Eur13 digital magazine

Page 8

Piquing our curiosity

A good nose for the flu

If there’s one characteristic that all scientists share then it’s curiosity, the desire to learn more about how the world works and gain new insights into fundamental laws. But is curiosity an innate characteristic, or can we all become more curious? The leading science and technology company Merck has devoted a lot of energy to investigating this question. The company’s curiosity initiative measured and described curiosity in several countries, including the US, Germany and China, now they’re looking to continue their research. “Curiosity is our driving force and we now seek to empirically demonstrate that anyone can increase their own level of curiosity,” said Stefan Oschmann, CEO of Merck and Chairman of the company’s Executive Board. Scientific curiosity and the spirit of investigation are crucial to addressing major contemporary challenges, believes Oschmann. “We are convinced that along with optimism and confidence, curiosity can help find solutions to many of the greatest challenges facing mankind,” he stated. An experiment has been set up, in partnership with teams from Porsche Consuting and the Weizmann Institute of Science, to test certain practices designed to enhance curiosity and encourage investigation, which many businesspeople believe is central to commercial success. “We’re living in a time of revolutionary business where curiosity is not a choice, but crucial to business success. Merck has given us a path forward, we are curious to participate and of course to learn the results of this experiment,” said Claus Lintz, a partner at Porsche Consulting.

Research published recently in Science Immunology sheds new light on how the body responds to an influenza infection. Studies on mice shows that following an infection, the nose recruits immune cells with particularly long memories, which are then well-placed to watch for the virus and guard against its possible recurrence. This type of cell, known as tissue resident memory t-cells, has now been found in the nose, which could prove relevant to efforts to improve flu treatment. Nasal spray vaccines could potentially be designed to increase the number of these T-cells in the nose, offering an effective way of protecting against influenza. These t-cells are present in specific tissues, and typically provide reconnaisance over the tissue. “They’re basically sitting there waiting in case you get infected with that pathogen again,” said Lynda Wakim, an immunologist at the University of Melbourne. If a pathogen returns, the T-cells can then rapidly kill infected cells. The T-cells in the nose had longer memories than those in the lung, which could suggest that research into the nose should be a higher priority in terms of combatting influenza and protecting against other viruses and bacteria.

New questions on mouse models The use of mice as model systems is a long-established method of scientific investigation, yet new research suggests they may not be as effective models for studying immune responses to disease as previously thought, findings which hold significant wider implications.

This area of research had been relatively neglected. “It’s remarkable that despite the enormous number of studies of laboratory mice, ours is the first in-depth study of wild mice immune systems,” said Professor Mark Viney from Bristol University’s School of Biological Sciences.

Researchers from the University of Bristol and the London School of Hygiene and Tropical Medicine studied the immune systems of wild mice, and compared them with those of mice bred in captivity.

The project’s findings could lead researchers to re-examine the ways in which mice are used in laboratory studies, work which has historically underpinned the development of many different vaccinations and immune-based therapies.

A number of major differences were identified between the two groups. In particular, the wild mice had highly-activated immune systems, which could be due to their regular exposure to new infections - by contrast, laboratory-bred mice had slower immune systems.

6

Nevertheless, despite these findings, Professor Viney believes that mouse models will continue to be an important tool in research. “These results point to us having to be much more cautious in extrapolating from the lab to the wild, but laboratory mouse models will continue to be hugely important in biological and biomedical research,” he said.

EU Research


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.