solution manual An Introduction to Biomechanics Solids and Fluids, Analysis and Design Humphrey O'Ro

Page 1


Forsynthesis,the k in [ ] [ ] dCdtkC =− isequalto. s k Fordegradation, k is. d k Thus

wehave [ ] [] [ ] [] and,sd sd dCdC kCkC dtdt ==−

whichif

⇒=−

dC kCkC dt

⇒=−

dC kkC dt

⇒=

[ ] [ ] [ ] [] [][] [] () [] [] [] sd sd sd o dCdC dC dtdtdt

dC kC dt =+

where o k istheoverallreactionrate.Integratingwithrespecttotime,wehave

dC dtkCdt dt

dCkCtc

⇒=+

⇒−=

⇒==

CkCtc ktCc cc C ktkkt = ⇒=+

[ ] [] [][] [][] () [] [] () 1 1 1 11 1 11, o o o o osd

∫ wherewecouldcalculate1 c ifweweregivenaninitialconcentration.Notethatif

sdsd

sdsd

sdsd

1.17 (xx-Insertfigureshowingset-up)

Letpoint p beapointhalfwaybetweentheappliedforces.Forconvenience,letthepoint belocatedattheoriginofa2-DCartesiancoordinatesystem,withtheappliedforceslocatedat

2 x d = and2, x d =− andtheforcesorientedinthe y directionsuchthat1 ˆ F = Fj and 2 ˆ F =− Fj Computingthemomentsatpoint p,wehave ) 1122, p =×+× ∑ MrFrF whereat p, 1 ˆ 12 ri d = and2

Ifwechooseanarbitrarypoint a locatedbythevector

but ˆˆ , ×= 0 jj leavinguswith

1.18

UsingtheequationsfoundinexampleA1.2,wehave

andtherefore,

0,0,and.xyz T R RRT =−=− ⇒===− RFk

Similarly,forthereactionmoments,wehave ()() ()() ()() 0 00 0000 ,0,and0. xAyAz yAzAx zAxAy xyz MzFyFLLT MxFzFTL

⇒=++=

⇒=−−

⇒=−−

⇒=−− e

(xx-Insert3-Ddiagramshowinganglesalpha,beta,andgammafrom x, y,and z axes, respectively). If ˆˆˆ ˆ coscoscos, α =++βγei j k then ( ) ( ) ( ) 222 2222 122 122 122 ˆ1coscoscos 1coscoscos1 cos1coscos cos1coscos cos1coscos. α βγ αβγ α βγ β αγ γ αβ ==++

Fora2-Dproblem, ˆˆ ˆ coscos, α β =+ eij andthusthecos z AA γ = termmustequalzero, i.e.2. γ π = Thuswehave ( ) ( ) 222 cos01coscos11 2 a π β

==−−=−

wherefor2-D,22ˆ1coscos. α β ==+ e Thustherelationshipbetweenanglesholdsifthe problemisstrictly2-D.

1.20

Becauseapincannotsupportareactionmoment,themomentscreatedby1 F and2 F mustbalance.Therefore,ifweuseastandardCartesiancoordinatesystem,wehave

1.21

(xx-InsertFBDofweightmass mw,gravityforcein–j direction,force T1in j direction)

(xx-InsertFBDofloadcell-force T2in i direction)

(xx-InsertFBDofpulley, T2in–i, T1in–j,reactionforceatanglealpha)

Assumingaweightlesspulleyandsupport,andthatthepulleyisideal(frictionless)i.e.

12, = TT wehavefromthefreebodydiagram(FBD)oftheweight,

Thus219.8ms9.8N, ww Tgmm === where w m isthemassoftheweightinkilogramsandthe gravitationalconstantisapproximatedby9.8m/s2.Therefore,theforceappliedtotheforce

transduceris219.8N. w TTm ==

FromtheFBDofthepulleysupport,wehaveareactionforce

cossin,rr α α =+ rij whichgivesus

Themagnitudeof r isthus2 21 T orientedalongtheaxisofthesupport.

Inadditiontosupportingforces,thebaseofthepulleysupport, r,canalsosustaina reactionmoment,givingus

Notethatif α =45o,cossin, α α = andthusthereisnoreactionmomentatthebaseofthepulley support. 1.22

(xx-insertFBDofblock,withcoordinatesystemorientedonslant)

(xx-insertdecompositionofgravityinto x and y directions)

Theblockisinequilibriumjustbeforeitbeginstoslip.Therefore,usingeq(A1.8),we have

1.23

(xx-InsertFBDofentiretruss,withjointsidentifiedasa(thetoprightjoint),b(thebottomleft joint),c(topleftjoint),andd(bottomrightjoint))

(xx-InsertFBDofeachofthefourpointsofinterest(4panelfigure))

Bygeometry,theangleswithintheequilateraltriangleareall60o,andtheothertriangle isa30o-60o-90otriangle,withsideshavingalengthof L/2,32, L and L.(Usefultrigonometric quantities: ()() sin60cos3032, °=°= ( ) ( ) sin30cos6012. °=°= )Notethattherollercan onlyproduceareactionforceperpendiculartotheplaneoftheroller,andthepinconnections foundthroughoutthetrusscanonlysupportreactionforces,notmoments.

Fortheentiretruss,wehave

Inordertofullydefine ay R and, Rby wemustintroduceanotherequation,inthiscaseasumof moments.Takingthesumofmomentsaboutpoint b,wehave

Bymakingfictitiouscutsbetweenthepointsofinterest,wecandeterminetheforces placedontheindividualpins.Theforcesonthemembersareequalandoppositethatenforcedon thembythepins.Althoughweconsiderthepointsinisolation,theforcesfeltateachpinare relatedsuchthat11, ac FF = 21,ad FF = 13,bc FF = 23,bd FF = and22. cd FF = Summingourforces, wehave

whereweseethat13 bc FF = asitshould.

whereweseethat23, bd FF = and22 cd FF = asexpected.

Finally,thediagonalmembersareincompression,becausetheforcesactingonthepins arenegative(andthustheforcesonthemembersactintothemembers,orarepositive),whilethe verticalmemberandthebottomhorizontalmemberareintension,becausetheforcesactingon thepinsarepositive(andthustheforcesonthemembersactoutofthemembers,orare negative).Thetophorizontalmember,onwhichnoforceacts,isneitherintensionnor compression.

(xx-Insertfigureshowingelementsintensionandcompression)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.