Fundamentals of Heat and Mass Transfer Bergman 7th Edition Solutions Manual

Page 1


PROBLEM1.1

KNOWN:Thermalconductivity,thicknessandtemperaturedifferenceacrossasheetofrigid extrudedinsulation.

FIND:(a)Theheatfluxthrougha2m×2msheetoftheinsulation,and(b)Theheatrate throughthesheet.

SCHEMATIC:

k=0.029 ⋅ W mK x L=20mm

ASSUMPTIONS:(1)One-dimensionalconductioninthex-direction,(2)Steady-state conditions,(3)Constantproperties.

ANALYSIS:FromEquation1.2theheatfluxis

12 x qdTT-T =-k=kdxL

Solving, " x W10K q=0.029×mK0.02m ⋅ x2 W q=14.5 m ′′ <

Theheatrateis 2 xx2 W q=qA=14.5×4m=58W m

<

COMMENTS:(1)Besuretokeepinmindtheimportantdistinctionbetweentheheatflux (W/m2)andtheheatrate(W).(2)Thedirectionofheatflowisfromhottocold.(3)Notethat atemperaturedifferencemaybeexpressedinkelvinsordegreesCelsius.

PROBLEM1.2

KNOWN:Thicknessandthermalconductivityofawall.Heatfluxappliedtoonefaceand temperaturesofbothsurfaces.

FIND:Whethersteady-stateconditionsexist.

SCHEMATIC:

L=10mm

q”=20W/m2

k=12W/m·K T1=50°C T2=30°C

ASSUMPTIONS:(1)One-dimensionalconduction,(2)Constantproperties,(3)Nointernalenergy generation.

ANALYSIS:Understeady-stateconditionsanenergybalanceonthecontrolvolumeshownis

2inoutcond12()/12W/mK(50C30C)/0.01m24,000W/m qqqkTTL ′′′′′′===−=⋅°−°=

Sincetheheatfluxinattheleftfaceisonly20W/m2,theconditionsarenotsteadystate.<

COMMENTS:Ifthesameheatfluxismaintaineduntilsteady-stateconditionsarereached,the steady-statetemperaturedifferenceacrossthewallwillbe

ΔT=/202W/m0.01m/12W/mK0.0167KqLk′′=×⋅= whichismuchsmallerthanthespecifiedtemperaturedifferenceof20°C.

PROBLEM1.3

KNOWN:Innersurfacetemperatureandthermalconductivityofaconcretewall.

FIND:Heatlossbyconductionthroughthewallasafunctionofoutersurfacetemperaturesrangingfrom -15to38°C.

SCHEMATIC:

ASSUMPTIONS:(1)One-dimensionalconductioninthex-direction,(2)Steady-stateconditions,(3) Constantproperties.

ANALYSIS:FromFourier’slaw,ifx q ′′andkareeachconstantitisevidentthatthegradient, x dTdxqk ′′ =−,isaconstant,andhencethetemperaturedistributionislinear.Theheatfluxmustbe constantunderone-dimensional,steady-stateconditions;andkisapproximatelyconstantifitdepends onlyweaklyontemperature.TheheatfluxandheatratewhentheoutsidewalltemperatureisT2=-15°C are

CombiningEqs.(1)and(2),theheatrateqxcanbedeterminedfortherangeofoutersurfacetemperature, -15≤T2≤38°C,withdifferentwallthermalconductivities,k.

Fortheconcretewall,k=1W/mK,theheatlossvarieslinearlyfrom+2667Wto-867Wandiszero whentheinsideandoutersurfacetemperaturesarethesame.Themagnitudeoftheheatrateincreases withincreasingthermalconductivity.

COMMENTS:Withoutsteady-stateconditionsandconstantk,thetemperaturedistributioninaplane wallwouldnotbelinear.

PROBLEM1.4

KNOWN:Dimensions,thermalconductivityandsurfacetemperaturesofaconcreteslab.Efficiency ofgasfurnaceandcostofnaturalgas.

FIND:Dailycostofheatloss.

SCHEMATIC:

ASSUMPTIONS:(1)Steadystate,(2)One-dimensionalconduction,(3)Constantproperties.

ANALYSIS:Therateofheatlossbyconductionthroughtheslabis

Thedailycostofnaturalgasthatmustbecombustedtocompensatefortheheatlossis

COMMENTS:Thelosscouldbereducedbyinstallingafloorcoveringwithalayerofinsulation betweenitandtheconcrete.

PROBLEM1.5

KNOWN:Thermalconductivityandthicknessofawall.Heatfluxthroughwall.Steady-state conditions.

FIND:ValueoftemperaturegradientinK/mandin°C/m.

SCHEMATIC: L=20mm k=2.3W/m·K q ” x=10W/m2

ASSUMPTIONS:(1)One-dimensionalconduction,(2)Constantproperties.

ANALYSIS:Understeady-stateconditions,

SincetheKunitshererepresentatemperaturedifference,andsincethetemperaturedifferenceisthe sameinKand°Cunits,thetemperaturegradientvalueisthesameineitherunits.

COMMENTS:Anegativevalueoftemperaturegradientmeansthattemperatureisdecreasingwith increasingx,correspondingtoapositiveheatfluxinthex-direction.

PROBLEM1.6

KNOWN:Heatfluxandsurfacetemperaturesassociatedwithawoodslabofprescribed thickness.

FIND:Thermalconductivity,k,ofthewood.

SCHEMATIC:

ASSUMPTIONS:(1)One-dimensionalconductioninthex-direction,(2)Steady-state conditions,(3)Constantproperties.

ANALYSIS:Subjecttotheforegoingassumptions,thethermalconductivitymaybe determinedfromFourier’slaw,Eq.1.2.Rearranging,

COMMENTS:Notethatthe°CorKtemperatureunitsmaybeusedinterchangeablywhen evaluatingatemperaturedifference.

PROBLEM1.7

KNOWN:Innerandoutersurfacetemperaturesofaglasswindowofprescribeddimensions.

FIND:Heatlossthroughwindow.

SCHEMATIC:

ASSUMPTIONS:(1)One-dimensionalconductioninthex-direction,(2)Steady-state conditions,(3)Constantproperties.

ANALYSIS:Subjecttotheforegoingconditionstheheatfluxmaybecomputedfrom Fourier’slaw,Eq.1.2.

q2800W/m. 12 x x 2 x ′′ = ′′ = ⋅ ′′ = o

W15-5C

q1.4mK0.005m

Sincetheheatfluxisuniformoverthesurface,theheatloss(rate)is

q=qxA

q=2800W/m23m2 ′′× ×

q=8400W. <

COMMENTS:Alineartemperaturedistributionexistsintheglassfortheprescribed conditions.

PROBLEM1.8

KNOWN:Netpoweroutput,averagecompressorandturbinetemperatures,shaftdimensionsand thermalconductivity.

FIND:(a)Comparisonoftheconductionratethroughtheshafttothepredictednetpoweroutputof thedevice,(b)Plotoftheratiooftheshaftconductionheatratetotheanticipatednetpoweroutputof thedeviceovertherange0.005m≤L≤1mandfeasibilityofaL=0.005mdevice.

SCHEMATIC:

ASSUMPTIONS:(1)Steady-stateconditions,(2)Constantproperties,(3)Netpoweroutputis proportionaltothevolumeofthegasturbine.

PROPERTIES:Shaft(given):k=40W/mK.

ANALYSIS:(a)TheconductionthroughtheshaftmaybeevaluatedusingFourier’slaw,yielding

Theratiooftheconductionheatratetothenetpoweroutputis

(b)ThevolumeoftheturbineisproportionaltoL3.DesignatingLa=1m,da=70mmandPaasthe shaftlength,shaftdiameter,andnetpoweroutput,respectively,inpart(a),

andtheratiooftheconductionheatratetothenetpoweroutputis

PROBLEM1.8(Cont.)

Theratiooftheshaftconductiontonetpowerisshownbelow.AtL=0.005m=5mm,theshaft conductiontonetpoweroutputratiois0.74.Theconceptoftheverysmallturbineisnotfeasiblesince itwillbeunlikelythatthelargetemperaturedifferencebetweenthecompressorandturbinecanbe maintained. <

Ratioofshaftconductiontonetpower

COMMENTS:(1)Thethermodynamicsanalysisdoesnotaccountforheattransfereffectsandis thereforemeaningfulonlywhenheattransfercanbesafelyignored,asisthecasefortheshaftinpart (a).(2)Successfulminiaturizationofthermaldevicesisoftenhinderedbyheattransfereffectsthat mustbeovercomewithinnovativedesign.

PROBLEM1.9

KNOWN:Width,height,thicknessandthermalconductivityofasinglepanewindowand theairspaceofadoublepanewindow.Representativewintersurfacetemperaturesofsingle paneandairspace.

FIND:Heatlossthroughsingleanddoublepanewindows.

SCHEMATIC:

ASSUMPTIONS:(1)One-dimensionalconductionthroughglassorair,(2)Steady-state conditions,(3)Enclosedairofdoublepanewindowisstagnant(negligiblebuoyancyinduced motion).

ANALYSIS:FromFourier’slaw,theheatlossesare

COMMENTS:Lossesassociatedwithasinglepaneareunacceptableandwouldremain excessive,evenifthethicknessoftheglassweredoubledtomatchthatoftheairspace.The principaladvantageofthedoublepaneconstructionresideswiththelowthermalconductivity ofair(~60timessmallerthanthatofglass).Forafixedambientoutsideairtemperature,use ofthedoublepaneconstructionwouldalsoincreasethesurfacetemperatureoftheglass exposedtotheroom(inside)air.

PROBLEM1.10

KNOWN:Dimensionsoffreezercompartment.Innerandoutersurfacetemperatures.

FIND:Thicknessofstyrofoaminsulationneededtomaintainheatloadbelowprescribed value.

SCHEMATIC:

ASSUMPTIONS:(1)Perfectlyinsulatedbottom,(2)One-dimensionalconductionthrough5 wallsofareaA=4m2,(3)Steady-stateconditions,(4)Constantproperties.

ANALYSIS:UsingFourier’slaw,Eq.1.2,theheatrateis

q=qA=k T LAtotal ′′ ⋅ Δ

SolvingforLandrecognizingthatAtotal=5×W2,find

L= 5kTW q 2Δ

L=0.054m=54mm. <

COMMENTS:Thecornerswillcauselocaldeparturesfromone-dimensionalconduction andaslightlylargerheatloss.

PROBLEM1.11

KNOWN:Heatfluxatonefaceandairtemperatureandconvectioncoefficientatotherfaceofplane wall.Temperatureofsurfaceexposedtoconvection.

FIND:Ifsteady-stateconditionsexist.Ifnot,whetherthetemperatureisincreasingordecreasing.

SCHEMATIC:

h=20W/m2·K T∞=30°C Air q” conv

Ts=50°C

ASSUMPTIONS:(1)One-dimensionalconduction,(2)Nointernalenergygeneration.

ANALYSIS:Conservationofenergyforacontrolvolumearoundthewallgives

SincedEst/dt≠0,thesystemisnotatsteady-state. <

SincedEst/dt<0,thestoredenergyisdecreasing,thereforethewalltemperatureisdecreasing.<

COMMENTS:Whenthesurfacetemperatureofthefaceexposedtoconvectioncoolsto31°C,qin= qoutanddEst/dt=0andthewallwillhavereachedsteady-stateconditions. q”=20W/m2

PROBLEM1.12

KNOWN:Dimensionsandthermalconductivityoffood/beveragecontainer.Innerandouter surfacetemperatures.

FIND:Heatfluxthroughcontainerwallandtotalheatload.

SCHEMATIC:

ASSUMPTIONS:(1)Steady-stateconditions,(2)Negligibleheattransferthroughbottom wall,(3)Uniformsurfacetemperaturesandone-dimensionalconductionthroughremaining walls.

ANALYSIS:FromFourier’slaw,Eq.1.2,theheatfluxis

Sincethefluxisuniformovereachofthefivewallsthroughwhichheatistransferred,the heatloadis

q16.62W/m0.6m1.6m1.2m0.8m0.6m35.9W ⎡⎤ =++×= ⎣⎦

COMMENTS:Thecornersandedgesofthecontainercreatelocaldeparturesfromonedimensionalconduction,whichincreasetheheatload.However,forH,W1,W2>>L,the effectisnegligible.

PROBLEM1.13

KNOWN:Masonrywallofknownthermalconductivityhasaheatratewhichis80%ofthat throughacompositewallofprescribedthermalconductivityandthickness.

FIND:Thicknessofmasonrywall.

SCHEMATIC:

ASSUMPTIONS:(1)Bothwallssubjectedtosamesurfacetemperatures,(2)Onedimensionalconduction,(3)Steady-stateconditions,(4)Constantproperties.

ANALYSIS:Forsteady-stateconditions,theconductionheatfluxthroughaonedimensionalwallfollowsfromFourier’slaw,Eq.1.2,

′′ q=k T L Δ

whereΔTrepresentsthedifferenceinsurfacetemperatures.SinceΔTisthesameforboth walls,itfollowsthat

Withtheheatfluxesrelatedas

COMMENTS:Notknowingthetemperaturedifferenceacrossthewalls,wecannotfindthe valueoftheheatrate.

PROBLEM1.14

KNOWN:Expressionforvariablethermalconductivityofawall.Constantheatflux. Temperatureatx=0.

FIND:Expressionfortemperaturegradientandtemperaturedistribution.

SCHEMATIC:

ASSUMPTIONS:(1)One-dimensionalconduction.

ANALYSIS:TheheatfluxisgivenbyFourier’slaw,andisknowntobeconstant,therefore

Solvingforthetemperaturegradientandsubstitutingtheexpressionforkyields

Thisexpressioncanbeintegratedtofindthetemperaturedistribution,asfollows:

Since x qconstant ′′ = ,wecanintegratetherighthandsidetofind

wherecisaconstantofintegration.ApplyingtheknownconditionthatT=T1atx=0, wecansolveforc.

PROBLEM1.14(Cont.)

Therefore,thetemperaturedistributionisgivenby

COMMENTS:Temperaturedistributionsarenotlinearinmanysituations,suchaswhenthe thermalconductivityvariesspatiallyorisafunctionoftemperature.Non-lineartemperature distributionsmayalsoevolveifinternalenergygenerationoccursornon-steadyconditionsexist.

PROBLEM1.15

KNOWN:Thickness,diameterandinnersurfacetemperatureofbottomofpanusedtoboil water.Rateofheattransfertothepan.

FIND:Outersurfacetemperatureofpanforanaluminumandacopperbottom.

SCHEMATIC:

ASSUMPTIONS:(1)One-dimensional,steady-stateconductionthroughbottomofpan.

ANALYSIS:FromFourier’slaw,therateofheattransferbyconductionthroughthebottom ofthepanis

COMMENTS:Althoughthetemperaturedropacrossthebottomisslightlylargerfor aluminum(duetoitssmallerthermalconductivity),itissufficientlysmalltobenegligiblefor bothmaterials.Toagoodapproximation,thebottommaybeconsideredisothermalatT≈ 110°C,whichisadesirablefeatureofpotsandpans.

PROBLEM1.16

KNOWN:Dimensionsandthermalconductivityofachip.Powerdissipatedononesurface.

FIND:Temperaturedropacrossthechip.

SCHEMATIC:

ASSUMPTIONS:(1)Steady-stateconditions,(2)Constantproperties,(3)Uniformheat dissipation,(4)Negligibleheatlossfrombackandsides,(5)One-dimensionalconductionin chip.

ANALYSIS:Alloftheelectricalpowerdissipatedatthebacksurfaceofthechipis transferredbyconductionthroughthechip.Hence,fromFourier’slaw,

or

kW150W/mK0.005m 22

COMMENTS:ForfixedP,thetemperaturedropacrossthechipdecreaseswithincreasingk andW,aswellaswithdecreasingt.

PROBLEM1.17

KNOWN:Heatfluxandconvectionheattransfercoefficientforboilingwater.Saturation temperatureandconvectionheattransfercoefficientforboilingdielectricfluid.

FIND:Uppersurfacetemperatureofplatewhenwaterisboiling.Whetherplanforminimizing surfacetemperaturebyusingdielectricfluidwillwork.

SCHEMATIC:

hw=20,000W/m2K

hd=3,000W/m2K

ASSUMPTIONS:Steady-stateconditions.

PROPERTIES:Tsat,w=100°Catp=1atm.

ANALYSIS:Accordingtotheproblemstatement,Newton’slawofcoolingcanbeexpressedfora boilingprocessas

Thus,

Whenthefluidiswater,

,sat, 32 2010W/m /100C200C 2010W/mK swww

Whenthedielectricfluidisused,

,sat,

/52C719C 310W/mK

Thus,thetechnician’sproposedapproachwillnotreducethesurfacetemperature. <

COMMENTS:(1)Eventhoughthedielectricfluidhasalowersaturationtemperature,thisismore thanoffsetbythelowerheattransfercoefficientassociatedwiththedielectricfluid.Thesurface temperaturewiththedielectriccoolantexceedsthemeltingtemperatureofmanymetalssuchas aluminumandaluminumalloys.(2)Dielectricfluidsare,however,employedinapplicationssuchas immersioncoolingofelectroniccomponents,whereanelectrically-conductingfluidsuchaswater couldnotbeused.

PROBLEM1.18

KNOWN:Handexperiencingconvectionheattransferwithmovingairandwater.

FIND:Determinewhichconditionfeelscolder.Contrasttheseresultswithaheatlossof30W/m2under normalroomconditions.

SCHEMATIC:

ASSUMPTIONS:(1)Temperatureisuniformoverthehand’ssurface,(2)Convectioncoefficientis uniformoverthehand,and(3)Negligibleradiationexchangebetweenhandandsurroundingsinthecase ofairflow.

ANALYSIS:Thehandwillfeelcolderfortheconditionwhichresultsinthelargerheatloss.Theheat losscanbedeterminedfromNewton’slawofcooling,Eq.1.3a,writtenas

Fortheairstream:

Forthewaterstream:

COMMENTS:Theheatlossforthehandinthewaterstreamisanorderofmagnitudelargerthanwhen intheairstreamforthegiventemperatureandconvectioncoefficientconditions.Incontrast,theheat lossinanormalroomenvironmentisonly30W/m2whichisafactorof400timeslessthanthelossinthe airstream.Intheroomenvironment,thehandwouldfeelcomfortable;intheairandwaterstreams,as youprobablyknowfromexperience,thehandwouldfeeluncomfortablycoldsincetheheatlossis excessivelyhigh.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.