1.1 Introduction to Systems of Linear Equations
1. (a) Thisisalinearequationin1 x ,2 x ,and3 x .
(b) Thisisnotalinearequationin1 x ,2 x ,and3 x becauseoftheterm13 xx
(c) Wecanrewritethisequationintheform 123730xxx thereforeitisalinearequationin1 x ,2 x ,and3 x .
(d) Thisisnotalinearequationin1 x ,2 x ,and3 x becauseoftheterm2 1x
(e) Thisisnotalinearequationin1 x ,2 x ,and3 x becauseoftheterm3/5 1x .
(f) Thisisalinearequationin1 x ,2 x ,and3 x
2. (a) Thisisalinearequationin x and y .
(b) Thisisnotalinearequationin x and y becauseoftheterms1/3 2 x and3 y .
(c) Thisisalinearequationin x and y .
(d) Thisisnotalinearequationin x and y becauseoftheterm 7cos x .
(e) Thisisnotalinearequationin x and y becauseoftheterm xy
(f) Wecanrewritethisequationintheform 7 xy thusitisalinearequationin x and y
3. (a)
(b)
1111221 2112222 axaxb axaxb
1111221331 2112222332 3113223333 axaxaxb axaxaxb axaxaxb (c)
1111221331441 2112222332442 axaxaxaxb axaxaxaxb
4. (a)
11121 21222 aab aab
1112131 2122232 3132333 aaab aaab aaab
111213141 212223242 aaaab aaaab
9. Thevaluesin(a),(d),and(e)satisfyallthreeequations–these3-tuplesaresolutionsofthesystem. The3-tuplesin(b)and(c)arenotsolutionsofthesystem.
10. Thevaluesin(b),(d),and(e)satisfyallthreeequations–these3-tuplesaresolutionsofthesystem. The3-tuplesin(a)and(c)arenotsolutionsofthesystem.
11. (a) Wecaneliminate x fromthesecondequationbyadding2timesthefirstequationtothesecond.Thisyields thesystem
Thesecondequationiscontradictory,sotheoriginalsystemhasnosolutions.Thelinesrepresentedbythe equationsinthatsystemhavenopointsofintersection(thelinesareparallelanddistinct).
(b) Wecaneliminate x fromthesecondequationbyadding2timesthefirstequationtothesecond.Thisyields thesystem
Thesecondequationdoesnotimposeanyrestrictionon x and y thereforewecanomitit.Thelines representedbytheoriginalsystemhaveinfinitelymanypointsofintersection.Solvingthefirstequationfor x weobtain 1 22 xy .Thisallowsustorepresentthesolutionusingparametricequations
1 2, 2 xtyt
wheretheparameter t isanarbitraryrealnumber.
(c) Wecaneliminate x fromthesecondequationbyadding1timesthefirstequationtothesecond.Thisyields thesystem
20 28 xy y
Fromthesecondequationweobtain 4 y .Substituting4for y intothefirstequationresultsin 8 x Therefore,theoriginalsystemhastheuniquesolution
8,4xy
Therepresentedbytheequationsinthatsystemhaveonepointofintersection: 8,4
12. Wecaneliminate x fromthesecondequationbyadding2timesthefirstequationtothesecond.Thisyields thesystem
23 02 xya ba
If 20ba (i.e., 2 ba )thenthesecondequationimposesnorestrictionon x and y ;consequently,the systemhasinfinitelymanysolutions.
If 20ba (i.e., 2 ba )thenthesecondequationbecomescontradictorythusthesystemhasnosolutions. Therearenovaluesof a and b forwhichthesystemhasonesolution.
13. (a) Solvingtheequationfor x weobtain 35 77 xy thereforethesolutionsetoftheoriginalequationcanbe describedbytheparametricequations
35 77, xtyt
wheretheparameter t isanarbitraryrealnumber.
(b) Solvingtheequationfor1 x weobtain 754 123 333 xxx thereforethesolutionsetoftheoriginalequationcan bedescribedbytheparametricequations
123 754 333,, xrsxrxs
wheretheparameters r and s arearbitraryrealnumbers.
(c) Solvingtheequationfor1 x weobtain
1153 1234 8484 xxxx thereforethesolutionsetoftheoriginal
equationcanbedescribedbytheparametricequations
1234 1153 8484,,, xrstxrxsxt
wheretheparameters r , s ,and t arearbitraryrealnumbers.
(d) Solvingtheequationfor v weobtain 8214 3333 vwxyz thereforethesolutionsetoftheoriginalequation canbedescribedbytheparametricequations
12341234 8214 3333,,,, vttttwtxtytzt
wheretheparameters1 t ,2 t ,3 t ,and4 t arearbitraryrealnumbers.
14. (a) Solvingtheequationfor x weobtain 210 xy thereforethesolutionsetoftheoriginalequationcanbe describedbytheparametricequations
210, xtyt
wheretheparameter t isanarbitraryrealnumber.
(b) Solvingtheequationfor1 x weobtain 123 3312 xxx thereforethesolutionsetoftheoriginalequationcan bedescribedbytheparametricequations
123 3312,, xrsxrxs
wheretheparameters r and s arearbitraryrealnumbers.
(c) Solvingtheequationfor1 x weobtain 3 11 1234 5244 xxxx thereforethesolutionsetoftheoriginal equationcanbedescribedbytheparametricequations 12 131 5,,, 244 xrstxryszt
wheretheparameters r , s ,and t arearbitraryrealnumbers.
(d) Solvingtheequationfor v weobtain 57 vwxyz thereforethesolutionsetoftheoriginalequation canbedescribedbytheparametricequations
12341234 57,,,, vttttwtxtytzt wheretheparameters1 t ,2 t ,3 t ,and4 t arearbitraryrealnumbers.
15. (a) Wecaneliminate x fromthesecondequationbyadding3timesthefirstequationtothesecond.Thisyields thesystem 231 00 xy
Thesecondequationdoesnotimposeanyrestrictionon x and y thereforewecanomitit.Solvingthefirst equationfor x weobtain 13 22 xy .Thisallowsustorepresentthesolutionusingparametricequations 13 22, xtyt
wheretheparameter t isanarbitraryrealnumber.
(b) Wecanseethatthesecondandthethirdequationaremultiplesofthefirst:adding3timesthefirstequation tothesecond,thenaddingthefirstequationtothethirdyieldsthesystem
34
Thelasttwoequationsdonotimposeanyrestrictionontheunknownsthereforewecanomitthem.Solvingthe firstequationfor1 x weobtain 123 43 xxx .Thisallowsustorepresentthesolutionusingparametric equations
123 43,, xrsxrxs
wheretheparameters r and s arearbitraryrealnumbers.
16. (a) Wecaneliminate1 x fromthefirstequationbyadding2timesthesecondequationtothefirst.Thisyields thesystem
00
12 34 xx
Thefirstequationdoesnotimposeanyrestrictionon1 x and2 x thereforewecanomitit.Solvingthesecond equationfor1 x weobtain 41 12 33 xx .Thisallowsustorepresentthesolutionusingparametricequations
12 41 33, xtxt
wheretheparameter t isanarbitraryrealnumber.
(b) Wecanseethatthesecondandthethirdequationaremultiplesofthefirst:adding3timesthefirstequation tothesecond,thenadding2timesthefirstequationtothethirdyieldsthesystem
224 xyz
00
00
Thelasttwoequationsdonotimposeanyrestrictionontheunknownsthereforewecanomitthem.Solvingthe firstequationfor x weobtain 1 22 xyz .Thisallowsustorepresentthesolutionusingparametric equations
wheretheparameters r and s arearbitraryrealnumbers.
17. (a) Add2timesthesecondrowtothefirsttoobtain
(b) Addthethirdrowtothefirsttoobtain
(anothersolution:interchangethefirstrowandthethirdrowtoobtain
18. (a) Multiplythefirstrowby12toobtain
).
(b) Addthethirdrowtothefirsttoobtain
(anothersolution:add2timesthesecondrowtothefirsttoobtain
19. (a) Add4timesthefirstrowtothesecondtoobtain
whichcorrespondstothesystem
If 2 k thenthesecondequationbecomes 018,whichiscontradictorythusthesystembecomes inconsistent.
If 2 k thenwecansolvethesecondequationfor y andproceedtosubstitutethisvalueintothefirstequation andsolvefor x .
Consequently,forallvaluesof 2 k thegivenaugmentedmatrixcorrespondstoaconsistentlinearsystem.
(b) Add4timesthefirstrowtothesecondtoobtain
20. (a)
If 2 k thenthesecondequationbecomes 00,whichdoesnotimposeanyrestrictionon x and y therefore wecanomititandproceedtodeterminethesolutionsetusingthefirstequation.Thereareinfinitelymany solutionsinthisset.
If 2 k thenthesecondequationyields 0 y andthefirstequationbecomes 1 x .
Consequently,forallvaluesof k thegivenaugmentedmatrixcorrespondstoaconsistentlinearsystem.
Add2timesthefirstrowtothesecondtoobtain
If 5 2 k thenthesecondequationbecomes 00,whichdoesnotimposeanyrestrictionon x and y thereforewecanomititandproceedtodeterminethesolutionsetusingthefirstequation.Thereareinfinitely manysolutionsinthisset.
If 5 2 k thenthesecondequationiscontradictorythusthesystembecomesinconsistent.
Consequently,thegivenaugmentedmatrixcorrespondstoaconsistentlinearsystemonlywhen 5 2 k . (b) Addthefirstrowtothesecondtoobtain
whichcorrespondstothesystem
If 4 k thenthesecondequationbecomes 00,whichdoesnotimposeanyrestrictionon x and y thereforewecanomititandproceedtodeterminethesolutionsetusingthefirstequation.Thereareinfinitely manysolutionsinthisset.
If 4 k thenthesecondequationyields 0 x andthefirstequationbecomes 2 y . Consequently,forallvaluesof k thegivenaugmentedmatrixcorrespondstoaconsistentlinearsystem.
21. Substitutingthecoordinatesofthefirstpointintotheequationofthecurveweobtain
2 111 yaxbxc
Repeatingthisfortheothertwopointsandrearrangingthethreeequationsyields
Thisisalinearsystemintheunknowns a , b ,and c .Itsaugmentedmatrixis
23. Solvingthefirstequationfor1 x weobtain 12 xckx thereforethesolutionsetoftheoriginalequationcanbe describedbytheparametricequations
12 , xcktxt
wheretheparameter t isanarbitraryrealnumber.
Substitutingtheseintothesecondequationyields
cktltd
whichcanberewrittenas
cktdlt
Thisequationmustholdtrueforallrealvalues t ,whichrequiresthatthecoefficientsassociatedwiththesamepower of t onbothsidesmustbeequal.Consequently, cd and kl
24. (a) Thesystemhasnosolutionsifeither
atleasttwoofthethreelinesareparallelanddistinctor
eachpairoflinesintersectsatadifferentpoint(withoutanylinesbeingparallel)
(b) Thesystemhasexactlyonesolutionifeither
twolinescoincideandthethirdoneintersectsthemor
allthreelinesintersectatasinglepoint(withoutanylinesbeingparallel)
(c) Thesystemhasinfinitelymanysolutionsifallthreelinescoincide.
237 239 42516 xyz xyz xyz
26. WesetupthelinearsystemasdiscussedinExercise21:
Onesolutionisexpected,sinceexactlyoneparabolapassesthroughanythreegivenpoints 11 , xy , 22 , xy ,
33 , xy if1 x ,2 x ,and3 x aredistinct. 27.
True-False Exercises
(a) True. 0,0,,0isasolution.
(b) False.Onlymultiplicationbya nonzeroconstantisavalidelementaryrowoperation.
(c) True.If 6 k thenthesystemhasinfinitelymanysolutions;otherwisethesystemisinconsistent.
(d) True.Accordingtothedefinition, 1122 nn axaxaxb isalinearequationifthe a'sarenotallzero.Letus assume 0 j a .Thevaluesofall x'sexceptfor j x canbesettobearbitraryparameters,andtheequationcanbeused toexpress j x intermsofthoseparameters.
(e) False.E.g.iftheequationsareallhomogeneousthenthesystemmustbeconsistent.(SeeTrue-FalseExercise(a) above.)
(f) False.If 0 c thenthenewsystemhasthesamesolutionsetastheoriginalone.
(g) True.Adding1timesonerowtoanotheramountstothesamethingassubtractingonerowfromanother.
(h) False.Thesecondrowcorrespondstotheequation 01,whichiscontradictory.
1.2 Gaussian Elimination
1. (a) Thismatrixhasproperties1-4.Itisinreducedrowechelonform,thereforeitisalsoinrowechelonform.
(b) Thismatrixhasproperties1-4.Itisinreducedrowechelonform,thereforeitisalsoinrowechelonform.
(c) Thismatrixhasproperties1-4.Itisinreducedrowechelonform,thereforeitisalsoinrowechelonform.
(d) Thismatrixhasproperties1-4.Itisinreducedrowechelonform,thereforeitisalsoinrowechelonform.
(e) Thismatrixhasproperties1-4.Itisinreducedrowechelonform,thereforeitisalsoinrowechelonform.
(f) Thismatrixhasproperties1-4.Itisinreducedrowechelonform,thereforeitisalsoinrowechelonform.
(g) Thismatrixhasproperties1-3butdoesnothaveproperty4:thesecondcolumncontainsaleading1anda nonzeronumber(7)aboveit.Thematrixisinrowechelonformbutnotreducedrowechelonform.
2. (a) Thismatrixhasproperties1-3butdoesnothaveproperty4:thesecondcolumncontainsaleading1anda nonzeronumber(2)aboveit.Thematrixisinrowechelonformbutnotreducedrowechelonform.
(b) Thismatrixdoesnothaveproperty1sinceitsfirstnonzeronumberinthethirdrow(2)isnota1.Thematrixis notinrowechelonform,thereforeitisnotinreducedrowechelonformeither.
(c) Thismatrixhasproperties1-3butdoesnothaveproperty4:thethirdcolumncontainsaleading1anda nonzeronumber(4)aboveit.Thematrixisinrowechelonformbutnotreducedrowechelonform.
(d) Thismatrixhasproperties1-3butdoesnothaveproperty4:thesecondcolumncontainsaleading1anda nonzeronumber(5)aboveit.Thematrixisinrowechelonformbutnotreducedrowechelonform.
(e) Thismatrixdoesnothaveproperty2sincetherowthatconsistsentirelyofzerosisnotatthebottomofthe matrix.Thematrixisnotinrowechelonform,thereforeitisnotinreducedrowechelonformeither.
(f) Thismatrixdoesnothaveproperty3sincetheleading1inthesecondrowisdirectlybelowtheleading1in thefirst(insteadofbeingfarthertotheright).Thematrixisnotinrowechelonform,thereforeitisnotin reducedrowechelonformeither.
(g) Thismatrixhasproperties1-4.Itisinreducedrowechelonform,thereforeitisalsoinrowechelonform.
(a) Thefirstthreecolumnsarepivotcolumnsandallthreerowsarepivotrows.Thelinearsystem
andsolvedbyback-substitution:
thereforetheoriginallinearsystemhasauniquesolution: 37 x , 8 y
(b) Thefirstthreecolumnsarepivotcolumnsandallthreerowsarepivotrows.Thelinearsystem
685 349 2 wyz xyz yz Let zt .Then
thereforetheoriginallinearsystemhasinfinitelymanysolutions:
where t isanarbitraryvalue.
(c) Columns1,3,and4arepivotcolumns.Thefirstthreerowsarepivotrows.Thelinearsystem
Let 2 xs and 5 xt .Then
4 3 1 93 593643 3724381172 xt xttt xsttst
thereforetheoriginallinearsystemhasinfinitelymanysolutions:
12345 1172,,43,93, xstxsxtxtxt where s and t arearbitraryvalues.
(d) Thefirsttwocolumnsarepivotcolumnsandthefirsttworowsarepivotrows.Thesystemisinconsistentsince thethirdrowoftheaugmentedmatrixcorrespondstotheequation
0001. xyz
4. (a) Thefirstthreecolumnsarepivotcolumnsandallthreerowsarepivotrows.Auniquesolution: 3 x , 0 y , 7 z
(b) Thefirstthreecolumnsarepivotcolumnsandallthreerowsarepivotrows.Infinitelymanysolutions:
87 wt , 23 xt , 5 yt , zt where t isanarbitraryvalue.
(c) Columns1,3,and4arepivotcolumns.Thefirstthreerowsarepivotrows.Infinitelymanysolutions:
263 vst , ws , 74 xt , 85 yt , zt where s and t arearbitraryvalues.
(d) Columns1and3arepivotcolumns.Thefirsttworowsarepivotrows.Thesystemisinconsistentsincethe thirdrowoftheaugmentedmatrixcorrespondstotheequation
0001. xyz
1128 1231 37410
1128 0159 37410
1128 0159 010214
1128 0159 010214
1128 0159 0052104
Theaugmentedmatrixforthesystem.
Thefirstrowwasaddedtothesecondrow.
3timesthefirstrowwasaddedtothethirdrow.
Thesecondrowwasmultipliedby1
10timesthesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby152
Thesystemofequationscorrespondingtothisaugmentedmatrixinrowechelonformis
Back-substitutionyields
Thelinearsystemhasauniquesolution:
Theaugmentedmatrixforthesystem.
1110 2521 8141
1110 0741 8141
1110 0741 0741
41 77 1110 01 0741
Thefirstrowwasmultipliedby1 2
2timesthefirstrowwasaddedtothesecondrow.
8timesthefirstrowwasaddedtothethirdrow.
Thesecondrowwasmultipliedby17.
41 77 1110 01 0000 7timesthesecondrowwasaddedtothethirdrow.
Thesystemofequationscorrespondingtothisaugmentedmatrixinrowechelonformis
Solvetheequationsfortheleadingvariables
thensubstitutethesecondequationintothefirst
Ifweassign3 x anarbitraryvalue t ,thegeneralsolutionisgivenbytheformulas
11211 21222 12411 30033
11211 03600 12411 30033
11211 03600 01200 30033
11211 03600 01200 03600
Theaugmentedmatrixforthesystem.
2timesthefirstrowwasaddedtothesecondrow.
Thefirstrowwasaddedtothethirdrow.
3timesthefirstrowwasaddedtothefourthrow.
11211
01200 01200 03600
11211
01200 00000 03600
Thesecondrowwasmultipliedby1 3
1timesthesecondrowwasaddedtothethirdrow.
11211
01200 00000 00000
3timesthesecondrowwasaddedtothefourthrow.
Thesystemofequationscorrespondingtothisaugmentedmatrixinrowechelonformis
Solvetheequationsfortheleadingvariables
thensubstitutethesecondequationintothefirst
Ifweassign z and w thearbitraryvalues s and t ,respectively,thegeneralsolutionisgivenbytheformulas
0231 3632 6635
3632 0231 6635
Theaugmentedmatrixforthesystem.
Thefirstandsecondrowswereinterchanged.
2 1213 0231 6635
2 1213 0231 0699
3 31 22 121 01 0699
2 3 31 22 121 01 0006
3 31 22 121 01 0001
Thefirstrowwasmultipliedby1 3
6timesthefirstrowwasaddedtothethirdrow.
Thesecondrowwasmultipliedby1 2
6timesthesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby16.
Thesystemofequationscorrespondingtothisaugmentedmatrixinrowechelonform
isclearlyinconsistent.
1128 1231 37410
1128 0159 37410
Theaugmentedmatrixforthesystem.
Thefirstrowwasaddedtothesecondrow.
1128 0159 010214 3timesthefirstrowwasaddedtothethirdrow.
1128 0159 010214
Thesecondrowwasmultipliedby1.
1128 0159 0052104
10timesthesecondrowwasaddedtothethirdrow.
1128
0159 0012
1128 0101 0012
1104 0101 0012
Thethirdrowwasmultipliedby152
5timesthethirdrowwasaddedtothesecondrow.
2timesthethirdrowwasaddedtothefirstrow.
1003 0101 0012
1timesthesecondrowwasaddedtothefirstrow.
Thelinearsystemhasauniquesolution: 13x , 21 x , 32x
2220 2521 8141
1110 2521 8141
1110 0741 8141
Theaugmentedmatrixforthesystem.
Thefirstrowwasmultipliedby1 2
2timesthefirstrowwasaddedtothesecondrow.
1110 0741 0741 8timesthefirstrowwasaddedtothethirdrow.
41 77 1110 01 0741
Thesecondrowwasmultipliedby1 7
41 77 1110 01 0000
7timesthesecondrowwasaddedtothethirdrow.
31 77 41 77 10 01 0000
1timesthesecondrowwasaddedtothefirstrow. Infinitelymanysolutions:
11211 21222 12411 30033
11211 03600 12411 30033
11211 03600 01200 30033
Theaugmentedmatrixforthesystem.
2timesthefirstrowwasaddedtothesecondrow.
thefirstrowwasaddedtothethirdrow.
11211 03600 01200 03600
11211 01200 01200 03600
3timesthefirstrowwasaddedtothefourthrow.
Thesecondrowwasmultipliedby13.
11211 01200 00000 03600
1timesthesecondrowwasaddedtothethirdrow.
11211 01200 00000 00000
3timesthesecondrowwasaddedtothefourthrow.
10011 01200 00000 00000
thesecondrowwasaddedtothefirstrow.
Thesystemofequationscorrespondingtothisaugmentedmatrixinrowechelonformis
Solvetheequationsfortheleadingvariables
Ifweassign z and w thearbitraryvalues s and t ,respectively,thegeneralsolutionisgivenbytheformulas
0231 3632 6635
3632 0231 6635
2 1213 0231 6635
1213 0231 0699
3 31 22 121 01 0699
3 31 22 121 01 0006
Theaugmentedmatrixforthesystem.
Thefirstandsecondrowswereinterchanged.
Thefirstrowwasmultipliedby1 3
6timesthefirstrowwasaddedtothethirdrow.
Thesecondrowwasmultipliedby12.
6timesthesecondrowwasaddedtothethirdrow.
2 3 31 22 121 01 0001
Thethirdrowwasmultipliedby1 6
2 3 3 2 121 010 0001 1 2timesthethirdrowwasaddedtothesecondrow.
3 2 1210 010 0001 2 3timesthethirdrowwasaddedtothefirstrow.
3 2 1020 010 0001 2timesthesecondrowwasaddedtothefirstrow.
Thelastrowcorrespondstotheequation
0001 abc thereforethesystemisinconsistent.
(Note:thiswasalreadyevidentafterthefifthelementaryrowoperation.)
13. Sincethenumberofunknowns(4)exceedsthenumberofequations(3),itfollowsfromTheorem1.2.2thatthis systemhasinfinitelymanysolutions.Thoseincludethetrivialsolutionandinfinitelymanynontrivialsolutions.
14. Thesystemdoesnothavenontrivialsolutions.
(Thethirdequationrequires 30x ,whichsubstitutedintothesecondequationyields 20.x Bothofthese substitutedintothefirstequationresultin 10x .)
15. Wepresenttwodifferentsolutions. SolutionIusesGauss-Jordanelimination
2130 1200 0110
13 22 10 1200 0110
Theaugmentedmatrixforthesystem.
Thefirstrowwasmultipliedby12.
13 22 33 22 10 00 0110 1timesthefirstrowwasaddedtothesecondrow.
13 22 10
0110 0110
Thesecondrowwasmultipliedby2 3
13 22 10 0110 0020 1timesthesecondrowwasaddedtothethirdrow.
13 22 10 0110 0010
1 2 100 0100 0010
Thethirdrowwasmultipliedby1 2
Thethirdrowwasaddedtothesecondrow and32timesthethirdrowwasaddedtothefirstrow
1000 0100 0010 1 2timesthesecondrowwasaddedtothefirstrow.
Uniquesolution: 10x , 20x , 30x
SolutionII.Thistime,weshallchoosetheorderoftheelementaryrowoperationsdifferentlyinordertoavoid introducingfractionsintothecomputation.(Sinceeverymatrixhasauniquereducedrowechelonform,theexact sequenceofelementaryrowoperationsbeinguseddoesnotmatter–seepart1ofthediscussion“SomeFactsAbout EchelonForms”inSection1.2)
2130 1200 0110
1200 2130 0110
Theaugmentedmatrixforthesystem.
Thefirstandsecondrowswereinterchanged (toavoidintroducingfractionsintothefirstrow).
1200 0330 0110
1200 0110 0110
2timesthefirstrowwasaddedtothesecondrow.
Thesecondrowwasmultipliedby1 3
1200 0110 0020
1timesthesecondrowwasaddedtothethirdrow.
1200 0110 0010
Thethirdrowwasmultipliedby1 2
1200 0100 0010
1000 0100 0010
Uniquesolution:
16. Wepresenttwodifferentsolutions.
SolutionIusesGauss-Jordanelimination
2130 1230 1140
13 22 10 1230 1140
13 22 39 22 10 00 1140
13 22 39 22 311 22 10 00 00
13 22 311 22 10 0130 00
Thethirdrowwasaddedtothesecondrow.
2timesthesecondrowwasaddedtothefirstrow.
Theaugmentedmatrixforthesystem.
Thefirstrowwasmultipliedby12.
Thefirstrowwasaddedtothesecondrow.
1timesthefirstrowwasaddedtothethirdrow.
Thesecondrowwasmultipliedby23.
13 22 10 0130 00100 3 2timesthesecondrowwasaddedtothethirdrow.
13 22 10
0130 0010
Thethirdrowwasmultipliedby110
3timesthethirdrowwasaddedtothesecondrow and32timesthethirdrowwasaddedtothefirstrow
Uniquesolution:
SolutionII.Thistime,weshallchoosetheorderoftheelementaryrowoperationsdifferentlyinordertoavoid introducingfractionsintothecomputation.(Sinceeverymatrixhasauniquereducedrowechelonform,theexact sequenceofelementaryrowoperationsbeinguseddoesnotmatter–seepart1ofthediscussion“SomeFacts AboutEchelonForms”inSection1.2)
Theaugmentedmatrixforthesystem.
1140 1230 2130
Thefirstandthirdrowswereinterchanged (toavoidintroducingfractionsintothefirstrow).
1140 0310 2130
Thefirstrowwasaddedtothesecondrow.
1140 0310 03110
2timesthefirstrowwasaddedtothethirdrow.
1140 0310 00100
1140 0310 0010
Thesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby110
Uniquesolution:
1140 0300 0010
1timesthethirdrowwasaddedtothesecondrow.
1100 0300 0010
4timesthethirdrowwasaddedtothefirstrow.
1100 0100 0010
1000 0100 0010
Thesecondrowwasmultipliedby13.
1timesthesecondrowwasaddedtothefirstrow.
31110 51110Theaugmentedmatrixforthesystem.
111 333 10 51110Thefirstrowwasmultipliedby1 3
111 333 88 2 333 10 005timesthefirstrowwasaddedtothesecondrow.
111 333 1 4 10 0110Thesecondrowwasmultipliedby38.
1 4 1 4 1000 0110 1 3timesthesecondrowwasaddedtothefirstrow.
Ifweassign3 x and4 x thearbitraryvalues s and t ,respectively,thegeneralsolutionisgivenbytheformulas
1234 11 ,,,44 xsxstxsxt (Notethatfractionsinthesolutioncouldbeavoidedifweassigned 34 xs instead,whichalongwith 4 xt would yield 1 xs , 2 xst , 34 xs , 4 xt .)
01320 21430 23210 43540
21430 01320 23210 43540
Theaugmentedmatrixforthesystem.
Thefirstandsecondrowswereinterchanged.
13 22 120 01320 23210 43540
13 22 120 01320 02640 01320
Thefirstrowwasmultipliedby12.
2timesthefirstrowwasaddedtothethirdrow and4timesthefirstrowwasaddedtothefourthrow.
13 22 120 01320 00000 00000
75 22 100 01320 00000 00000
2timesthesecondrowwasaddedtothethirdrowand thesecondrowwasaddedtothefourthrow.
1 2timesthesecondrowwasaddedtothefirstrow.
Ifweassign w and x thearbitraryvalues s and t ,respectively,thegeneralsolutionisgivenbytheformulas 75 ,32,, 22 ustvstwsxt
02240 10130 23110 21320
Theaugmentedmatrixforthesystem.
10130 02240 23110 21320
10130 02240 03370 01180
Thefirstandsecondrowswereinterchanged.
2timesthefirstrowwasaddedtothethirdrow and2timesthefirstrowwasaddedtothefourthrow.
10130 01120 03370 01180
Thesecondrowwasmultipliedby12.
10130 01120 00010 000100
10130 01120 00010 00000
3timesthesecondrowwasaddedtothethirdand 1timesthesecondrowwasaddedtothefourthrow.
10timesthethirdrowwasaddedtothefourthrow.
10100 01100 00010 00000
2timesthethirdrowwasaddedtothesecondand 3timesthethirdrowwasaddedtothefirstrow.
Ifweassign y anarbitraryvalue t thegeneralsolutionisgivenbytheformulas
13010 14200 02210 24110 12110
Theaugmentedmatrixforthesystem.
1timesthefirstrowwasaddedtothesecondrow, 2timesthefirstrowwasaddedtothefourthrow, and1timesthefirstrowwasaddedtothefifthrow.
2timesthesecondrowwasaddedtothethirdrow, 10timesthesecondrowwasaddedtothefourthrow, and5timesthesecondrowwasaddedtothefifthrow.
Thethirdrowwasmultipliedby1 2
21timesthethirdrowwasaddedtothefourthrow and9timesthethirdrowwasaddedtothefifthrow.
Thefourthrowwasmultipliedby241.
Usingback-substitution,weobtaintheuniquesolutionofthissystem
21349 102711 33158 214410
Theaugmentedmatrixforthesystem.
102711 21349 33158 214410
Thefirstandsecondrowswereinterchanged (toavoidintroducingfractionsintothefirstrow).
102711 0171013 0371625 0181012
102711 0171013 0371625 0181012
2timesthefirstrowwasaddedtothesecondrow, 3timesthefirstrowwasaddedtothethirdrow, and2timesthefirstrowwasaddedtothefourth.
Thesecondrowwasmultipliedby1
102711
0171013
00141414 00152025
3timesthesecondrowwasaddedtothethirdrowand 1timesthesecondrowwasaddedtothefourthrow.
102711 0171013 00111 00152025
Thethirdrowwasmultipliedby114
102711 0171013
00111 000510
102711 0171013 00111 00012
15timesthethirdrowwasaddedtothefourthrow.
Thefourthrowwasmultipliedby1 5
10203 01707 00101 00012
10001 01000 00101 00012
Uniquesolution:
001110 112310 112010 221010
112010 112310 001110 221010
112010 000300 001110 003030
Thefourthrowwasaddedtothethirdrow, 10timesthefourthrowwasaddedtothesecond, and7timesthefourthrowwasaddedtothefirst.
7timesthethirdrowwasaddedtothesecondrow, and2timesthethirdrowwasaddedtothefirstrow.
Theaugmentedmatrixforthesystem.
Thefirstandthirdrowswereinterchanged.
Thefirstrowwasaddedtothesecondrow and2timesthefirstrowwasaddedtothelastrow.
112010 001110 000300 003030
112010 001110 000300 000300
112010 001110 000100 000300
Thesecondandthirdrowswereinterchanged.
3timesthesecondrowwasaddedtothefourthrow.
Thethirdrowwasmultipliedby1 3
112010
001110
000100 000000
3timesthethirdrowwasaddedtothefourthrow.
112010
001010
000100 000000
1timesthethirdrowwasaddedtothesecondrow.
110010
001010
000100 000000
2timesthesecondrowwasaddedtothefirstrow.
Ifweassign2 Z and5 Z thearbitraryvalues s and t ,respectively,thegeneralsolutionisgivenbytheformulas
23. (a) Thesystemisconsistent;ithasauniquesolution(back-substitutioncanbeusedtosolveforallthree unknowns).
(b) Thesystemisconsistent;ithasinfinitelymanysolutions(thethirdunknowncanbeassignedanarbitraryvalue t ,thenback-substitutioncanbeusedtosolveforthefirsttwounknowns).
(c) Thesystemisinconsistentsincethethirdequation 01iscontradictory.
(d) Thereisinsufficientinformationtodecidewhetherthesystemisconsistentasillustratedbytheseexamples:
For
For
1 0000 001 thesystemisconsistentwithinfinitelymanysolutions.
1 0010 0011 thesystemisinconsistent(thematrixcanbereducedto
1 0010 0001 ).
24. (a) Thesystemisconsistent;ithasauniquesolution(back-substitutioncanbeusedtosolveforallthree unknowns).
(b) Thesystemisconsistent;ithasauniquesolution(solvethefirstequationforthefirstunknown,thenproceed tosolvethesecondequationforthesecondunknownandsolvethethirdequationlast.)
(c) Thesystemisinconsistent(adding1timesthefirstrowtothesecondyields
1000 0001
;thesecond equation 01iscontradictory).
(d) Thereisinsufficientinformationtodecidewhetherthesystemisconsistentasillustratedbytheseexamples:
For
1001
1001 1001 thesystemisconsistentwithinfinitelymanysolutions.
1002
For
1001 1001
2 1234 3152 41142 aa
thesystemisinconsistent(thematrixcanbereducedto
Theaugmentedmatrixforthesystem.
2 1234 071410 07214 aa
2 1234 071410 00164 aa
10 7 2 1234 012 00164 aa
1002 0001 0000 ).
3timesthefirstrowwasaddedtothesecondrow and4timesthefirstrowwasaddedtothethirdrow.
1timesthesecondrowwasaddedtothethirdrow.
Thesecondrowwasmultipliedby17.
Thesystemhasnosolutionswhen 4 a (sincethethirdrowofourlastmatrixwouldthencorrespondtoa contradictoryequation 08).
Thesystemhasinfinitelymanysolutionswhen 4 a (sincethethirdrowofourlastmatrixwouldthencorrespond totheequation 00).
Forallremainingvaluesof a (i.e., 4 a and 4 a )thesystemhasexactlyonesolution.
2 1212 2231 12(3)aa
2 1212 0613 0022 aa
11 62 2 1212 01 0022 aa
Theaugmentedmatrixforthesystem.
2timesthefirstrowwasaddedtothesecondrow and1timesthefirstrowwasaddedtothethirdrow.
Thesecondrowwasmultipliedby1 6
Thesystemhasnosolutionswhen 2 a or 2 a (sincethethirdrowofourlastmatrixwouldthencorrespond toacontradictoryequation).
Forallremainingvaluesof a (i.e., 2 a and 2 a )thesystemhasexactlyonesolution. Thereisnovalueof a forwhichthissystemhasinfinitelymanysolutions.
131 112 023 a b c
Theaugmentedmatrixforthesystem.
131 023 023 a ab c 1timesthefirstrowwasaddedtothesecondrow.
131 023 000 a ab abc
3 222 131 01 000 ab a abc
Thesecondrowwasaddedtothethirdrow.
Thesecondrowwasmultipliedby12.
If 0 abc thenthelinearsystemisconsistent.Otherwise(if 0 abc )itisinconsistent.
131 121 371 a b c
131 012 0243 a ab ac
131 012 0002 a ab abc
Theaugmentedmatrixforthesystem.
Thefirstrowwasaddedtothesecondrowand 3timesthefirstrowwasaddedtothethirdrow.
2timesthesecondrowwasaddedtothethirdrow. If
20abc thenthelinearsystemisconsistent.Otherwise(if 20abc )itisinconsistent. 29.
21 36 a b
11 122 36 a b
Theaugmentedmatrixforthesystem.
Thefirstrowwasmultipliedby12.
11 22 93 22 1 0 a ab
11 22 12 39 1 01 a ab
3timesthefirstrowwasaddedtothesecondrow.
Thethirdrowwasmultipliedby29.
21 39 12 39 10 01 ab ab 1 2timesthesecondrowwasaddedtothefirstrow.
Thesystemhasexactlyonesolution: 21 39 xab and 12 39 yab
Theaugmentedmatrixforthesystem.
111 0202 033 a ab c
2timesthefirstrowwasaddedtothesecondrow.
Thesecondrowwasmultipliedby1 2
2 3 2 111 010 0033 b a a abc
3timesthesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby1 3
23 2 23
Adding3timesitssecondrowtothefirstresultsin
213 0229 345
1timesthefirstrowwasaddedtothethirdrow.
Thefirstandthirdrowswereinterchanged.
132 0229 051
2timesthefirstrowwasaddedtothethirdrow.
132 0186 0229
132 0186 00143
132 0186 001
130 010 001
100 010 001
3timesthesecondrowwasaddedtothethirdrow.
Thesecondandthirdrowswereinterchanged.
2timesthesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby1143
86timesthethirdrowwasaddedtothesecondrow and2timesthethirdrowwasaddedtothefirstrow.
3timesthesecondrowwasaddedtothefirstrow.
1230 2530 1550
Theaugmentedmatrixforthesystem.
1230
0130 0380
1230 0130 0010
1230 0130 0010
1200 0100 0010
1000 0100 0010
2timesthefirstrowwasaddedtothesecondrow andthefirstrowwasaddedtothethirdrow.
3timesthesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby1.
3timesthethirdrowwasaddedtothesecondrowand 3timesthethirdrowwasaddedtothefirstrow.
2timesthesecondrowwasaddedtothefirstrow.
Thissystemhasexactlyonesolution 0,0,0.xyz
Ontheinterval 02,theequation sin0hasthreesolutions: 0, ,and 2.
Ontheinterval 02,theequation cos0hastwosolutions: 2and 3 2
Ontheinterval 02,theequation tan0hasthreesolutions: 0, ,and 2
Overall, 32318solutions ,,canbeobtainedbycombiningthevaluesof , ,and listedabove:
0,,0,,,0 22 ,etc.
34. Webeginbysubstituting sin x , cos y ,and tan z sothatthesystembecomes
2133 4222 6319
Theaugmentedmatrixforthesystem.
2133
0484 0080
2timesthefirstrowwasaddedtothesecondrow and3timesthefirstrowwasaddedtothethirdrow.
2133
0484 0010
2103
0404 0010
Thethirdrowwasmultipliedby18.
8timesthethirdrowwasaddedtothesecondrow and3timesthethirdrowwasaddedtothefirstrow.
2103
0101 0010
2002 0101 0010
1001 0101 0010
Thesecondrowwasmultipliedby14.
Thesecondrowwasaddedtothefirstrow.
Thefirstrowwasmultipliedby12. Thissystemhasexactlyonesolution
1116
0214 0139
1116
0139 0214
1116
0139 0214
1116 0139 00714
1116 0139 0012
1104 0103 0012
1001 0103 0012
1timesthefirstrowwasaddedtothesecondrow and2timesthefirstrowwasaddedtothethirdrow.
Thesecondandthirdrowswereinterchanged (toavoidintroducingfractionsintothesecondrow).
Thesecondrowwasmultipliedby1
2timesthesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby17.
3timesthethirdrowwasaddedtothesecondrow and1timesthethirdrowwasaddedtothefirstrow.
1timesthesecondrowwasaddedtothefirstrow.
1241
01162 01166
1241
01162 01166
2timesthefirstrowwasaddedtothesecondrow andthefirstrowwasaddedtothethirdrow.
Thesecondrowwasmultipliedby1.
1241
01162 0018216
11timesthesecondrowwasaddedtothethirdrow.
8 91 1241
01162 001
Usingback-substitution,weobtain
Thethirdrowwasmultipliedby1182.
37. Eachpointonthecurveyieldsanequation,thereforewehaveasystemoffourequations
equationcorrespondingto1,7:7
equationcorrespondingto3,11:279311
equationcorrespondingto4,14:6416414
equationcorrespondingto0,10:10 abcd abcd abcd d
11117 2793111 64164114 000110
11117 0182426200 0486063462 000110
Theaugmentedmatrixforthesystem.
27timesthefirstrowwasaddedtothesecondrow and64timesthefirstrowwasaddedtothethird.
413100 399 11117 01 0486063462 000110
Thesecondrowwasmultipliedby118
413100 399 19214 33 11117 01 004 000110
48timesthesecondrowwasaddedtothethirdrow.
413100 399 19107 126 11117 01 001 000110
410 33 11103 010 00102 000110
11005 01006 00102 000110
Thethirdrowwasmultipliedby14.
19 12timesthefourthrowwasaddedtothethirdrow, 139timesthefourthrowwasaddedtothesecondrow, and1timesthefourthrowwasaddedtothefirst.
4 3timesthethirdrowwasaddedtothesecondrowand 1timesthethirdrowwasaddedtothefirstrow.
10001 01006 00102 000110 1timesthesecondrowwasaddedtothefirstrow.
Thelinearsystemhasauniquesolution:
d .Thesearethecoefficientvaluesrequired forthecurve 32 yaxbxcxd topassthroughthefourgivenpoints.
38. Eachpointonthecurveyieldsanequation,thereforewehaveasystemofthreeequations
equationcorrespondingto2,7:53270 equationcorrespondingto4,5:41450 equationcorrespondingto4,3:25430 abcd abcd abcd
Ifweassign d anarbitraryvalue t ,thegeneralsolutionisgivenbytheformulas
292929
(Forinstance,lettingthefreevariable d havethevalue29yields
39. Sincethehomogeneoussystemhasonlythetrivialsolution,itsaugmentedmatrixmustbepossibletoreduceviaa sequenceofelementaryrowoperationstothereducedrowechelonform
Applyingthe same sequenceofelementaryrowoperationstotheaugmentedmatrixofthenonhomogeneoussystem yieldsthereducedrowechelonform
, s ,and t aresomerealnumbers.Therefore,the nonhomogeneoussystemhasonesolution.
40. (a) 3(thiswillbethenumberofleading1'sifthematrixhasnorowsofzeros)
(b) 5(ifallentriesin B are0)
(c) 2(thiswillbethenumberofrowsofzerosifeachcolumncontainsaleading1)
41. (a) Thereareeightpossiblereducedrowechelonforms:
where r and s canbeanyrealnumbers.
(b) Therearesixteenpossiblereducedrowechelonforms:
where r , s , t ,and u canbeanyrealnumbers.
42. (a) Eitherthethreelinesproperlyintersectattheorigin,ortwoofthemcompletelyoverlapandtheotherone intersectsthemattheorigin.
(b) Allthreelinescompletelyoverlaponeanother.
43. (a) Weconsidertwopossiblecases:(i) 0 a ,and(ii) 0 a
(i)If 0 a thentheassumption 0 adbc impliesthat 0 b and 0 c .Gauss-Jordaneliminationyields
Weassumed 0 a
Therowswereinterchanged.
Thefirstrowwasmultipliedby1 c and thesecondrowwasmultipliedby1 b (Notethat ,0.)bc
timesthesecondrowwasaddedtothefirstrow.
(ii)If 0 a thenweperformGauss-Jordaneliminationasfollows:
Thefirstrowwasmultipliedby1 a .
Thesecondrowwasmultipliedby a adbc . (Notethatboth a and adbc arenonzero.)
10 01 b a timesthesecondrowwasaddedtothefirstrow.
Inbothcases( 0 a aswellas 0 a )weestablishedthatthereducedrowechelonformof
providedthat 0 adbc .
(b) Applyingthe same elementaryrowoperationstepsasinpart(a)theaugmentedmatrix
transformedtoamatrixinreducedrowechelonform
where p and q aresomerealnumbers.We concludethatthegivenlinearsystemhasexactlyonesolution: xp , yq
True-False Exercises
(a) True.Amatrixinreducedrowechelonformhasallpropertiesrequiredfortherowechelonform.
(b) False.Forinstance,interchangingtherowsof
(c) False.SeeExercise31.
(d) True.Inareducedrowechelonform,thenumberofnonzerorowsequalstothenumberofleading1's.Theresult followsfromTheorem1.2.1.
(e) True.Thisisimpliedbythethirdpropertyofarowechelonform(seeSection1.2).
(f) False.Nonzeroentriesarepermittedabovetheleading1'sinarowechelonform.
(g) True.Inareducedrowechelonform,thenumberofnonzerorowsequalstothenumberofleading1's.From Theorem1.2.1weconcludethatthesystemhas 0 nn freevariables,i.e.ithasonlythetrivialsolution.
(h) False.Therowofzerosimposesnorestrictionontheunknownsandcanbeomitted.Whetherthesystemhas infinitelymany,one,ornosolution(s)depends solely onthenonzerorowsofthereducedrowechelonform.
(i) False.Forexample,thefollowingsystemisclearlyinconsistent:
1.3 Matrices and Matrix Operations
1. (a) Undefined(thenumberofcolumnsin B doesnotmatchthenumberofrowsin A ) (b) Defined; 44matrix
2.
(c) Defined; 42matrix
(d) Defined; 52matrix
(e) Defined; 45matrix
(f) Defined; 55matrix
(a) Defined; 54matrix
(b) Undefined(thenumberofcolumnsin D doesnotmatchthenumberofrowsin C )
(c) Defined; 42matrix
(d) Defined; 24matrix
(e) Defined; 52matrix
(f) Undefined( BT A isa 44matrix,whichcannotbeaddedtoa 42matrix D )
3. (a)
(b)
165123765 110112213 342143737
5350150 5152510 515155
71747272814 73717521735
(e) Undefined(a 23matrix C cannotbesubtractedfroma 22matrix2 B )
(l) Undefined(traceisonlydefinedforsquarematrices)
(b)
113614161134501 502111510121411 214323231243111
652669 18569182
(j) Undefined(a 22matrix B cannotbemultipliedbya 32matrix A ) (k)
152614 tr101111 324323
(l) Undefined( BC isa 23matrix;traceisonlydefinedforsquarematrices)
(b) Undefined(thenumberofcolumnsof B doesnotmatchthenumberofrowsin A )
181319318530921823194 313163353062323164 121319312530921223194
4210875 12321 367863
45435041524151 311 162163201612216121 021 88838081828181
133011321131262124 tr431041124111212121 235021522151232223
354122815312 tr1225222tr14071501328 687646121213
1136133021621123330 25021121225120122212 2144131122421124311
43330433131403231 11121211311211101221 01511031151001251
161133111132141133 560123510122540123 261143211142241143
7. (a) firstrowof A B [firstrowof A ]
674141
(b) thirdrowof A B [thirdrowof A ]
064097024197044395
636757
(c) secondcolumnof ABA [secondcolumnof B ]
(d) firstcolumnof BAB [firstcolumnof A ]
(e) thirdrowof AA [thirdrowof A
thirdcolumnof AAA [thirdcolumnof A ]
(b) thirdcolumnof BBB [thirdcolumnof B ]
(c) secondrowof BB
212218
(d) firstcolumnof AAA [firstcolumnof A ]
32733326703 654663564048 049003469024
(e) thirdcolumnof ABA [thirdcolumnof B ]
(f) firstrowof BA [firstrowof
secondcolumnof
thirdcolumnof
(b) firstcolumnof
secondcolumnof
secondcolumnof
thirdcolumnof
secondcolumnof
02000604604 141302 43416490613162 19.
123126815182228 123456 45648152030364964
0420016022182 214011 12521805516
Aftersubtractingfirstequationfromthefourth,addingthesecondtothethird,andback-substituting,weobtainthe
24. Thegivenmatrixequationisequivalenttothelinearsystem
Aftersubtractingfirstequationfromthesecond,addingthethirdtothefourth,andback-substituting,weobtainthe
25. (a) Ifthe i throwvectorof A is 00thenitfollowsfromFormula(9)inSection1.3that i throwvector of
(b) Ifthe j thcolumnvectorof B is
thenitfollowsfromFormula(8)inSection1.3thatthe j thcolumn
Assumingtheentriesof A arerealnumbersthatdonotdependon x , y ,and z ,thisrequiresthatthecoefficients correspondingtothesamevariableonbothsidesofeachequationmustmatch.Therefore,theonlymatrixsatisfying thegivenconditionis
Assumingtheentriesof A arerealnumbersthatdonotdependon x , y ,and z ,itfollowsthatnorealnumbers11 a , 12a ,and13 a existforwhichthefirstequationissatisfiedforall x , y ,and z .Thereforenomatrix A withreal numberentriescansatisfythegivencondition.
(Notethatif A werepermittedtodependon x , y ,and z ,thensolutionsdoexiste.g.,
29. (a)
(b) Foursquarerootscanbefound:
32. (a)
33. Thegivenmatrixproductrepresents
thetotalcostofitemspurchasedinJanuary
thetotalcostofitemspurchasedinFebruary thetotalcostofitemspurchasedinMarch thetotalcostofitemspurchasedinApril
34. (a) The 43matrix MJ representssalesoverthetwomonthperiod.
(b) The 43matrix MJ representsthedecreaseinsalesofeachitemfromMaytoJune.
(c)
(d)
(e) Theentryinthe 11matrix My x representsthetotalnumberofitemssoldinMay.
True-False Exercises
(a) True.Themaindiagonalisonlydefinedforsquarematrices.
(b) False.An mn matrixhas m rowvectorsand n columnvectors.
(c) False.E.g.,if
(d) False.The i throwvectorof AB canbecomputedbymultiplyingthe i throwvectorof A by B
(e) True.UsingFormula(14),
(f) False.E.g.,if
(g) False.E.g.,if
(h) True.Themaindiagonalentriesinasquarematrix A arethesameasthosein TA .
(i) True.Since TA isa 46matrix,itfollowsfrom TTBA beinga 26matrixthat TB mustbea 24matrix. Consequently, B isa 42matrix.
(j) True.
(k) True.Theequalityofthematrices AC and BC impliesthat ijijijij acbc forall i and j .Adding ij c to bothsidesyields ijijab forall i and j .Consequently,thematrices A and B areequal.
(l) False.E.g.,if
eventhough AB .
(m) True.If A isa pq matrixand B isan rs matrixthen AB beingdefinedrequires qr and BA beingdefined requires sp .Forthe pp matrix AB tobepossibletoaddtothe qq matrix BA ,wemusthave pq
(n) True.Ifthe j thcolumnvectorof B is
thenitfollowsfromFormula(8)inSection1.3that the j thcolumnvectorof
(o) False.E.g.,if
1.4 Inverses; Algebraic Properties of Matrices
5. Thedeterminantof
15.
Thedeterminantofthematrixis
Thematrices
and t ,respectively,thegeneralsolutionisgivenbytheformulas
Therefore,
00 10 commuteif
Ifweassign c and d thearbitraryvalues s and t ,respectively,thegeneralsolutionisgivenbytheformulas
51231 123 3524 x ,
345117 18 1351 x ,
301221 12211 6314 x ,
44242412 1105 2421 x
11143 28 1351 x
62406 12 22211 6314 x
33 AIAI
333 AAIIAI
(3)39 AAIIAII
(3)39 AAAI
29 AIpA
UsingthepropertiesinTheorem1.4.1wecanwrite
Theorem1.4.1(e)
(c) Ifthematrices A and B commute(i.e., ABBA )then
32. Wecanlet A beoneofthefollowingeightmatrices:
Notethattheseeightarenottheonlysolutions-e.g., A canbe
(a) Wecanrewritetheequation
If 3 AI thenitfollowsthat 2 AAI therefore A mustbeinvertible( 12).AA 35. Ifthe i throwvectorof A is
00thenitfollowsfromFormula(9)inSection1.3that i throwvectorof
0000ABB
Consequentlynomatrix B canbefoundtomaketheproduct ABI thus A doesnothaveaninverse.
Ifthe j thcolumnvectorof A is
0 0 thenitfollowsfromFormula(8)inSection1.3that
the j thcolumnvectorof BAB
Consequentlynomatrix B canbefoundtomaketheproduct BAI thus A doesnothaveaninverse.
36. Ifthe i thand j throwvectorsof A areequalthenitfollowsfromFormula(9)inSection1.3that i throwvectorof ABj throwvectorof AB
Consequentlynomatrix B canbefoundtomaketheproduct ABI thus A doesnothaveaninverse.
Ifthe i thand j thcolumnvectorsof A areequalthenitfollowsfromFormula(8)inSection1.3that the i thcolumnvectorof BA the j thcolumnvectorof BA
Consequentlynomatrix B canbefoundtomaketheproduct BAI thus A doesnothaveaninverse.
37. Letting
,thematrixequation AXI becomes
Settingthefirstcolumnsonbothsidesequalyieldsthesystem
Subtractingthesecondandthirdequationsfromthefirstleadsto 21 21 x .Therefore
and(after substitutingthisintotheremainingequations)
Thesecondandthethirdcolumnscanbetreatedinasimilarmannertoresultin
Althoughthiscorrespondstoasystemofnineequations,itissufficienttoexaminejustthethreeequations correspondingtothefirstcolumn
39.
toseethatsubtractingthesecondandthirdequationsfromthefirstleadstoacontradiction 01. Weconcludethat A isnotinvertible.
111111 ABACDCD
11 111111()BAACCDD
1111()BAACCDD
1111 BAACCDD
Theorem1.4.6
Theorem1.4.7(a)
Theorem1.4.1(c)
11 1111 ACACACAD
1111 CAACCAAD
Theorem1.4.6
Theorem1.4.7(a)
Theorem1.4.1(c)
42. Yes,itistrue.Frompart(e)ofTheorem1.4.8,itfollowsthat
.Thisstatementcanbe extendedto n factors(seeSection1.4)sothat
43. (a) Assuming A isinvertible,wecanmultiply(ontheleft)eachsideoftheequationby1 A :
11 AABAAC
11 AABAAC
IBIC
BC
1.4Inverses;AlgebraicPropertiesofMatrices64
Multiply(ontheleft)eachsideby1 A
Theorem1.4.1(c)
Formula(1)inSection1.4
Property AIIAA onSection1.4
(b) If A isnotaninvertiblematrixthen ABAC doesnotgenerallyimply BC asevidencedbyExample3.
44. Invertibilityof A impliesthat A isasquarematrix,whichisallthatisrequired. ByrepeatedapplicationofTheorem1.4.1(m)and(l),wehave
45. (a)
111AABBAB
111AABABBAB
1 IBAIAB
1 BAAB
1 ABAB
I
Theorem1.4.1(d)and(e)
Formula(1)inSection1.4
Property AIIAA inSection1.4
Theorem1.4.1(a)
Formula(1)inSection1.4
(b) Wecanmultiplyeachsideoftheequalityfrompart(a)ontheleftby1 A ,thenontherightby A toobtain
111 ABBABAI
whichshowsthatif A , B ,and AB areinvertiblethensois 11AB Furthermore,
1111 ABBABA .
46. (a)
2 IA
IAIA
IIIAAIAA
2IAAA
Theorem1.4.1(f)and(g)
Property AIIAA inSection1.4
IAAAA isidempotentso 2 AA
IA
(b)
22AIAI
2222 AAAIIAII
Theorem1.4.1(f)and(g) 2 422AAAI
Theorem1.4.1(l)and(m); Property AIIAA inSection1.4 44AAIA isidempotentso 2 AA
I
47. ApplyingTheorem1.4.1(d)and(g),property AIIAA ,andtheassumption k AO wecanwrite
IO
I 48.
ababab AadAadbcIadadbc cdcdcd
210
22 22 000 000 abcabbdadaabbdadbc cadccbdacdcaddadbc
True-False Exercises
(a) False. A and B areinversesofoneanotherifandonlyif ABBAI
(b) False.
222 ABABABAABBAB doesnotgenerallyequal
22 2 AABB since AB maynot equal BA
(c) False.
22 ABABAABBAB doesnotgenerallyequal22 AB since AB maynotequal BA .
(d) False. 111 ABBA doesnotgenerallyequal11 AB .
(e) False.
ATTT BBA doesnotgenerallyequal TTAB
(f) True.ThisfollowsfromTheorem1.4.5.
(g) True.ThisfollowsfromTheorem1.4.8.
(h) True.ThisfollowsfromTheorem1.4.9.(Theinverseof TA isthetransposeof1 A .)
(i) False.
012 pm IaaaaI .
(j) True.
Ifthe i throwvectorof A is 00thenitfollowsfromFormula(9)inSection1.3that i throwvectorof 0000ABB . Consequentlynomatrix B canbefoundtomaketheproduct ABI thus A doesnothaveaninverse.
Ifthe j thcolumnvectorof A is
thenitfollowsfromFormula(8)inSection1.3that the j thcolumnvectorof BAB
Consequentlynomatrix B canbefoundtomaketheproduct BAI thus A doesnothaveaninverse. (k) False.E.g. I and I arebothinvertiblebut
IIO isnot.
1.5 Elementary Matrices and a Method for Finding A-1
1. (a) Elementarymatrix(correspondstoadding5timesthefirstrowtothesecondrow)
(b) Notanelementarymatrix
(c) Notanelementarymatrix
(d) Notanelementarymatrix
2. (a) Elementarymatrix(correspondstomultiplyingthesecondrowby3)
(b) Elementarymatrix(correspondstointerchangingthefirstrowandthethirdrow)
(c) Elementarymatrix(correspondstoadding9timesthethirdrowtothesecondrow)
(d) Notanelementarymatrix
3. (a) Add3timesthesecondrowtothefirstrow:
(b) Multiplythefirstrowby17:
(c) Add5timesthefirstrowtothethirdrow:
(d) Interchangethefirstandthirdrows:
4. (a) Add3timesthefirstrowtothesecondrow:
(b) Multiplythethirdrowby1
(c) Interchangethefirstandfourthrows:
(d) Add17timesthethirdrowtothefirstrow:
5. (a) Interchangethefirstandsecondrows:
(b) Add3timesthesecondrowtothethirdrow:
(c) Add4timesthethirdrowtothefirstrow:
6. (a) Multiplythefirstrowby6:
(b) Add4timesthefirstrowtothesecondrow:
(c) Multiplythesecondrowby5:
7. (a)
(b)
001
010 100 ( B wasobtainedfrom A byinterchangingthefirstrowandthethirdrow)
001
010 100 ( A wasobtainedfrom B byinterchangingthefirstrowandthethirdrow)
100
(c)
010 201 ( C wasobtainedfrom A byadding2timesthefirstrowtothethirdrow)
100
(d)
8. (a)
(b)
010 201 ( A wasobtainedfrom C byadding2timesthefirstrowtothethirdrow)
100 030 001 ( D wasobtainedfrom B bymultiplyingthesecondrowby3)
1 3 100 00 001 ( B wasobtainedfrom D bymultiplyingthesecondrowby13)
(c)
100 012 001 ( F wasobtainedfrom B byadding2timesthethirdrowtothesecondrow)
(d)
100 012 001 ( B wasobtainedfrom F byadding2timesthethirdrowtothesecondrow)
9. (a) (MethodI:usingTheorem1.4.5)
Thedeterminantof
(MethodII:usingtheinversionalgorithm)
,isnonzero.Therefore A isinvertibleanditsinverseis
1410 0121 2timesthefirstrowwasaddedtothesecondrow.
1410 0121Thesecondrowwasmultipliedby1
1074 0121,4timesthesecondrowwasaddedtothefirstrow.
Theinverseis 74 21
(b) (MethodI:usingTheorem1.4.5)
Thedeterminantof A ,
det28440 A .Therefore A isnotinvertible.
(MethodII:usingtheinversionalgorithm)
2410 4801Theidentitymatrixwasadjoinedtothegivenmatrix.
2410 0021
2timesthefirstrowwasaddedtothesecondrow.
Arowofzeroswasobtainedontheleftside,therefore A isnotinvertible.
10. (a) (MethodI:usingTheorem1.4.5)
Thedeterminantof A ,
det116531 A ,isnonzero.Therefore A isinvertibleanditsinverse is
11 1 165165 3131 A
(MethodII:usingtheinversionalgorithm)
1510 31601Theidentitymatrixwasadjoinedtothegivenmatrix.
1510 0131 3timesthefirstrowwasaddedtothesecondrow.
1510 0131Thesecondrowwasmultipliedby1.
10165 0131,5timesthesecondrowwasaddedtothefirstrow.
Theinverseis
165 31
(b) (MethodI:usingTheorem1.4.5)
Thedeterminantof A ,
det62430 A .Therefore A isnotinvertible.
(MethodII:usingtheinversionalgorithm)
6410 3201Theidentitymatrixwasadjoinedtothegivenmatrix.
0012 3201
2timesthesecondrowwasaddedtothefirstrow.
Arowofzeroswasobtainedontheleftside,thereforethematrixisnotinvertible. 11. (a)
123100 253010 108001
123100 013210 025101
123100 013210 001521
123100 013210 001521
1201463 0101353 001521
10040169 0101353 001521
Theidentitymatrixwasadjoinedtothegivenmatrix.
2timesthefirstrowwasaddedtothesecondrowand 1timesthefirstrowwasaddedtothethirdrow.
2timesthesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby1.
3timesthethirdrowwasaddedtothesecondrowand 3timesthethirdrowwasaddedtothefirstrow.
2timesthesecondrowwasaddedtothefirstrow. Theinverseis
40169 1353 521
Theidentitymatrixwasadjoinedtothegivenmatrix.
Thefirstrowwasmultipliedby1
2timesthefirstrowwasaddedtothesecondrowand 4timesthefirstrowwasaddedtothethirdrow.
Thesecondrowwasaddedtothethirdrow.
Arowofzeroswasobtainedontheleftside,thereforethematrixisnotinvertible.
Theidentitymatrixwasadjoinedtothegivenmatrix.
Eachrowwasmultipliedby5
1timesthefirstrowwasaddedtothesecondand 1timesthefirstrowwasaddedtothethirdrow.
Thesecondandthirdrowswereinterchanged.
Thesecondrowwasmultipliedby15and thethirdrowwasmultipliedby2 5
1 2timesthethirdrowwasaddedtothesecondrowand 2timesthethirdrowwasaddedtothefirstrow.
1timesthesecondrowwasaddedtothefirstrow.
Theidentitymatrixwasadjoinedtothegivenmatrix.
Eachrowwasmultipliedby5
2timesthefirstrowwasaddedtothesecondand 1timesthefirstrowwasaddedtothethirdrow.
1timesthesecondrowwasaddedtothethirdrow.
Arowofzeroswasobtainedontheleftside,thereforethematrixisnotinvertible.
Theidentitymatrixwasadjoinedtothegivenmatrix.
1timesthefirstrowwasaddedtothethirdrow.
011101
002111
1timesthesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby1 2
001
1timesthethirdrowwasaddedtothesecondand 1timesthethirdrowwasaddedtothefirstrow Theinverseis
Theidentitymatrixwasadjoinedtothegivenmatrix.
Eachofthefirsttworowswasmultipliedby12 .
4timesthefirstrowwasaddedtothesecondrow.
1 2 222 1326 13000 0100 001001
Thesecondrowwasmultipliedby113.
232 2626 222 1326 1000 0100 001001
3timesthesecondrowwasaddedtothefirstrow. Theinverseis
232 2626 222 1326 0 0 001 .
266100
010110 001011
260166
010110 001011
010110 001011
7 2 10003 010110 001011
Theinverseis
10001000 13000100 13500010 13570001
10001000 03001100 03501010 03571001
1timesthesecondrowwasaddedtothethirdrow.
6timesthethirdrowwasaddedtothefirstrow
6timesthesecondrowwasaddedtothefirstrow
Thefirstrowwasmultipliedby12.
Theidentitymatrixwasadjoinedtothegivenmatrix.
1timesthefirstrowwasaddedtoeachoftheremaining rows.
10001000 03001100 00500110 00570101
10001000 03001100 00500110 00070011
1timesthesecondrowwasaddedtothethirdrowand tothefourthrow.
1timesthethirdrowwasaddedtothefourthrow
Theinverseis
121200100 24001000 00200010 01450001
121200100 082401200 00200010 01450001
121200100 01450001 00200010 082401200
121200100 01450001 00200010 082401200
121200100 01450001 00200010 008401208
Thesecondrowwasmultipliedby13, thethirdrowwasmultipliedby15,and thefourthrowwasmultipliedby1 7
Theidentitymatrixwasadjoinedtothegiven matrix.
Thefirstandsecondrowswereinterchanged.
2timesthefirstrowwasaddedtothesecond.
Thesecondandfourthrowswereinterchanged.
Thesecondrowwasmultipliedby1.
8timesthesecondrowwasaddedtothefourth.
Thethirdrowwasmultipliedby1 2
8timesthethirdrowwasadded tothefourthrow.
Thefourthrowwasmultipliedby140
5timesthefourthrowwasadded tothesecondrow.
113 842 1 2 1111 4020105 12000160 01000
4timesthethirdrowwasadded tothesecondrowand 12timesthethirdrowwasadded tothefirstrow.
2timesthesecondrowwasadded tothefirstrow.
10010100
00201000 01300010 21530001
10010100
00201000 01300010 01550201
10010100 01300010
00201000 01550201
Thefirstandsecondrowswereinterchanged.
2timesthefirstrowwasaddedtothefourthrow andtothefourthrow.
Thesecondandthirdrowswereinterchanged.
10010100 01300010
00201000 01550201
Thesecondrowwasmultipliedby1.
10010100 01300010
00201000 00850211
1timesthesecondrowwasadded tothefourthrow.
10010100
01300010
00201000 00054211
4timesthethirdrowwasadded tothefourthrow.
1 2 4211 5555 10010100 01300010 0010000 0001
Thethirdrowwasmultipliedby12and thefourthrowwasmultipliedby1 5
3 411 5555 3 2 1 2 4211 5555 1000 0100010 0010000 0001
1timesthefourthrowwasaddedtothefirstrow and 3timesthethirdrowwasaddedtothesecond.
Theinverseis
Theidentitymatrixwasadjoinedtothegivenmatrix.
Thefirstrowwasmultipliedby11/, k thesecondrowwasmultipliedby21/, k thethirdrowwasmultipliedby31/, k and thefourthrowwasmultipliedby41/. k
Theinverseis
11 11 100000 01000100 001000 00010001 kk kk
Theidentitymatrixwasadjoinedtothegivenmatrix.
Firstrowandthirdrowwerebothmultipliedby1/ k .
1 k timesthefourthrowwasadded tothethirdrowand 1 k timesthesecondrowwasadded tothefirstrow. Theinverseis
11 11 00 0100 00 0001 kk kk
1 2 3 4 0001000
4 3 2 1 0000001 0000010 0000100 0001000 k k k k
Theinverseis
0001000 1000100 0100010 0010001 k k k k
1 11 11 11 1000000 100000 010000 001000 k kk kk kk
2 1 11 11 11 1000000 010000 010000 001000 k kk kk
Theidentitymatrixwasadjoinedtothegivenmatrix.
Thefirstandfourthrowswereinterchanged; thesecondandthirdrowswereinterchanged.
Thefirstrowwasmultipliedby41/, k thesecondrowwasmultipliedby31/, k thethirdrowwasmultipliedby21/, k and thefourthrowwasmultipliedby11/. k
Theidentitymatrixwasadjoinedtothegivenmatrix.
Eachrowwasmultipliedby1/ k .
1 k timesthefirstrowwasadded tothesecondrow.
2 32 1 11 111 11 1000000 010000 00100 001000 k kk kkk kk 1 k timesthesecondrowwasadded tothethirdrow.
1 k timesthethirdrowwasadded tothefourthrow.
Theinverseis
21. Itfollowsfromparts(a)and(c)ofTheorem1.5.3thatasquarematrixisinvertibleifandonlyifitsreducedrow echelonformisidentity.
Thefirstandthirdrowswereinterchanged.
c cc
1timesthefirstrowwasaddedtothesecondrowand c timesthefirstrowwasaddedtothethirdrow.
210cccc or 10 c ,i.e.if 0 c or 1 c
thelastmatrixcontainsatleastonerowofzeros,therefore itcannotbereducedto I byelementaryrowoperations.
Otherwise(if 0 c and 1 c ),multiplyingthesecondrowby 1 1 c andmultiplyingthethirdrowby2 1 cc would resultinarowechelonformwith1’sonthemaindiagonal.Subsequentelementaryrowoperationswouldthenlead totheidentitymatrix.
Weconcludethatforanyvalueof c otherthan0and1thematrixisinvertible.
22. Itfollowsfromparts(a)and(c)ofTheorem1.5.3thatasquarematrixisinvertibleifandonlyifitsreducedrow echelonformisidentity.
11 10 01 c c c
11 01 10 c c c
Thefirstandsecondrowswereinterchanged.
Thesecondandthirdrowswereinterchanged.
2 11 01 01 c c cc c timesthefirstrowwasaddedtothethirdrow.
3 11 01 002 c c cc 21 c timesthesecondrowwasaddedtothethird.
2
thelastmatrixcontainsarowofzeros,thereforeitcannot bereducedto I byelementaryrowoperations.
Otherwise(if 320cc ),multiplyingthelastrowby31 2 cc wouldresultinarowechelonformwith1’sonthemain diagonal.Subsequentelementaryrowoperationswouldthenleadtotheidentitymatrix.
Weconcludethatforanyvalueof c otherthan0,2and2thematrixisinvertible.
23. Weperformasequenceofelementaryrowoperationstoreducethegivenmatrixtotheidentitymatrix.Aswedoso, wekeeptrackofeachcorrespondingelementarymatrix:
15 222timesthesecondrowwasaddedtothefirst.
15 082timesthefirstrowwasaddedtothesecond.
15 01Thesecondrowwasmultipliedby18.
10 01 5timesthesecondrowwasaddedtothefirst.
Notethatthisanswerisnotuniquesinceadifferentsequenceofelementaryrowoperations(andthecorresponding elementarymatrices)couldbeusedinstead.
24. Weperformasequenceofelementaryrowoperationstoreducethegivenmatrixtotheidentitymatrix.Aswedoso, wekeeptrackofeachcorrespondingelementarymatrix:
Notethatthisanswerisnotuniquesinceadifferentsequenceofelementaryrowoperations(andthecorresponding elementarymatrices)couldbeusedinstead.
25. Weperformasequenceofelementaryrowoperationstoreducethegivenmatrixtotheidentitymatrix.Aswedoso, wekeeptrackofeachcorrespondingelementarymatrix:
Notethatthisanswerisnotuniquesinceadifferentsequenceofelementaryrowoperations(andthecorresponding elementarymatrices)couldbeusedinstead.
26. Weperformasequenceofelementaryrowoperationstoreducethegivenmatrixtotheidentitymatrix.Aswedoso, wekeeptrackofeachcorrespondingelementarymatrix:
011 001
110 010 001
1timesthefirstrowwasaddedtothesecondrow.
Thesecondandthirdrowswereinterchanged
1timesthethirdrowwasaddedtothesecond.
1timesthesecondrowwasaddedtothefirstrow.
correspondingelementarymatrix:
123 141 219 A
123 022 219
105 022 219
105 022 114 B
1timesthefirstrowwasaddedtothesecondrow.
1timesthesecondrowwasaddedtothefirstrow.
1timesthefirstrowwasaddedtothethirdrow.
Since 321 EEEAB ,theequality CAB issatisfiedbythematrix
Notethatthisanswerisnotuniquesinceadifferentsequenceofelementaryrowoperations(andthecorresponding elementarymatrices)couldbeusedinstead.
28. Letusperformasequenceofelementaryrowoperationstoproduce B from A .Aswedoso,wekeeptrackofeach correspondingelementarymatrix:
2timesthefirstrowwasaddedtothethirdrow.
694 510 121 B
4timesthethirdrowwasaddedtothefirstrow.
29.
Since 321 EEEAB ,theequality CAB issatisfiedbythematrix
Notethatadifferentsequenceofelementaryrowoperations(andthecorrespondingelementarymatrices)couldbe usedinstead.(However,sinceboth A and B inthisexerciseareinvertible, C isuniquelydeterminedbythe formula 1 CBA .)
010 A abc cannotresultfrominterchangingtworowsof3 I (sincethatwouldcreateanonzeroentryabovethe maindiagonal).
A canresultfrommultiplyingthethirdrowof3 I byanonzeronumber c (inthiscase, 0,0abc ).
Theotherpossibilitiesarethat A canbeobtainedbyadding a timesthefirstrowtothethird (0,1) bc orby adding b timesthesecondrowtothethird 0,1ac
Inallthreecases,atleastoneentryinthethirdrowmustbezero.
30. Considerthreecases:
If 0 a then A hasarowofzeros(firstrow).
If 0 a and 0 h then A hasarowofzeros(fifthrow).
If 0 a and 0 h thenadding d a timesthefirstrowtothethird,andadding e h timesthefifthrowtothethird resultsinthethirdrowbecomingarowofzeros.
Inallthreecases,thereducedrowechelonformof A isnot5 I .ByTheorem1.5.3, A isnotinvertible.
True-False Exercises
(a) False.Anelementarymatrixresultsfromperforminga single elementaryrowoperationonanidentitymatrix;a productoftwoelementarymatriceswouldcorrespondtoasequenceoftwosuchoperationsinstead,whichgenerally isnotequivalenttoasingleelementaryoperation.
(b) True.ThisfollowsfromTheorem1.5.2.
(c) True.If A and B arerowequivalentthenthereexistelementarymatrices 1,, p EE suchthat 1 p BEEA . Likewise,if B and C arerowequivalentthenthereexistelementarymatrices ** 1,, q EE suchthat ** 1 q CEEB . Combiningthetwoequalitiesyields ** 11qp CEEEEA therefore A and C arerowequivalent.
(d) True.Ahomogeneoussystem 0 Ax haseitheronesolution(thetrivialsolution)orinfinitelymanysolutions.If A isnotinvertible,thenbyTheorem1.5.3thesystemcannothavejustonesolution.Consequently,itmusthave infinitelymanysolutions.
(e) True.Ifthematrix A isnotinvertiblethenbyTheorem1.5.3itsreducedrowechelonformisnot n I .However,the matrixresultingfrominterchangingtworowsof A (anelementaryrowoperation)musthavethesamereducedrow echelonformas A does,sobyTheorem1.5.3thatmatrixisnotinvertibleeither.
(f) True.Addingamultipleofthefirstrowofamatrixtoitssecondrowisanelementaryrowoperation.Denotingby E bethecorrespondingelementarymatrixwecanwrite 111 EAAE sotheresultingmatrix EA isinvertibleif A is.
(g) False.Forinstance,
1.6 More on Linear Systems and Invertible Matrices
1. Thegivensystemcanbewritteninmatrixformas Axb ,where
Webeginbyinvertingthecoefficientmatrix A
5timesthefirstrowwasaddedtothesecondrow.
1timesthesecondrowwasaddedtothefirstrow.
Webeginbyinvertingthecoefficientmatrix A
4310 2501Theidentitymatrixwasadjoinedtothecoefficientmatrix.
2501 4310Thefirstandsecondrowswereinterchanged.
2501 0712 2timesthefirstrowwasaddedtothesecondrow.
51 22 12 77 10 01
Thefirstrowwasmultipliedby12and thesecondrowwasmultipliedby1 7
53 1414 12 77 10 01 5 2timesthesecondrowwasaddedtothefirstrow. Since
53 11414 12 77 A ,Theorem1.6.2statesthatthesystemhasexactlyonesolution 1 A xb :
53 11414 12 277 33 93 x x ,i.e., 123xx .
3. Thegivensystemcanbewritteninmatrixformas Axb ,where
4 1 3 b .Webeginbyinvertingthecoefficientmatrix A
131100 221010 231001
131100 041210 031201
131100 041210 010011
131100 010011 041210
131100 010011 001234
Theidentitymatrixwasadjoinedtothecoefficientmatrix.
2timesthefirstrowwasaddedtothesecondand 2timesthefirstrowwasaddedtothethirdrow.
1timesthesecondrowwasaddedtothethirdrow.
Thesecondandthirdrowswereinterchanged.
4timesthesecondrowwasaddedtothethirdrow.
010011 001234
130134 010011 001234
010011 001234
Thethirdrowwasmultipliedby1
1timesthethirdrowwasaddedtothefirstrow.
3timesthesecondrowwasaddedtothefirstrow.
A
532100 332010 011001Theidentitymatrixwasadjoinedtothecoefficientmatrix.
200110 332010 011001 1timesthesecondrowwasaddedtothefirstrow.
11 22 1000 332010 011001
11 22 35 22 1000 0320 011001
Thefirstrowwasmultipliedby1 2
3timesthefirstrowwasaddedtothesecondrow.
111100 005110 055401
111100 055401 005110
Thesecondandthirdrowswereinterchanged.
3timesthesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby1
1timesthethirdrowwasaddedtothesecondrow.
Theidentitymatrixwasadjoinedtothecoefficientmatrix.
1timesthefirstrowwasaddedtothesecondrowand 4timesthefirstrowwasaddedtothethirdrow.
Thesecondandthirdrowswereinterchanged.
0110 0010
41 55 11 55 111100
41 55 311 555 11 55 1100 010 0010
11 55 311 555 11 55 1000 010 0010
Webeginbyinvertingthecoefficientmatrix
01231000 11440100 13790010 12460001
11440100 01231000 13790010 12460001
11440100 01231000 02350110 01020101
Thesecondrowwasmultipliedby15and thethirdrowwasmultipliedby15.
1timesthethirdrowwasaddedtothesecondrow andtothefirstrow.
1timesthesecondrowwasaddedtothefirstrow.
Theidentitymatrixwasadjoinedtothecoefficient matrix.
Thefirstandsecondrowswereinterchanged.
1timesthefirstrowwasaddedtothethirdrowand thefirstrowwasaddedtothefourthrow.
11440100
01231000 02350110 01020101
Thesecondrowwasmultipliedby1
11440100 01231000 00112110 00211101
11440100 01231000 00112110 00211101
2timesthesecondrowwasaddedtothethirdrow andthesecondrowwasaddedtothefourth.
Thethirdrowwasmultipliedby1
11440100 01231000 00112110 00013121
2timesthethirdrowwasaddedtothefourth.
11440100 01231000 00112110 00013121
114012384 01208363 00101011 00013121
Thefourthrowwasmultipliedby1.
1timesthelastrowwasaddedtothethirdrow, 3timesthelastrowwasaddedtothesecondrow and4timesthelastrowwasaddedtothefirst.
11008340 01006341 00101011 00013121
10002001 01006341 00101011 00013121
2timesthethirdrowwasaddedtothesecondrow and 4timesthethirdrowwasaddedtothefirstrow.
1timesthesecondrowwasaddedtothefirst.
1 2 b b b .Webeginbyinvertingthecoefficientmatrix A
3510 1201Theidentitymatrixwasadjoinedtothecoefficientmatrix.
1201 3510Thefirstandsecondrowswereinterchanged.
1201 0113
3timesthefirstrowwasaddedtothesecondrow.
1201 0113Thesecondrowwasmultipliedby1.
1025 0113
2timesthesecondrowwasaddedtothefirstrow. Since
125 13 A ,Theorem1.6.2statesthatthesystemhasexactlyonesolution
123100 255010 358001
123100 011210 011301
Theidentitymatrixwasadjoinedtothecoefficientmatrix.
2timesthefirstrowwasaddedtothesecondrowand 3timesthefirstrowwasaddedtothethirdrow.
123100
011210 002511
Thesecondrowwasaddedtothethirdrow.
123100 011210 001
Thethirdrowwasmultipliedby12.
511 222
1333 222 111 222 511 222 120 010 001
Thethirdrowwasaddedtothesecondrowand 3timesthethirdrowwasaddedtothefirstrow.
155 1 222 111 222 511 222 100 010 001
2timesthesecondrowwasaddedtothefirstrow. Since
155 1 222 1111 222 511 222 A ,Theorem1.6.2statesthatthesystemhasexactlyonesolution 1 A xb :
constantsontherighthandsidesofthesystems (i)and(ii)–refertoExample2.
3timesthefirstrowwasaddedtothesecondrow.
Weconcludethatthesolutionsofthetwosystemsare:
Weaugmentedthecoefficientmatrixwithtwocolumnsof constantsontherighthandsidesofthesystems (i)and(ii)–refertoExample2.
Thefirstrowwasmultipliedby1.
1timesthefirstrowwasaddedtothesecondrowand 6timesthefirstrowwasaddedtothethirdrow.
Thesecondrowwasmultipliedby113.
28timesthesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby13 2
1 13timesthethirdrowwasaddedtothesecondrow andthethirdrowwasaddedtothefirstrow.
4timesthesecondrowwasaddedtothefirstrow.
Weconcludethatthesolutionsofthetwosystemsare:
470415 121631Weaugmentedthecoefficientmatrixwithfourcolumns ofconstantsontherighthandsidesofthesystems(i), (ii),(iii),and(iv)–refertoExample2.
121631 470415Thefirstandsecondrowswereinterchanged.
121631 015428139 4timesthefirstrowwasaddedtothesecondrow.
428133 1515155 121631 01Thesecondrowwasmultipliedby115
734191 1515155 428133 1515155 10 012timesthesecondrowwasaddedtothefirstrow.
Weconcludethatthesolutionsofthefoursystemsare:
135101 120011 254110
135101 015112 016312
135101 015112 001220
135101 015112 001220
Weaugmentedthecoefficientmatrixwiththreecolumns ofconstantsontherighthandsidesofthesystems (i),(ii)and(iii)–refertoExample2.
Thefirstrowwasaddedtothesecondrowand 2timesthefirstrowwasaddedtothethirdrow.
Thesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby1
1309101
0109112 001220
0109112 001220
5timesthethirdrowwasaddedtothefirstrow andtothesecondrow.
3timesthesecondrowwasaddedtothefirstrow.
Weconcludethatthesolutionsofthethreesystemsare:
(i)
118,x 29x , 32x (ii)
123x , 211x , 32x (iii)
15,x 22x , 30x
Thesystemisconsistentforallvaluesof1 b and2 b .
2timesthefirstrowwasaddedtothesecondrow.
Thesecondrowwasmultipliedby1 7
Thesystemisconsistentifandonlyif
Theaugmentedmatrixforthesystem.
Thefirstrowwasmultipliedby1
3timesthefirstrowwasaddedtothesecondrow.
4timesthefirstrowwasaddedtothesecondrow and3timesthefirstrowwasaddedtothethirdrow.
Thesecondrowwasaddedtothethirdrow.
Thesecondrowwasmultipliedby1
Theaugmentedmatrixforthesystem.
4timesthefirstrowwasaddedtothesecondrow
Thesecondandthirdrowswereinterchanged.
Thesecondrowwasmultipliedby1.
3timesthesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby12.
Theaugmentedmatrixforthesystem.
2timesthefirstrowwasaddedtothesecondrow, 3timesthefirstrowwasaddedtothethirdrow,and 4timesthefirstrowwasaddedtothefourthrow.
Thesecondrowwasmultipliedby1.
Thesecondrowwasaddedtothethirdrowand 1timesthesecondrowwasaddedtothefourthrow.
Thesystemisconsistentforallvaluesof1 b ,2 b ,3 b ,and4 b thatsatisfytheequations
Theseequationsformalinearsysteminthevariables1 b ,2 b ,3 b ,and4 b whoseaugmentedmatrix
11100 21010 hasthereducedrowechelonform
134 bbb and 234 2 bbb
10110 01210.Thereforethesystemisconsistentif
18. (a) Theequation xx A canberewrittenas xxAI ,whichyields xx0AI and
x0 AI .
Thisisamatrixformofahomogeneouslinearsystem-tosolveit,wereduceitsaugmentedmatrixtoarow echelonform.
Theaugmentedmatrixforthehomogeneoussystem
x0 AI .
2timesthefirstrowwasaddedtothesecondrow and3timesthefirstrowwasaddedtothethirdrow.
1120 0160 0260
1120 0160 0060
1120 0160 0010
Thesecondrowwasmultipliedby1.
2timesthesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby1 6
Usingback-substitution,weobtaintheuniquesolution: 1230 xxx (b) Aswasdoneinpart(a),theequation x4x A canberewrittenas 4x0AI .Wesolvethelattersystem byGauss-Jordanelimination
2120 2220 3130
2220 2120 3130
Theaugmentedmatrixforthehomogeneoussystem
4x0AI .
Thefirstandsecondrowswereinterchanged.
Thefirstrowwasmultipliedby12.
2timesthefirstrowwasaddedtothesecondrowand 3timesthefirstrowwasaddedtothethirdrow.
Thesecondrowwasmultipliedby1
4timesthesecondrowwasaddedtothethirdrowand thesecondrowwasaddedtothefirstrow.
Ifweassign3 x anarbitraryvalue t ,thegeneralsolutionisgivenbytheformulas
021001
Theidentitymatrixwasadjoinedtothematrix.
2timesthefirstrowwasaddedtothesecondrow.
2timesthethirdrowwasaddedtothesecondrow.
021001
2timesthesecondrowwasaddedtothethirdrow.
111100 010212 001425
110525 010212 001425
100313 010212 001425
1141379 X .Letusfind
201100 011010 114001
114001 011010 201100
114001 011010 027102
114001 011010 027102
Thethirdrowwasmultipliedby1
1timesthethirdrowwasaddedtothefirstrow.
Thesecondrowwasaddedtothefirstrow.
Theidentitymatrixwasadjoinedtothematrix.
Thefirstandthirdrowswereinterchanged.
2timesthefirstrowwasaddedtothethirdrow.
Thesecondrowwasmultipliedby1
114001
011010 009122
2timesthesecondrowwasaddedtothethirdrow.
122 999 114001
011010 001
8 41 999 7 12 999 122 999 110 010 001
511 999 7 12 999 122 999 100 010 001
Thethirdrowwasmultipliedby19.
1timesthethirdrowwasaddedtothesecondrowand 4timesthethirdrowwasaddedtothefirstrow.
1timesthesecondrowwasaddedtothefirstrow. Using
1511 999 7 12 999 122 999 201 011 114 weobtain
5252523 11 999999 74040 1244 999999 122233237 999999 43213 67894 13792 X
True-False Exercises
(a) True.ByTheorem1.6.1,ifasystemoflinearequationhasmorethanonesolutionthenitmusthaveinfinitelymany.
(b) True.If A isasquarematrixsuchthat Axb hasauniquesolutionthenthereducedrowechelonformof A must be I .Consequently, Axc musthaveauniquesolutionaswell.
(c) True.Since B isasquarematrixthenbyTheorem1.6.3(b) n ABI implies 1 BA . Therefore, 1 n BAAAI .
(d) True.Since A and B arerowequivalentmatrices,itmustbepossibletoperformasequenceofelementaryrow operationson A resultingin B .Let E betheproductofthecorrespondingelementarymatrices,i.e., EAB .Note that E mustbeaninvertiblematrixthus 1 AEB .
Anysolutionof 0 Ax isalsoasolutionof 0 Bx since 00 BEAE xx . Likewise,anysolutionof 0 Bx isalsoasolutionof 0 Ax since 1100AEBE xx
(e) True.If 1 SAS xb then 1 SSASASS xxb .Consequently, S yx isasolutionof ASyb .
(f)
(g)
True. 4 A xx isequivalentto 4 n AIxx ,whichcanberewrittenas 40 n AI x .ByTheorem1.6.4,this homogeneoussystemhasauniquesolution(thetrivialsolution)ifandonlyifitscoefficientmatrix4 n AI is invertible.
True.If A B wereinvertible,thenbyTheorem1.6.5both A and B wouldbeinvertible.
1.7 Diagonal, Triangular, and Symmetric Matrices
1. (a) Thematrixisuppertriangular.Itisinvertible(itsdiagonalentriesarebothnonzero).
(b) Thematrixislowertriangular.Itisnotinvertible(itsdiagonalentriesarezero).
(c) Thisisadiagonalmatrix,thereforeitisalsobothupperandlowertriangular.Itisinvertible(itsdiagonal entriesareallnonzero).
(d) Thematrixisuppertriangular.Itisnotinvertible(itsdiagonalentriesincludeazero).
2. (a) Thematrixislowertriangular.Itisinvertible(itsdiagonalentriesarebothnonzero).
(b) Thematrixisuppertriangular.Itisnotinvertible(itsdiagonalentriesarezero).
(c) Thisisadiagonalmatrix,thereforeitisalsobothupperandlowertriangular.Itisinvertible(itsdiagonal entriesareallnonzero).
(d) Thematrixislowertriangular.Itisnotinvertible(itsdiagonalentriesincludeazero).
3.
(a)
21 13
03 30
19. Frompart(c)ofTheorem1.7.1,atriangularmatrixisinvertibleifandonlyifitsdiagonalentriesareallnonzero. Sincethisuppertriangularmatrixhasa0onitsdiagonal,itisnotinvertible.
20. Frompart(c)ofTheorem1.7.1,atriangularmatrixisinvertibleifandonlyifitsdiagonalentriesareallnonzero. Sincethisuppertriangularmatrixhasallthreediagonalentriesnonzero,itisinvertible.
21. Frompart(c)ofTheorem1.7.1,atriangularmatrixisinvertibleifandonlyifitsdiagonalentriesareallnonzero. Sincethislowertriangularmatrixhasallfourdiagonalentriesnonzero,itisinvertible.
22. Frompart(c)ofTheorem1.7.1,atriangularmatrixisinvertibleifandonlyifitsdiagonalentriesareallnonzero. Sincethislowertriangularmatrixhasa0onitsdiagonal,itisnotinvertible.
AB .Thediagonalentriesof A B are:3,5,6.
015 0016
050
AB .Thediagonalentriesof A B are:24,0,42.
25. Thematrixissymmetricifandonlyif 53 a .Inorderfor A tobesymmetric,wemusthave 8 a
26. Thematrixissymmetricifandonlyifthefollowingequationsmustbesatisfied
WesolvethissystembyGauss-Jordanelimination
1223 2110 1012
1012 2110 1223
1012 0114 0215
1012 0114 00113
1012 0114 00113
10011 0109 00113
Theaugmentedmatrixforthesystem.
Thefirstandthirdrowswereinterchanged.
2timesthefirstrowwasaddedtothesecondrow and1timesthefirstrowwasaddedtothethird.
2timesthesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby1
Thethirdrowwasaddedtothesecondrow and1timesthethirdrowwasaddedtothefirst.
Inorderfor A tobesymmetric,wemusthave 11 a , 9 b ,and 13 c .
27. Frompart(c)ofTheorem1.7.1,atriangularmatrixisinvertibleifandonlyifitsdiagonalentriesareallnonzero. Therefore,thegivenuppertriangularmatrixisinvertibleforanyrealnumber
28. Frompart(c)ofTheorem1.7.1,atriangularmatrixisinvertibleifandonlyifitsdiagonalentriesareallnonzero. Therefore,thegivenlowertriangularmatrixisinvertibleforanyrealnumber x suchthat
29. ByTheorem1.7.1,1 A isalsoanuppertriangularorlowertriangularinvertiblematrix.Itsdiagonalentriesmustall benonzero-theyarereciprocalsofthecorrespondingdiagonalentriesofthematrix A
30. ByTheorem1.4.8(e), ATTT BBA .Thereforewehave:
BTTTT BBBBB ,and
32. Forexample
since A issymmetric.
A (therearesevenotherpossibleanswers,e.g.,
122050182250102153 021030081230001133 020040080240000143 AB
21217 0210 0012 .Sincethisisanuppertriangularmatrix,wehaveverifiedTheorem1.7.1(b).
34. (a) Theorem1.4.8(e)statesthat ATTT BBA (ifthemultiplicationcanbeperformed).Therefore,
whichshowsthat2 A issymmetric. (b)
2 222 Th.Th.and 1.4.81.4.8are (b-d)(e)symmetric 23232323 TTTTTTT AI AAIAAIAAIAAI whichshowsthat 2 23AAI issymmetric.
35. (a)
issymmetric,thereforeweverifiedTheorem1.7.4.
217010 374001
Theidentitymatrixwasadjoinedtothematrix A
2timesthefirstrowwasaddedtothesecondrowand 3timesthefirstrowwasaddedtothethirdrow.
123100 015301 031210
123100 015301 031210
Thesecondandthirdrowswereinterchanged.
Thesecondrowwasmultipliedby1
3timesthesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby114.
1113 141414
1939 141414 1351 141414 1113 141414
5timesthethirdrowwasaddedtothesecondrowand 3timesthethirdrowwasaddedtothefirstrow.
2timesthesecondrowwasaddedtothefirstrow.
Thisisazeromatrixwheneverthevalueof a , b ,and c iseither4or1.Weconcludethatthefollowingareall 33diagonalmatricesthatsatisfytheequation:
400400400100 040,040,010,040, 004001004004
400100100100 010,040,010,010 001001004001
37. (a)
2222 jiij ajiija forall i and j therefore A issymmetric. (b)
22 ji aji doesnotgenerallyequal 22 ij aij for
(c)
2222 jiij ajiija forall i and j therefore A issymmetric. (d)
2322 ji aji doesnotgenerallyequal
2322 ij aij for ij therefore A isnotsymmetric(unless
Thefirstandthethirdequationsyield
Substitutingtheseintothesecondequationleadsto
Weconcludethattheonlyuppertriangularmatrix A
40. (a)
Step1.Solve
Step2.Solve
(b)
Step1.Solve
Step2.Solve
Theaugmentedmatrix
44.
23102 35503 58605 00010 hasthereducedrowechelonform
101001 01700 00010 00000 .
Ifweassign c thearbitraryvalue t ,thegeneralsolutionisgivenbytheformulas
whichdoesnotgenerally equal AB .(Theproductofskew-symmetricmatricesthatcommuteissymmetric.)
1 2 AT A issymmetricsince
1 2 AT A isskew-symmetricsince
thereforetheresultfollowsfromtheidentity
11 22ATTAAAA
45. (a)
1 T A
1 TA
1 A
1 A
(b) TTA
A
TA
Theorem1.4.9(d)
Theassumption: A isskew-symmetric
Theorem1.4.7(c)
Theorem1.4.8(a)
Theassumption: A isskew-symmetric AT B
TTAB
AB
AB
Theorem1.4.8(b)
Theassumption: A and B areskew-symmetric
Theorem1.4.1(h)
AT B
TTAB
AB
AB
Theorem1.4.8(c)
Theassumption: A and B areskew-symmetric
Theorem1.4.1(i)
kAT TkA
kA
kA
Theorem1.4.8(d)
Theassumption: A isskew-symmetric
Theorem1.4.1(l) 47.
True-False Exercises
(a) True.Everydiagonalmatrixissymmetric:itstransposeequalstotheoriginalmatrix.
(b) False.Thetransposeofanuppertriangularmatrixisa lower triangularmatrix.
(c) False.E.g.,
(d) True.Mirrorimagesofentriesacrossthemaindiagonalmustbeequal-seethemarginnotenexttoExample4.
(e) True.Allentriesbelowthemaindiagonalmustbezero.
(f) False.ByTheorem1.7.1(d),theinverseofaninvertiblelowertriangularmatrixisalowertriangularmatrix.
(g) False.Adiagonalmatrixisinvertibleifandonlyifalloritsdiagonalentriesarenonzero(positiveornegative).
(h) True.Theentriesabovethemaindiagonalarezero.
(i) True.If A isuppertriangularthen TA islowertriangular.However,if A isalsosymmetricthenitfollowsthat T AA mustbebothuppertriangularandlowertriangular.Thisrequires A tobeadiagonalmatrix.
(j) False.Forinstance,neither
(k) False.Forinstance,neither
(l) False.Forinstance,
00 10 A isnotsymmetriceventhough
200 00 A is.
(m) True.ByTheorem1.4.8(d), TTkAkA .Since kA issymmetric,wealsohave T kAkA .Fornonzero k the equalityoftherighthandsides T kAkA implies T AA .
1.8 Matrix Transformations
1. (a) A TAxx mapsanyvector x in2 R intoavector A wx in3 R .
Thedomainof AT is2 R ;thecodomainis3 R .
(b)
(c)
(d)
2. (a)
A TAxx mapsanyvector x in3 R intoavector A wx in2 R .
Thedomainof AT is3 R ;thecodomainis2 R
A TAxx mapsanyvector x in3 R intoavector A wx in3 R
Thedomainof AT is3 R ;thecodomainis3 R
A TAxx mapsanyvector x in6 R intoavector A wx in 1 RR
Thedomainof AT is6 R ;thecodomainis R
A TAxx mapsanyvector x in5 R intoavector A wx in4 R
Thedomainof AT is5 R ;thecodomainis4 R .
(b) A TAxx mapsanyvector x in4 R intoavector A wx in5 R .
Thedomainof AT is4 R ;thecodomainis5 R .
(c) A TAxx mapsanyvector x in4 R intoavector A wx in4 R .
Thedomainof AT is4 R ;thecodomainis4 R
(d) A TAxx mapsanyvector x in 1 RR intoavector A wx in3 R
Thedomainof AT is R ;thecodomainis3 R
3. (a) Thetransformationmapsanyvector x in2 R intoavector w in2 R Itsdomainis2 R ;thecodomainis2 R
(b) Thetransformationmapsanyvector x in2 R intoavector w in3 R . Itsdomainis2 R ;thecodomainis3 R .
4. (a) Thetransformationmapsanyvector x in3 R intoavector w in3 R . Itsdomainis3 R ;thecodomainis3 R .
(b) Thetransformationmapsanyvector x in3 R intoavector w in2 R Itsdomainis3 R ;thecodomainis2 R
5. (a) Thetransformationmapsanyvector x in3 R intoavectorin2 R Itsdomainis3 R ;thecodomainis2 R
(b) Thetransformationmapsanyvector x in2 R intoavectorin3 R Itsdomainis2 R ;thecodomainis3 R
6. (a) Thetransformationmapsanyvector x in2 R intoavectorin2 R . Itsdomainis2 R ;thecodomainis2 R
(b) Thetransformationmapsanyvector x in3 R intoavectorin3 R . Itsdomainis3 R ;thecodomainis3 R
7. (a) Thetransformationmapsanyvector x in2 R intoavectorin2 R . Itsdomainis2 R ;thecodomainis2 R .
(b) Thetransformationmapsanyvector x in3 R intoavectorin2 R . Itsdomainis3 R ;thecodomainis2 R .
8. (a) Thetransformationmapsanyvector x in4 R intoavectorin2 R . Itsdomainis4 R ;thecodomainis2 R .
(b) Thetransformationmapsanyvector x in3 R intoavectorin3 R . Itsdomainis3 R ;thecodomainis3 R .
9. Thetransformationmapsanyvector x in2 R intoavectorin3 R .Itsdomainis2 R ;thecodomainis3 R
10. Thetransformationmapsanyvector x in3 R intoavectorin4 R .Itsdomainis3 R ;thecodomainis4 R
11. (a) Thegivenequationscanbeexpressedinmatrixformas
(b) Thegivenequationscanbeexpressedinmatrixformas
12. (a) Thegivenequationscanbeexpressedinmatrixformas
(b) Thegivenequationscanbeexpressedinmatrixformas
15. Thegivenequationscanbeexpressedinmatrixformas
Bymatrixmultiplication,
24112142w
33122143w
21. (a) If
(b) If
22. (a) If
1212121212 ,2,2, TkTkukukukukukukuuuukT uu
123 ,, uuu u and
123 ,, vvv v then
112233 ,, TTuvuvuv uv
11331122 ,, uvuvuvuv
13121312 ,,,, uuuuvvvv
TTuv
12313121312 ,,,,,, TkTkukukukukukukukuuuukT uu .
23. (a) Thehomogeneitypropertyfailstoholdsince 222 (,)((),)(,) Tkxkykxkykxky doesnotgenerallyequal
22 ,,, kTxykxykxky .(Itcanbeshownthattheadditivitypropertyfailstoholdaswell.)
(b) Thehomogeneitypropertyfailstoholdsince
2 ,,,,,, Tkxkykzkxkykxkzkxkykxz doesnotgenerally equal
,,,,,, kTxyzkxyxzkxkykxz .(Itcanbeshownthattheadditivitypropertyfailstoholdaswell.)
24. (a) Thehomogeneitypropertyfailstoholdsince
,,1Tkxkykxky doesnotgenerallyequal
,,1, kTxykxykxkyk .(Itcanbeshownthattheadditivitypropertyfailstoholdaswell.)
(b) Thehomogeneitypropertyfailstoholdsince
123123 ,,,, Tkxkxkxkxkxkx doesnotgenerallyequal
123123123 ,,,,,, kTxxxkxxxkxkxkx .(Itcanbeshownthattheadditivitypropertyfailstoholdas well.)
25. Thehomogeneitypropertyfailstoholdsincefor 0 b ,
fkxmkxb doesnotgenerallyequal
kfxkmxbkmxkb .(Itcanbeshownthattheadditivitypropertyfailstoholdaswell.)
Ontheotherhand,bothpropertiesholdfor 0 b :
fxymxymxmyfxfy and
fkxmkxkmxkfx
Consequently, f isnotamatrixtransformationon R unless 0 b
26. BothpropertiesofTheorem1.8.2holdfor
,0,0Txy :
,,,0,00,00,0,, TxyxyTxxyyTxyTxy
,,0,00,0, TkxyTkxkykkTxy
Ontheotherhand,neitherpropertyholdsingeneralfor
,1,1Txy ,e.g.,
,,x,1,1TxyxyTxyy doesnotequal
.ByFormula(13),thestandardmatrixfor
38. (a)
39. ByFormula(13),thestandardmatrixfor
(a)
(b) Since A T isamatrixtransformation,
43. Reflectionaboutthe x y -plane:
sinsin).Thegeometriceffectofmultiplying TA by x istorotatethevectorthroughtheangle (i.e., torotatethroughtheangle clockwise).
Theidentitymatrixwasadjoinedtotheoriginalmatrix.
2timesthefirstrowwasaddedtothethirdrow.
Thesecondrowwasaddedtothethirdrow.
Thethirdrowwasmultipliedby1 7
Thethirdrowwasaddedtothesecondrow.
3timesthethirdrowwasaddedtothefirstrow.
1timesthesecondrowwasaddedtothefirstrow.
Likewise,
Therefore,thestandardmatrixforTis
47. Theterminalpointofthevectorisfirstrotatedabouttheoriginthroughtheangle ,thenitis translatedbythevector0 x .No,thisisnotamatrixtransformation,forinstanceitfailstheadditivity property:
49. Since
22 cossincos2and
effectofmultiplying A by x istorotatethevectorthroughtheangle 2.
True-False Exercises
(a) False.Thedomainof A T is3 R .
(b) False.Thecodomainof A T is m R .
(c) True.Sincethestatementrequiresthegivenequalitytoholdfor some vector x in n R ,wecanlet 0 x
(d) False.(RefertoTheorem1.8.3.)
(e) True.Thecolumnsof A are 0 Ti e .
(f) False.Thegivenequalitymustholdforeverymatrixtransformationsinceitfollowsfromthehomogeneityproperty.
(g) False.Thehomogeneitypropertyfailstoholdsince
Tkkxxb doesnotgenerallyequal
1. (a) FromTables1and3inSection1.8,
Forthesetransformations,
(b) FromTable1inSection1.8,
FromTable3inSection1.8,
Forthesetransformations,
(b) FromTables5and1inSection1.8,
Forthesetransformations,
3. FromTables2and4inSection1.8,
4. FromTable4inSection1.8,
7. (a) Wearelookingforthestandardmatrixof 21TTT where1 T isarotationof 90and2 T isareflectionabout theline yx .FromTables5and1inSection1.8,
(b) Wearelookingforthestandardmatrixof 21TTT where1 T isanorthogonalprojectionontothe y -axisand 2T isarotationof 45abouttheorigin.FromTables3and5inSection1.8,
(c) Wearelookingforthestandardmatrixof 21TTT where1 T isareflectionaboutthe x -axisand2 T isa rotationof 60abouttheorigin.FromTables1and5inSection1.8,
(a) Wearelookingforthestandardmatrixof
321 TTTT where1 T isarotationof 60,2
(b) Wearelookingforthestandardmatrixof 321 TTTT where1 T isanorthogonalprojectionontothex-axis,
2T isarotationof 45,and3 T isareflectionaboutthe y -axis.FromTables3,5,and1inSection1.8,
(c)
Wearelookingforthestandardmatrixof 321 TTTT where1 T isarotationof 15,2 T isarotationof
105,and3 T isarotationof 60.Theneteffectofthethreerotationsisasinglerotationof
1510560180.FromTable5inSection1.8,
9. (a) Wearelookingforthestandardmatrixof 21TTT where1 T isareflectionaboutthe yz -planeand2 T isan orthogonalprojectionontothe x z -plane.FromTables2and4inSection1.8,
(b) Wearelookingforthestandardmatrixof 21TTT where1 T isareflectionaboutthe x y -planeand2 T isan orthogonalprojectionontothe x y -plane.FromTables2and4inSection1.8,
(c) Wearelookingforthestandardmatrixof
21TTT where1 T isanorthogonalprojectiononthe x y -planeand 2T isareflectionaboutthe yz -plane.FromTables4and2inSection1.8,
10. (a) Wearelookingforthestandardmatrixof 321 TTTT where1 T isareflectionaboutthe x y -plane,2 T isan orthogonalprojectionontothe x z -plane,and3 T isthetransformationsuchthat
FromTables2and4insection1.8,
Invectorform,
(b) Wearelookingforthestandardmatrixof
where1 T isareflectionaboutthe x y -plane,2 T isa reflectionaboutthe x z -plane,and3 T isanorthogonalprojectiononthe yz -plane.FromTables2and4in Section1.8,
(c) Wearelookingforthestandardmatrixof
where1 T isanorthogonalprojectionontothe yzplane,2 T isthetransformationsuchthat
,and3 T isareflectionaboutthe x y -plane.
FromTables4and2insection1.8,
12. (a) Invectorform,
Likewise,
isnotdefinedbecausetheoutputsfrom2 T arevectorsin4 R buttheinputsfor1 T arevectorsin2 R
theinverse:
4timesthesecondrowwassubtractedfromthefirstrow.
Sinceweobtainedarowofzerosontheleftside,theoperatorisnotone-to-one.
Theidentitymatrixwasadjoinedtothecoefficientmatrix.
2timesthefirstrowwasaddedtothesecondrowandthe firstrowwasaddedtothethirdrow.
Thesecondrowwassubtractedfromthethirdrow.
Sinceweobtainedarowofzerosontheleftside,theoperatorisnotone-to-one.
(a)
1121 2122 2323 551 wxxx wxxx ;thestandardmatrixis
23 51.UsingTheorem1.5.3(c),weattemptto findtheinverse:
2310 5101Theidentitymatrixwasadjoinedtothecoefficientmatrix.
17013 5101
3timesthesecondrowwasaddedtothefirstrow.
13 101717 5101Thefirstrowwasmultipliedby117
13 1717 52 1717 10 01
5timesthefirstrowwassubtractedfromthesecondrow.
Sincethereducedrowechelonformoftheoperator’sstandardmatrixistheidentity,theoperatorisinvertible.
UsingTheorem1.5.3(c),weattempttofindtheinverse:
123100 253010 108001
123100 013210 025101
Theidentitymatrixwasadjoinedtothematrix A
2timesthefirstrowwasaddedtothesecondrowand thefirstrowwassubtractedfromthethirdrow.
2timesthesecondrowwasaddedtothethirdrow.
001521
123100 013210 001521
Thesecondrowwasmultipliedby1
001521
3timesthethirdrowaddedtothesecondrowand3 timesthethirdrowwassubtractedfromthefirstrow.
2timesthesecondrowwassubtractedfromthefirst row.
Sincethereducedrowechelonformoftheoperator’sstandardmatrixistheidentity,theoperatorisinvertible.
Theorem1.4.5thattheoperatorisinvertible;
Theorem1.4.5thattheoperatorisnotinvertible. 20. (a)
sincethereducedrowechelonformofthematrix
,itfollows fromTheorem1.5.3(c)thattheoperator T isinvertible.Therefore,thestandardmatrixof1 T is
Addingrow1torow2followedbyaddingrow2torow3inthereducedrowechelonformofthematrix
025110 000101 ,itfollowsfromTheorem1.5.3(c)thattheoperator T isnotinvertible.
21. (a) FromTable1inSection1.8,thestandardmatrixis
10 01 ;since 10 10 01,thematrixoperatoris invertible.Theinverseisalsoareflectionaboutthe x -axis.
(b) FromTable5inSection1.8,thestandardmatrixis
13 22 31 22 cos60sin60 sin60cos60 .Since 13 22 31 22 10, thematrixoperatorisinvertible.Theinverseisarotationof 60(equivalentto 300)abouttheorigin.
(c) FromTable3inSection1.8,thestandardmatrixis
10
;since 10 0 00,thematrixoperatorisnot invertible.
22. (a) FromTable1inSection1.8,thestandardmatrixis
10 10 ,the matrixoperatorisinvertible.Theinverseisalsoareflectionabouttheline yx
(b) FromTable3inSection1.8,thestandardmatrixis
00 01 ;since 00 0 01,thematrixoperatorisnot invertible.
(c) Thestandardmatrixis
01,thematrixoperatorisinvertible.Theinverseisalsoa reflectionabouttheorigin.
23. (a) Since 12 10 11,itfollowsfromTheorem1.4.5thattheoperator AT isinvertible;
AT
(b) Since 11 0 11,itfollowsfromTheorem1.4.5thattheoperator AT isnotinvertible.
24. (a) Sincethereducedrowechelonformofthematrix
fromTheorem1.5.3thattheoperator AT isnotinvertible.
(b) Sincethereducedrowechelonformofthematrix
fromTheorem1.5.3thattheoperator AT isinvertible.
AT x
25. (a) Invectorform,
01x x,y. 10y A Ty x Thegeometriceffectofapplying thistransformationto x istoreflect x about yx andthentoreflecttheresultaboutthe origin.
(b) Forinstance,if
26. (a) Since
(thestandardmatrixofthereflectionabout yx )and
(thestandardmatrixofthereflectionabouttheorigin)then
22 cossincos2and
2sincossin2,wehave
cos2sin2 sin2cos2 A .Thegeometriceffectofapplyingthistransformationto x istorotatethevector throughtheangle 2.
(b) Forinstance,if
True-False Exercises
cossin sincos B (thestandardmatrixoftherotationthroughanangle )then
(a) False.Forinstance,Example2showstwomatrixoperatorson2 R whosecompositionisnotcommutative.
(b) True.ThisisstatedasTheorem1.9.1.
(c) True.ThiswasestablishedinExample3.
(d) False.Forinstance,compositionofanyreflectionoperatorwithitselfistheidentityoperator,whichisnota reflection.
(e) True.Thereflectionofavector
(f) False.ThisfollowsfromExample6.
abouttheline yx is
soasecondreflectionyields
(g) True.Thereflectionabouttheoriginisgivenbythetransformation T xx sothat T isitsowninverse. 1.10 Applications of
1. Therearefournodes,whichwedenoteby A , B , C ,and D (seethefigureontheleft).
Wedeterminetheunknownflowrates1 x ,2 x ,and3 x assumingthecounterclockwisedirection(ifanyofthese quantitiesarefoundtobenegativethentheflowdirectionalongthecorrespondingbranchwillbereversed).
Thissystemcanberearrangedasfollows
Byinspection,thissystemhasauniquesolution
.Thisyieldstheflowratesand directionsshowninthefigureontheright.
2. (a) Therearefivenodes–eachofthemcorrespondstoanequation.
Thissystemcanberearrangedasfollows
(b) Theaugmentedmatrixofthelinearsystemobtainedinpart(a)hasthereducedrowechelonform
100101150 010101175
00110150 000011200 0000000 .Ifweassign4 x and6 x thearbitraryvalues s and t ,respectively,thegeneral
solutionisgivenbytheformulas
(c) When 450 x and 60x ,theremainingflowratesbecome
Thedirectionsoftheflowagreewiththearroworientationsinthediagram.
3. (a) Therearefournodes–eachofthemcorrespondstoanequation.
NetworknodeFlowInFlowOut topleft300400 topright(A)750250 bottomleft100400 bottomright(B)200300 xx
Thissystemcanberearrangedasfollows
(b) Theaugmentedmatrixofthelinearsystemobtainedinpart(a)
hasthereducedrow echelonform
0011500 00000 .Ifweassign4 x thearbitraryvalue s ,thegeneralsolutionisgivenby
theformulas
(c) Inorderforall i x valuestoremainpositive,wemusthave 500 s .Therefore,tokeepthetrafficflowingon allroads,theflowfrom A to B mustexceed500vehiclesperhour.
4. (a) Therearesixintersections–eachofthemcorrespondstoanequation.
IntersectionFlowInFlowOut topleft500300 topmiddle200 topright100600 bottomleft400350 bottommiddle600 bottomright450400
Werewritethesystemasfollows
(b) Theaugmentedmatrixofthelinearsystemobtainedinpart(a)hasthereducedrowechelonform
100001050 0100001450 0010010750 0001011600 000010150 00000000 .Ifweassign6 x and7 x thearbitraryvalues s and t ,respectively,the generalsolutionisgivenbytheformulas
150 xs , 2450 xt , 3750 xs ,
4600 xst , 550 xt , 6 xs , 7 xt subject totherestrictionthatallsevenvaluesmustbenonnegative.Obviously,weneedboth 60sx and 70 tx , whichinturnimply 10x and 20x .Additionallyimposingthethreeinequalities 37500 xs ,
46000 xst ,and 5500 xt resultsinthesetofallowable s and t valuesdepictedinthegrey regiononthegraph.
(c) Setting 10x inthegeneralsolutionobtainedinpart(b)wouldresultinthenegativevalue 650sx whichisnotallowed(thetrafficwouldflowinawrongwayalongthestreetmarkedas6 x .)
5. FromKirchhoff'scurrentlawateachnode,wehave 1230. III Kirchhoff'svoltagelawyields
VoltageRisesVoltageDrops
LeftLoop(clockwise)226
RightLoop(clockwise)248 II II
12 23
(Anequationcorrespondingtotheouterloopisacombinationofthesetwoequations.)
Thelinearsystemcanberewrittenas
Itsaugmentedmatrixhasthereducedrowechelonform
Since2 I isnegative,thiscurrentisoppositetothedirectionshowninthediagram.
6. FromKirchhoff'scurrentlawateachnode,wehave 1230. III Kirchhoff'svoltagelawyields
LeftInsideLoop(clockwise)461 RightInsideLoop(clockwise)224
(Anequationcorrespondingtotheouterloopisacombinationofthesetwoequations.)
Thelinearsystemcanberewrittenas
Since1 I isnegative,thiscurrentisoppositetothedirectionshowninthediagram.
7. FromKirchhoff'scurrentlaw,wehave
Kirchhoff'svoltagelawyields
VoltageRisesVoltageDrops
LeftLoop(clockwise)102020
MiddleLoop(clockwise)20=20
RightLoop(clockwise)201020
(Equationscorrespondingtotheotherloopsarecombinationsofthesethreeequations.)
Thelinearsystemcanberewrittenas
Itsaugmentedmatrixhasthereducedrowechelonform
8. FromKirchhoff'scurrentlawateachnode,wehave 1230. III Kirchhoff'svoltagelawyields
Thecorrespondinglinearsystemcanberewrittenas
Itsaugmentedmatrixhasthereducedrowechelonform
9. Wearelookingforpositiveintegers123 ,, xxx ,and4 x suchthat
Thelinearsystem
Thegeneralsolutionis
10. Wearelookingforpositiveintegers12,,xx and3 x suchthat
Thenumberofatomsofcarbon,hydrogen,andoxygenonbothsidesmustequal:
11. Wearelookingforpositiveintegers123
Thenumberofatomsofcarbon,hydrogen,ox
Thelinearsystem
theunknownsoccurwhen
16. Wearelookingforapolynomialoftheform
Itsaugmentedmatrixhasthereducedrowechelonform
(a) Wearelookingforapolynomialoftheform
Itsaugmentedmatrixhasthereducedrowechelonform
Thegeneralsolutionofthelinearsystemis
isarbitrary. Consequently,thefamilyofallsecond-degreepolynomialsthatpassthrough 0,1and 1,2canbe representedby
112 pxtxtx where t isanarbitraryrealnumber.
(b)
True-False Exercises
(a) False.Ingeneral,networksmayormaynotsatisfythepropertyofflowconservationateachnode(althoughtheones discussedinthissectiondo).
(b) False.Whenacurrentpassesthrougharesistor,thereisadropintheelectricalpotentialinacircuit.
(c) True.
(d) False.Achemicalequationissaidtobebalancedif foreachtypeofatominthereaction,thesamenumberofatoms appearsoneachsideoftheequation.
(e) False.ByTheorem1.10.1,thisistrueifthepointshavedistinct x -coordinates.
1.11 Leontief Input-Output Models
1.
(b) TheLeontiefmatrixis
(b) TheLeontiefmatrixis
TheLeontiefequation
.Itsreducedrowechelonformis
Tomeettheconsumerdemand,theeconomymustproduce$300,000worthoffoodand$400,000worthof housing.
(b) TheLeontiefmatrixis
theoutsidedemandvectoris
TheLeontiefequation
0.900.600.401930
0.300.800.303860
0.400.100.805790
Itsreducedrowechelonformis
10031,500 01026,500 00126,300
Theproductionvectorthatwillmeetthegivendemandis
TheLeontiefmatrixis
TheLeontiefequation
Itsreducedrowechelonformis
Theproductionvectorthatwillmeetthegivendemandis
reducedrowechelonformis
arbitrarynonnegative t )tomeetthedemand.
vectorcannotbefoundtomeetthedemand.
(b) Mathematically,thelinearsystemrepresentedby
Clearly,if 20d thesystemhasinfinitelymanysolutions: 11 2 xd ; 2 xt where t isanarbitrary nonnegativenumber.
If 20d thesystemisinconsistent.(NotethattheLeontiefmatrixisnotinvertible.)
Aneconomicexplanationoftheresultinpart(a)isthat
2 0 1 c thereforethesecondsectorconsumesallof itsownoutput,makingitimpossibletomeetanyoutsidedemandforitsproducts.
Iftheopensectordemands k dollarsworthfromeachproduct-producingsector,i.e.theoutsidedemandvectoris
d k k k .TheLeontiefequation
xd IC leadstothelinearsystemwiththeaugmentedmatrix
.Itsreducedrowechelonformis
Weconcludethatthefirstsectormustproducethegreatestdollarvaluetomeetthespecifiedopensectordemand.
9. Fromtheassumption 211211 1 ccc ,itfollowsthatthedeterminantof
1 detdet1
inverseis
isnonzero.Consequently,theLeontiefmatrixisinvertible;its
.Sincetheconsumptionmatrix C hasnonnegativeentriesand
112112 10 ccc ,weconcludethatallentriesof 1 IC arenonnegativeaswell.Thiseconomyisproductive(see thediscussionaboveTheorem1.10.1)-theequation C xxd hasauniquesolution
1 IC xd forevery demandvector d
True-False Exercises
(a) False.Sectorsthatdo not produceoutputsarecalledopensectors.
(b) True.
(c) False.The i throwvectorofaconsumptionmatrixcontainsthemonetaryvaluesrequiredofthe i thsectorbythe othersectorsforeachofthemtoproduceonemonetaryunitofoutput.
(d) True.ThisfollowsfromTheorem1.11.1.
(e) True. Chapter 1 Supplementary
31041 20331Theoriginalaugmentedmatrix.
11312 20331 1timesthesecondrowwasaddedtothefirstrow.
11312 029152timesthefirstrowwasaddedtothesecondrow.
95 1 222 11312 01Thesecondrowwasmultipliedby1 2
Thismatrixisinrowechelonform.Itcorrespondstothesystemofequations
Solvetheequationsfortheleadingvariables
thensubstitutethesecondequationintothefirst
Ifweassign3 x and4 x thearbitraryvalues s and t ,respectively,thegeneralsolutionisgivenbytheformulas
Theoriginalaugmentedmatrix.
2timesthefirstrowwasaddedtothesecondrowand3 timesthefirstrowwasaddedtothethirdrow.
Thismatrixisbothinrowechelonformandinreducedrowechelonform.Itcorrespondstothesystemofequations
Ifweassign2 x anarbitraryvalue t ,thegeneralsolutionisgivenbytheformulas
Theoriginalaugmentedmatrix.
Thefirstrowwasmultipliedby1 2
2 123 08511 0113
2 123 0113 08511
4timesthefirstrowwasaddedtothesecondrow.
Thesecondandthirdrowswereinterchanged.
sincethethirdequationiscontradictory.(Wecouldhaveperformedadditionalelementaryrowoperationstoobtaina
Theaugmentedmatrixcorrespondingtothesystem.
6. Webreakupthesolutionintothreecases: CaseI: cos0and sin0
Thesecondrowwasmultipliedby3 5
sin coscos 1 sincos x y
sin coscos 1sin coscos 1 0 x yx
sin coscos 1 01cossin x yx
10cossin 01cossin xy yx
Theaugmentedmatrixcorrespondingtothesystem.
Thefirstrowwasmultipliedby 1 cos
sintimesthefirstrowwasaddedtothesecond (
22 sincos1 coscoscos).
Thesecondrowwasmultipliedby cos
sin cos timesthesecondrowwasaddedtothefirstrow (
22 sincos coscoscos cos) xxxx
Thesystemhasexactlyonesolution:
cossinxxy and sincosyxy .
CaseII: cos0whichimplies 2 sin1.Theoriginalsystembecomes
sin xy ,
sin yx .Multiplying bothsidesoftheeachequationby sinyields
sin,sinxyyx
CaseIII: sin0,whichimplies 2 cos1.Theoriginalsystembecomes
cos xx ,
cos yy .Multiplying bothsidesofeachequationby cosyields cos xx ,
cos. yy
NoticethatthesolutionfoundincaseI
cossinxxy and
actuallyappliestoallthreecases.
1119 151044Theoriginalaugmentedmatrix.
1119 04935 1timesthefirstrowwasaddedtothesecondrow.
935 44 1119 01Thesecondrowwasmultipliedby1 4
51 44 935 44 10 011timesthesecondrowwasaddedtothefirstrow.
Ifweassign z anarbitraryvalue t ,thegeneralsolutionisgivenbytheformulas
15359 ,,4444 xtytzt
Thepositivityofthethreevariablesrequiresthat 15 440 t , 359 440 t ,and 0 t .Thefirstinequalitycanbe rewrittenas 1 4 t ,whilethesecondinequalityisequivalentto 35 9 t .Allthreeunknownsarepositivewhenever
3509 t .Therearethreeintegervaluesof tz inthisinterval:1,2,and3.Ofthose,only 3 zt yieldsinteger valuesfortheremainingvariables: 4 x , 2 y .
8. Let,, xy and z denotethenumberofpennies,nickels,anddimes,respectively.Sincethereare13coins,wemust have 13. xyz
Ontheotherhand,thetotalvalueofthecoinsis83centssothat 51083.xyz
Theresultingsystemofequationshastheaugmentedmatrix
59 42 935 42 10 01
11113 151083 whosereducedrowechelonformis
Ifweassign z anarbitraryvalue t ,thegeneralsolutionisgivenbytheformulas
95359 ,,2424 xtytzt
However,allthreeunknownsmustbenonnegativeintegers. Thenonnegativityof x requirestheinequality 95 240 t ,i.e., 18 5 t
Likewisefor y , 359 240 t yields 70 9 t
When 1870 59 t ,allthreevariablesarenonnegative.Ofthefourinteger tz valuesinsidethisinterval(4,5,6, and7),only 6 tz yieldsintegervaluesfor x and y .
Weconcludethattheboxhastocontain3pennies,4nickels,and6dimes.
02 44 02 ab aa ab
02 042 02 ab ab ab
02 042 0022 ab ab bb
Theaugmentedmatrixforthesystem.
1timesthefirstrowwasaddedtothesecondrow.
1timesthesecondrowwasaddedtothethirdrow.
(a) thesystemhasauniquesolutionif 0 a and 2 b (multiplyingtherowsby1 a , 1 a ,and12 b ,respectively, yieldsarowechelonformoftheaugmentedmatrix
(b) thesystemhasaone-parametersolutionif 0 a and 2 b (multiplyingthefirsttworowsby 1 a yieldsa reducedrowechelonformoftheaugmentedmatrix
(c) thesystemhasatwo-parametersolutionif 0 a and 2 b
(thereducedrowechelonformoftheaugmentedmatrixis
(d) thesystemhasnosolutionif 0 a and 2 b
(thereducedrowechelonformoftheaugmentedmatrixis
0011 0000 0000 ).
0010 0001 0000 ).
Fromquadraticformulawehave
Thesystemhasnosolutionswhen
(sincethethirdrowofourlastmatrixwouldthencorrespondto acontradictoryequation).
Thesystemhasinfinitelymanysolutionswhen
Novaluesof a resultinasystemwithexactlyonesolution. 11. Fortheproduct AKB tobedefined, K mustbea
Thematrixequation AKBC canberewrittenasasystemofninelinearequations
whichhasauniquesolution 0 a ,
2 b ,
1 c ,
1 d .(Aneasywaytosolvethissystemistofirstsplititintotwo smallersystems.Thesystem 288 ac , 466 ac , 244 ac involves a and c only,whereasthe remainingsixequationsinvolvejust b and d .)Weconcludethat
12. Substitutingthevalues 1, x 1 y ,and 2 z intotheoriginalsystemyieldsasystemofthreeequationsinthe unknowns,, ab and c :
323 2121 3123 ab bc ac thatcanberewrittenas
3 21 20 ab bc ac Theaugmentedmatrixofthissystemhasthereducedrowechelonform
1002 0101 0011 .Weconcludethatforthe originalsystemtohave 1 x , 1 y ,and 2 z asitssolution,wemustlet 2, a 1 b ,and 1 c . (Notethatitcanalsobeshownthatthesystemwith 2,
,and 2 z asits only solution.Onewaytodothatwouldbetoverifythatthereducedrowechelonformofthecoefficientmatrixofthe originalsystemwiththesespecificvaluesof,ab and c istheidentitymatrix.) 13. (a) X mustbea 23matrix.Letting
thereforethegivenmatrixequationcanberewrittenasasystemoflinearequations:
Theaugmentedmatrixofthissystemhasthereducedrowechelonform
sothesystemhasauniquesolution
(Analternativetodealingwiththislargesystemistosplititintotwosmallersystemsinstead:thefirstthree equationsinvolve a , b ,and c only,whereastheremainingthreeequationsinvolvejust d , e ,and f . Sincethecoefficientmatrixforbothsystemsisthesame,wecanfollowtheprocedureofExample2in Section1.6;the
reducedrowechelonformofthematrix
Yetanotherwayofsolvingthisproblemwouldbetodeterminetheinverse
usingthemethodintroducedinSection1.5,thenmultiplybothsidesofthe givenmatrixequationontherightbythisinversetodetermine X :
Theaugmentedmatrixofthissy
(Analternativetodealingwiththislargesystemistosplititintotwosmallersystemsinstead:thefirstthree equationsinvolve a and b only,whereastheremainingthreeequationsinvolvejust c and d .Sincethe coefficientmatrixforbothsystemsisthesame,wecanfollowtheprocedureofExample2inSection1.6;
thereducedrowechelonformofthematrix
Theaugmentedmatrixofthissystemhasthereducedrowechelonform
15. Wearelookingforapolynomialoftheform
Itsaugmentedmatrixhasthereducedrowechelonform
0 429 40 abc abc ab
Thereducedrowechelonformoftheaugmentedmatrixofthissystemis
1001 0104 0015 .Therefore,thevalues
1 a , 4 b ,and 5 c resultinapolynomialthatsatisfiestheconditionsspecified.
17. Whenmultiplyingthematrix n J byitself,eachentryintheproductequals n .Therefore, nnn JJnJ
1 1 nn n IJIJ
211 11nnnnnn IIJJIJJ
I
11 11nnnnnn JJJJ
I 11 11nnnn JJJJ nn
I
Theorem1.4.1(f)and(g)
Property AIIAA inSection1.4
Theorem1.4.1(m)
1 11 n nnnnn JJJ nnn JJnJ
1 11 1 n nnn IJ
11 111 nn nnnn IJ
I
Theorem1.4.1(j)and(k)