Solution Manual for Engineering Fluid Mechanics, 9th Edition Crowe, Elger, Roberson, Williams

Page 1


1.1:PROBLEMDEFINITION

Find:Listthreecommonunitsforeachvariable:

a.Volume flowrate (Q),mass flowrate (m),andpressure (p).

b.Force,energy,power.

c.Viscosity,surfacetension.

PLAN

UseTableF.1to findcommonunits

SOLUTION

a.Volume flowrate,mass flowrate,andpressure.

• Volume flowrate, m3 / s, ft3 / s orcfs,cfmor ft3 / m.

• Mass flowrate.kg/s,lbm/s,slug/s.

• Pressure.Pa,bar,psior lbf / in2 .

b.Force,energy,power.

• Force,lbf,N,dyne.

• Energy,J,ft·lbf,Btu.

• Power.W,Btu/s,ft lbf/s.

c.Viscosity.

• Viscosity,Pa·s,kg/(m·s),poise.

1.2:PROBLEMDEFINITION

Situation:Thehydrostaticequationhasthreecommonforms:

Find:Foreachvariableintheseequations,listthename,symbol,andprimarydimensionsofeachvariable.

PLAN

LookupvariablesinTableA.6.Organizeresultsusingatable.

SOLUTION

NameSymbolPrimarydimensions pressure pM/LT 2 specificweight γM/L2 T 2 elevation zL

piezometricpressure pz M/LT 2

changeinpressure ∆pM/LT 2

changeinelevation ∆zL

1.3:PROBLEMDEFINITION

Situation: Fiveunitsarespecified.

Find:

Primarydimensionsforeachgivenunit:kWh,poise,slug,cfm,CSt.

PLAN

1.FindeachprimarydimensionbyusingTableF.1.

2.Organizeresultsusingatable.

SOLUTION

UnitAssociatedDimensionAssociatedPrimaryDimensions

1.4:PROBLEMDEFINITION

Situation: Thehydrostaticequationis p γ + z = C

p ispressure, γ isspecificweight, z iselevationand C isaconstant.

Find: Provethatthehydrostaticequationisdimensionallyhomogeneous.

PLAN

Showthateachtermhasthesameprimarydimensions.Thus,showthattheprimary dimensionsof p/γ equaltheprimarydimensionsof z .Findprimarydimensionsusing TableF.1.

SOLUTION

1.Primarydimensionsof p/γ :

2.Primarydimensionsof z : [z ]= L

3.Dimensionalhomogeneity.Sincetheprimarydimensionsofeachtermislength, theequationisdimensionallyhomogeneous.Notethattheconstant C intheequation willalsohavethesameprimarydimension.

1.5:PROBLEMDEFINITION

Situation: Fourtermsaregivenintheproblemstatement.

Find:Primarydimensionsofeachterm.

a) ρV 2 /σ (kineticpressure).

b) T (torque).

c) P (power).

d) ρV 2 L/σ (Webernumber).

SOLUTION

a.Kineticpressure:

b.Torque.

c.Power(fromTableF.1).

d.WeberNumber:

Thus,thisisadimensionlessgroup

1.6:PROBLEMDEFINITION

Situation:

Thepowerprovidedbyacentrifugalpumpisgivenby: P = mgh

Find:

Provethattheaboveequationisdimensionallyhomogenous.

PLAN

1.Lookupprimarydimensionsof P and m usingTableF.1.

2.Showthattheprimarydimensionsof P arethesameastheprimarydimensions of ˙ mgh

SOLUTION

1.Primarydimensions:

[P ]= M L2 T 3

[ ˙ m]= M T

[g ]= L T 2

[h]= L

2.Primarydimensionsof ˙ mgh:

[mgh]=[m][g ][h]= µ M T ¶µ L T 2 ¶ (L)= M · L2 T 3

Since [mgh]=[P ] , Thepowerequationisdimensionallyhomogenous.

1.7:PROBLEMDEFINITION

Situation: Twotermsarespecified.

a. Z ρV 2 dA

b. d dt ZV ρVdV .

Find: Primarydimensionsforeachterm.

PLAN

1.To findprimarydimensionsforterma,usetheideathatanintegralisdefined usingasum.

2.To findprimarydimensionsfortermb,usetheideathataderivativeisdefined usingaratio.

SOLUTION

Terma:

Termb:

Problem1.8

Nosolutionprovided.

1.9:PROBLEMDEFINITION

Applythegridmethod.

Situation: Densityofidealgasisgivenby:

= p RT

p =35 psi, R =1716ft- lbf / slug◦ R.

T =100 ◦ F=560 ◦ R.

Find: Calculatedensity(inlbm/ft3 )

PLAN

Followtheprocessgiveninthetext.LookupconversionratiosinTableF.1.

SOLUTION

(note:unitcancellationsnotshown).

1.10:PROBLEMDEFINITION

Applythegridmethod.

Situation: Windishittingawindowofbuilding.

∆p = ρV 2 2

ρ =1 2kg / m3 ,V =60 mph.

Find:

a.Expresstheanswerinpascals.

b.Expresstheanswerinpoundsforcepersquareinch(psi).

c.Expresstheanswerininchesofwatercolumn(inchH2 0).

PLAN

Followtheprocessforthegridmethodgiveninthetext.Lookupconversionratios inTableF.1.

SOLUTION

a) Pascals.

b) Poundspersquareinch.

c) Inchesofwatercolumn

p =432Pa

p =432Pa

p =0.0626 psi

=432Pa

1.11:PROBLEMDEFINITION

Applythegridmethod.

Situation:

Forceisgivenby F = ma.

a) m =10kg , a =10m/ s2

b) m =10lb, a =10ft/ s2

c) m =10slug , a =10ft/ s2 .

Find: Calculateforce.

PLAN

Followtheprocessforthegridmethodgiveninthetext.Lookupconversionratios inTableF.1.

SOLUTION

a)

Forceinnewtonsfor m =10kg and a =10m/ s2

F = ma =(10kg) ³10 m s2 ´ µ N s2 kg · m ¶

F =100N

b)

Forceinlbffor m =10 lbmand a =10ft/ s2 . F = ma =(10 lbm) µ10 ft s2 ¶µ lbf s2 32.2 lbm · ft ¶ F =3 11lbf

c)

Forceinnewtonsfor m =10 slugandaccelerationis a =10ft/ s2 F = ma =(10slug) µ10 ft s2

lbf s2 slug · ft

F =445N

4 448N lbf ¶

1.12:PROBLEMDEFINITION

Applythegridmethod.

Situation: Acyclististravellingalongaroad.

P = FV.

V =24mi/ h, F =5lbf

Find:

a)Findpowerinwatts.

b)Findtheenergyinfoodcaloriestoridefor1hour.

PLAN

Followtheprocessforthegridmethodgiveninthetext.Lookupconversionratios inTableF.1.

SOLUTION

a) Power P = FV =(5lbf) µ 4.448N lbf ¶ (24 mph) µ 1.0m/ s 2 237 mph

=239W

W · s N m ¶

b) Energy ∆E = P ∆t = µ 239J s ¶ (1h) µ 3600s h ¶µ 1 0 calorie(nutritional) 4187J ¶ ∆E =205 calories

1.13:PROBLEMDEFINITION

Applythegridmethod.

Situation: Apumpoperatesforoneyear. P =20hp

Thepumpoperatesfor 20 hours/day

Electricitycosts $0.10/kWh.

Find: Thecost(U.S.dollars)ofoperatingthepumpforoneyear.

PLAN

1.Findenergyconsumedusing E = Pt,where P ispowerand t istime.

2.Findcostusing C = E × ($0.1/kWh).

SOLUTION

1.EnergyConsumed E = Pt =(20hp) µ W 1.341 × 10 3 hp

20h d

365d y ¶ =1. 09 × 108 W · h µ kWh 1000W h ¶ E =1 09 × 105 kWh

2.Cost C = E ($0.1/kWh) = ¡1. 09 × 108 kWh¢ µ $0 10 kWh ¶ C =$10, 900

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Solution Manual for Engineering Fluid Mechanics, 9th Edition Crowe, Elger, Roberson, Williams by Examexperts - Issuu