Eu research 07 digital mag (1)

Page 42

The EFFIDRIP system is an ICT-based tool which supports the management and supervision of irrigation and fertigation. It provides farmers an easy, reliable and cost-effective way to manage their irrigation and fertigation systems, which will bring long-term benefits, as the project coordinator Albert Torres explains

A new approach to irrigation The cost of

irrigation has risen significantly over recent years, primarily due to higher energy and synthetic fertilizer prices, a trend that puts a heavy financial burden on farmers. This is an issue which lies in the heart of the EFFIDRIP project. “The main goal of the project is to develop a system to interpret sensor data, and to convert it into useful, scalable information for specific farming scenarios,” outlines Albert Torres, the project’s technical coordinator. In the project an ICT-based tool has been developed to support the management and supervision of irrigation and fertigation of crops, which Torres believes will have a significant impact on farming. “Water use efficiency is linked to the use of energy and fertilisers. By reducing the use of water, we reduce the use of energy and

fertilisers,” he explains. “EFFIDRIP also releases the farmer from routine tasks that are necessary for efficient irrigation, but that are costly and labour-intensive.”

EFFIDRIP EFFIDRIP has been developed as a smart irrigation system that answers future agricultural needs. EFFIDRIP consists in an automatic irrigation scheduler and management support system that permits more efficient use of water, fertilizers and energy in drip irrigated tree crops. Partners: There are 9 partners involved in the EFFIDRIP project. Please see the website for full details. Budget: 2.243.954.53€ (co-funded by the EU). Albert TORRES Ateknea Solutions T: +34 932 049 922 x 512 E: albert.torres@ateknea.com W: www.effidrip.eu W: www.ateknea.com Albert Torres is MsC. in Industrial Engineering from the Polytechnic University of Catalonia. He has been coordinating R&D projects for several years. He is specialist in the development of low power wireless sensor network applications and remote monitoring systems as well as in its integration into web applications and information management systems.

40

Wireless unit deployed in an apple orchard to measure soil moisture sensors

EFFIDRIP System The EFFIDRIP system complements the functionalities of current irrigation and fertigation control equipment by making them part of a high-level ICT-based system. It has been designed for localised irrigation systems in fruit tree crops,

collecting data that is used to decide the best dose of irrigation each day; three basic types of data are incorporated within the system. “The first type of data is introduced by the farmer, at the beginning of the irrigation season. The farmer introduces information about the crops, and information about how irrigation should be performed and managed over the whole season. It’s like a strategic view of the whole season,” says Torres. The system also automatically collects data from other services, such as meteorological networks, which is further complemented by sensor data from the field, giving farmers information on the key factors which will affect their crops. “The main inputs are information from the farmer, weather data from the internet and national services, and sensor data from the field,” says Torres. This approach provides accurate information on daily required water and fertilizer volumes, enabling farmers to optimise their irrigation strategy with respect to cost, productivity and environmental impact. Farmers can also supervise irrigation via their web browser, so they can maintain supervision over the system. “We are not removing the farmers from the irrigation process, but rather giving them more supervision and support,” stresses Torres. Pilot tests have been performed with the system during this year’s irrigation season, and Torres says that the results so far are encouraging. “On average, we found that the EFFIDRIP system led to improvements of about 14 percent, compared to an efficient farmer,” he outlines. “The ecologic and economic impact are quite difficult to calculate and involve very site-specific factors, for example calculating the energy required to pump the water in these irrigation systems, the nitrate loss or the cost of water. However, we are confident that the system is efficient, reliable and cost-effective.”

EU Research


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.