0 9 8 1 2 14. 298 1223

15. A = B 1 C 2 D

18. Add9timesrow2torow4

19. ⎡ ⎢ ⎢ ⎣ 10 c 010 001 ⎤ ⎥ ⎥ ⎦

20. E = ⎡ ⎢ ⎢ ⎣ 100 010 201 ⎤ ⎥ ⎥ ⎦

21. x = 9, y =32

22. ⎡ ⎢ ⎢ ⎣ 33 43 6723

23.x = ⎡ ⎢ ⎢ ⎣ 3 9 4 ⎤ ⎥ ⎥ ⎦

24. Any x = x1 x2 suchthat2x1 =3x2 .Possiblesolution: x = 3 2

25. a =4,b =0,c =4

26. c11 = 10, c22 =0,and c33 =4

27. g (j )=2j 2 2j

29. Domain: R4 ,Codomain: R2

30. 31 04

32. 813 20

35. C3 H8 +5O2 → 4H2 O+3CO2

36. 3 4x + x2

37.x ≈ ⎡ ⎢ ⎢ ⎣ 91 85 125.50 135 10 ⎤ ⎥ ⎥ ⎦

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Test Bank for Elementary Linear Algebra, 12th Edition Howard Anton by Examexperts - Issuu