Download all pages and all chapters at: TestBankTip.com
Chapter1:SpeakingMathematically
Manycollegestudentsappeartohavedifficultyusingandinterpretinglanguageinvolvingif-then statementsandquantification.Section1.1isagentleintroductiontotherelationbetweeninformal andformalwaysofexpressingimportantkindsofmathematicalstatements.Experiencewiththe exercisesinthesectionismeantasawarm-uptopreparestudentstomasterthelinguisticaspects oflearningmathematicstohelpthemcometounderstandthemeaningofmathematicalstatements andevaluatetheirtruthorfalsityinlaterchapters.Sections1.2and1.3formabriefintroductionto thelanguageofsets,relations,andfunctions.Coveringthematthebeginningofthecoursecanhelp studentsrelatediscretemathematicstothepre-calculusorcalculustheyhavestudiedpreviously whilebroadeningtheirperspectivetoincludealargerproportionofdiscreteexamples.
Proofsofsetproperties,suchasthedistributivelaws,andproofsofpropertiesofrelationsand functions,suchastransitivityandsurjectivity,areconsiderablymorecomplexthantheexamples usedinthisbooktointroducestudentstotheideaofmathematicalproof.Thussettheoryas atheoryislefttoChapter6,propertiesoffunctionstoChapter7,andpropertiesofrelationsto Chapter8.InstructorswhowishtodosocouldcoverSection1.2justbeforestartingChapter6and Section1.3justbeforestartingChapter7.
Anaspectofstudents’backgroundsthatmaysurprisecollegeanduniversitymathematicsinstructorsconcernstheirunderstandingofthemeaningof“realnumber.”Whenaskedtoevaluate thetruthorfalsityofastatementaboutrealnumbers,itisnotunusualforstudentstothinkonly ofintegers.Thusaninformaldescriptionoftherelationshipbetweenrealnumbersandpointsona numberlineisgiveninSection1.2onpage8toillustratethattherearemanyrealnumbersbetween anypairofconsecutiveintegers,Examples3.3.5and3.3.6onpage121showthatwhilethereisa smallestpositiveintegerthereisnosmallestpositiverealnumber,andthediscussiononpages433 and434(precedingtheproofoftheuncountabilityoftherealnumbersbetween0and1)describes aprocedureforapproximatingthe(possiblyinfinite)decimalexpansionforanarbitrarilychosen pointonanumberline.
Section1.1
2. a.aremainderof2whenitisdividedby5andaremainderof3whenitisdividedby6
b.aninteger n; n isdividedby6theremainderis3
4. a.arealnumber;greaterthan rb.realnumber r;thereisarealnumber s
6. a s isnegative b.negative;thecuberootof s isnegative(Or : 3 √s isnegative)
c.isnegative; 3 √s isnegative(Or :thecuberootof s isnegative)
7. b.Thereisarealnumberwhosesquareislessthanitself.
True.Forexample,(1/2)2 =1/4 < 1/2.
d.Theabsolutevalueofthesumofanytwonumbersislessthanorequaltothesumoftheir absolutevalues.
True.Thisisknownasthetriangleinequality.ItisdiscussedinSection4.4.
9. a.haveatmosttworealsolutions b.hasatmosttworealsolutions c.hasatmosttworeal solutions d.isaquadraticequation;hasatmosttworealsolutions e E hasatmosttwo realsolutions
11. a.havepositivesquareroots b.apositivesquareroot c r isasquarerootfor e
SolutionsforExercises:SpeakingMathematically
13. a.realnumber;productwitheveryrealnumberequalszero
b.witheveryrealnumberequalszero c ab =0 Section1.2
2. b.Thesetofallrealnumbers x suchthat x islessthanorequaltozeroor x isgreaterthan orequalto1
d.Thesetofallpositiveintegers n suchthat n isafactorof6
4. a.Yes: {2} isthesetwhoseonlyelementis2. b.One:2istheonlyelementinthisset c.
Two:Thetwoelementsare0and {0} d.Yes: {0} isoneoftheelementslistedintheset.
e.No:Theonlyelementslistedinthesetare {0} and {1},and0isnotequaltoeitherof these.
5. Theonlysetsthatareequaltoeachotherare A and D. A containstheintegers0,1,and2andnothingelse.
B containsalltherealnumbersthataregreaterthanorequalto 1andlessthan3.
C containsalltherealnumbersthataregreaterthan 1andlessthan3.Thus 1isin B butnotin C.
D containsalltheintegersgreaterthan 1andlessthan3.Thus D containstheintegers0, 1,and2andnothingelse,andso D = {0, 1, 2} = A
E containsallthepositiveintegersgreaterthan 1andlessthan3.Hence E containsthe integers1and2andnothingelse,thatis, E = {1, 2}
6. T2 and T 3 eachhavetwoelements,and T0 and T1 eachhaveoneelement.
7. b T = {m ∈ Z | m =1+( 1)k forsomeinteger k} = {0, 2} ExercisesinChapter4explorethe factthat( 1)k = 1when k isoddand( 1)k =1when k iseven.So1+( 1)k =1+( 1)=0 when k isodd,and1+( 1)k =1+1=2when k iseven.
e.Therearenoelementsin W becausetherearenointegersthatarebothgreaterthan1and lessthan 3.
f X = Z becauseeveryinteger u satisfiesatleastoneoftheconditions u ≤ 4or u ≥ 1
8. b.Yes,becauseeveryelementin C isin A c.Yes,becauseeveryelementin C isin C
d..Yes,becausealthougheveryelementin C isin A, A containselementsthatarenotin C
9. c.No:Theonlyelementsin {1, 2} are1and2, and {2} isnotequaltoeitherofthese.
d.Yes: {3} isoneoftheelementslistedin {1, {2}, {3}}.
e.Yes: {1} isthesetwhoseonlyelementis1.
g.Yes:Theonlyelementin {1} is1,and1isanelementin {1, 2}.
h.No:Theonlyelementsin {{1}, 2} are {1} and2,and1isnotequaltoeitherofthese.
j.Yes:Theonlyelementin {1} is1,whichisisanelementin {1}.Soeveryelementin {1} is in {1}
2
Justification : T2 = {2, 22 } = {2, 4}, T 3 = {−3, ( 3)2 } = {−3, 9}, T1 = {1, 12 } = {1, 1} = {1},and T0 = {0, 02 } = {0, 0} = {0}.
10. b.No:Fortwoorderedpairstobeequal,theelementsineachpairmustoccurinthesame order.Inthiscasethefirstelementofthefirstpairis5,whereasthefirstelementofthesecond pairis 5,andthesecondelementofthefirstpairis 5whereasthesecondelementofthe secondpairis5.
d.YesThefirstelementsofbothpairsequal 1 2 ,andthesecondelementsofbothpairsequal 8.
12. Allfoursetshavenineelements.
2 3 ,whichisnotaninteger.
4.
.2 V 6because 2 6 4 = 4 4 = 1,whichisaninteger.
V 6because 2 ( 6) 4 = 4 4 =1,whichisaninteger.
6 4 = 6 4 ,whichisnotaninteger.
4 ,whichisnotaninteger.
6)}
3
Section1.3
a S × T = {(2, 1), (2, 3), (2, 5), (4, 1), (4, 3), (4, 5), (6, 1), (6, 3), (6, 5)} b.T × S = {(1, 2), (3, 2), (5, 2), (1, 4), (3, 4), (5, 4), (1, 6), (3, 6), (5, 6)} c S × S = {(2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6)} d.T × T = {(1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5)} Section1.3 2. a.2 S 2because 1 2 1 2 =0,whichisaninteger. 1 S 1because 1 1 1 1 =0,whichisaninteger. 3 S 3because 1 3 1 3 =0,whichisaninteger. 3 /S 3because 1 3 1 3 =
S = {( 3, 3), ( 2, 2), ( 1, 1), (1, 1), (2, 2), (3, 3), (1, 1), ( 1, 1), (2, 2), ( 2, 2)} c.Thedomainandco-domainof S areboth {−3, 2, 1, 1, 2, 3} d. S –3 –2 –1 1 2 3 –3 –2 –1 1 2 3 CD
0 /V 6because
2 /V 4because 2
. V = {( 2, 6), (0, 4), (0,
, (2,
.Domainof V
{−
, 6, 8} d S –2 0 2 4 6 8 GH
b
a
2
0
4 4 = 2
b
8)
c
=
2, 0, 2},co-domainof V = {4
SolutionsforExercises:SpeakingMathematically
U isnotafunctionbecause(4,y)isnotin U forany y in B,andso U doesnotsatisfyproperty (1)ofthedefinitionoffunction.
V isnotafunctionbecause(2,y)isnotin V forany y in B,andso V doesnotsatisfyproperty (1)ofthedefinitionoffunction.
W isnotafunctionbecauseboth(2, 3)and(2, 5)arein W and3 =5,andso W doesnot satisfyproperty(2)ofthedefinitionoffunction.
10. Thefollowingsetsarerelationsfrom {
12. T isnotafunctionbecause,forexample,both(0, 1)and(0, 1)arein T but1 = 1. Many otherexamplescouldbegivenshowingthat T doesnotsatisfyproperty2ofthedefinitionof function.
14. a.Domainof G = {1, 2, 3, 4}, co-domainof G = {a,b,c,d}
b G(1)= G(2)= G(3)= G(4)= c
4
6. a.(2
4) ∈ R
2 (4, 2) / ∈ R because2 =42 ( 3, 9) ∈ R because9=( 3)2 . (9, 3) / ∈ R because 3 =92 . b. 1 2 3 4 5 6 -6 -5 -4 -3 -2 -1 6 5 4 3 2 1 -1 -2 7 8 9 y y = x 2 x 8. a. U 2 4 1 3 5 AB V 1 3 5 A B W 1 3 5 AB 2 4 2 4
U
,
because4=2
b.Noneof
, V ,or W arefunctions.
{(a,x)}, {(a,y
(b,x)}, {(b,y)}, {(a,x), (a,y)}, {(b,x), (b,y)}, {(a,x), (a,y), (b,x)}, {(a,x), (a,y), (b,y)}, {(b,x), (b,y), (a,x)}, {(b,x), (b,y), (a,y)}, {(a,x), (a,y), (b,x), (b,y)}
a,b} to {x,y} thatarenotfunctions:
)}, {
15. c.Thisdiagramdoesnotdetermineafunctionbecause4isrelatedtoboth1and2,which violatesproperty(2)ofthedefinitionoffunction.
d.Thisdiagramdefinesafunction;bothproperties(1)and(2)aresatisfied.
e.Thisdiagramdoesnotdetermineafunctionbecause2isinthedomainbutitisnotrelated toanyelementintheco-domain.
Section1.3 5
18. h( 12 5 )= h( 0 1 )= h( 9 17 )=2
Forall x ∈ R, K(x)=(x 1)(x 3)+1=(x2 4x +3)+1= x2 +4x +4=(x 2)2 = H(x).
H = K
17. g( 1000)= 999, g(0)=1, g(999)=1000
20.
Therefore,bydefinitionofequalityoffunctions,
Solutions forExercises:TheLogicofCompoundStatements
Chapter2:TheLogicofCompoundStatements
Theabilitytoreasonusingtheprinciplesoflogicisessentialforsolvingproblemsinabstractmathematicsandcomputerscienceandforunderstandingthereasoningusedinmathematicalproofand disproof.Becauseasignificantnumberofstudentswhocometocollegehavehadlimitedopportunitytodevelopthisability,aprimaryaimofChapters2and3istohelpstudentsdevelopaninner voicethatspeakswithlogicalprecision.Consequently,thevariousrulesusedinlogicalreasoningare developedbothsymbolicallyandinthecontextoftheirsomewhatlimitedbutveryimportantuse ineverydaylanguage.ExercisesetsforSections2.1–2.3and3.1–3.4containsentencesforstudents tonegate,writethecontrapositivefor,andsoforth.Virtuallyallstudentsbenefitfromdoingthese exercises.AnotheraimofChapters2and3istoteachstudentstherudimentsofsymboliclogicas afoundationforavarietyofupper-divisioncourses.Symboliclogicisusedin,amongothers,the studyofdigitallogiccircuits,relationaldatabases,artificialintelligence,andprogramverification.
Suggestions
1. InSection2.1asurprisingnumberofstudentsapplyDeMorgan’slawtowritethenegationof, forexample,“1 <x ≤ 3”as“1 ≥ x>
3.”Youmayfindthatittakessomeefforttoteachthemto avoidmakingthismistake.
2. InSections2.1and2.4,studentshavemoredifficultythanyoumightexpectsimplifyingstatement formsandcircuits.Onlythroughtrialanderrorcanyoulearntheextenttowhichthisisthecase atyourinstitution.Ifitis,youmighteitherassignonlytheeasierexercisesorbuildinextratimeto teachstudentshowtodothemorecomplicatedones.Discussionofsimplificationtechniquesoccurs againinChapter6inthecontextofsettheory.Atthislaterpointinthecoursemoststudentsare abletodealwithitsuccessfully.
3. InordinaryEnglish,thephrase“onlyif”isoftenusedasasynonymfor“ifandonlyif.”But itispossibletofindinformalsentencesinwhichtheintuitiveinterpretationisthesameasthe logicaldefinition,anditishelpfultogiveexamplesofsuchstatementswhenyouintroducethe logicaldefinition.Forinstance,itisnothardtogetstudentstoagreethat“Theteamwillwinthe championshiponlyifitwinsthesemifinalgame”meansthesameas“Iftheteamdoesnotwinthe semifinalgamethenitwillnotwinthechampionship.”Oncestudentsseethis,youcansuggestthat theyrememberthistranslationwhentheyencountermoreabstractstatementsoftheform“A only if B.”
Throughguideddiscussion,studentswillalsocometoagreethatthestatement“Winningthe semifinalgameisanecessaryconditionforwinningthechampionship”translatesto“Iftheteam doesnotwinthesemifinalgamethenitwillnotwinthechampionship.”Theycanbeencouraged tousethis(orasimilarstatement)asareferencetohelpdevelopintuitionforgeneralstatementsof theform“A isanecessaryconditionfor B.”
Withstudentswhohaveweakerbackgrounds,youmayfindyourselftyingupexcessiveamounts ofclasstimediscussing“onlyif”and“necessaryandsufficientconditions.”Youmightjustassign theeasierexercises,oryoumightassignexercisesonthesetopicstobedoneforextracredit(putting correspondingextracreditproblemsonexams)andusetheresultstohelpdistinguishAfromB students.Itisprobablybestnottoomitthesetopicsaltogether,though,becausethelanguageof “onlyif”and“necessaryandsufficientconditions”isastandardpartofthetechnicalvocabularyof textbooksusedinupper-divisioncourses,aswellasoccurringregularlyinnon-mathematicalwriting.
4. InSection2.3,manystudentsmistakenlyconcludethatanargumentisvalidif,whenthey computethetruthtable,theyfindasinglerowinwhichboththepremisesandtheconclusionare true.Thesourceofstudents’difficultyappearstobetheirtendencytoignorequantificationandto misinterpretif-thenstatementsas“and”statements.Sincethedefinitionofvalidityincludesboth auniversalquantifierandif-then,itishelpfultogobackoverthedefinitionandtheproceduresfor
6
testingforvalidityandinvalidityafterdiscussingthegeneraltopicofuniversalconditionalstatements inSection3.1.Asapracticalmeasuretohelpstudentsassessvalidityandinvaliditycorrectly,the firstexampleinSection2.3isofaninvalidargumentwhosetruthtablehaseightrows,severalof whichhavetruepremisesandatrueconclusion.Inaddtition,tofurtherfocusstudents’attention onthesituationswhereallthepremisesaretrue,thetruthvaluesfortheconclusionsofarguments aresimplyomittedwhenatleastonepremiseisfalse.
5. InSection2.3,youmightsuggestthatstudentsjustfamiliarizethemselveswith,butnotmemorize, thevariousformsofvalidargumentscoveredinSection2.3.Itiswise,however,tohavethemlearn thetermsmodusponensandmodustollens(becausetheseareusedinsomeupper-divisioncomputer sciencecourses)andconverseandinverseerrors(becausetheseerrorsaresocommon).
Section2.1
2.commonform:If p then q.
∼ q
Therefore, ∼ p.
b. allprimenumbersareodd;2isodd
4.commonform:If p then q. If q then r.
Therefore,if p then r.
b. apolynomial;differentiable;iscontinuous
5. b. Thetruthorfalsityofthissentencedependsonthereferenceforthepronoun“she.”Consideredonitsown,thesentencecannotbesaidtobeeithertrueorfalse,andsoitisnota statement.
c. Thissentenceisfalse;henceitisastatement.
d. Thisisnotastatementbecauseitstruthorfalsitydependsonthevalueof x.
Section 2.1 7
7. m ∧∼ c 8. b. ∼ w ∧ (h ∧ s) c. ∼ w∧∼ h ∧∼ s e.w∧∼ (h ∧ s)(w ∧ (∼ h ∨∼ s)isalsoacceptable) 9.(n ∨ k) ∧∼ (n ∧ k) 10. b. p ∧∼ qd.(∼ p ∧ q) ∧∼ re. ∼ p ∨ (q ∧ r) 13. p q p ∧ q p ∨ q ∼ (p ∧ q) ∼ (p ∧ q) ∨ (p ∨ q) T T T T F T T F F T T T F T F T T T F F F F T T
Solutions forExercises:TheLogicofCompoundStatements
15. p q r ∼ q ∼ q ∨ r p ∧ (∼ q ∨ r) T T T F T T
T T F F F F
T F T T T T
T F F T T T
F T T F T F
F T F F F F
F F T T T F
F F F T T F
17.
q p ∧ q ∼ p ∼ q ∼ (p ∧ q) ∼ p ∧ ∼ q T T T F F F F
T F F F T T F ←
F T F T F T F ←
F F F T T T T
differenttruthvaluesinrows2and3
Thetruthtableshowsthat ∼ (p ∧ q)and ∼ p ∧∼ q donotalwayshavethesametruthvalues. Thereforetheyarenotlogicallyequivalent.
20.
same truthvalues
Thetruthtableshowsthat p ∧ t and p alwayshavethesametruthvalues.Thustheyare logicallyequivalent.Thisprovestheidentitylawfor ∧
c p ∧ c p ∨ c T F F T ← F F F F
differenttruthvaluesinrow1
Thetruthtableshowsthat p ∧ c and p ∨ c donotalwayshavethesametruthvalues.Thus theyarenotlogicallyequivalent.
same truthvalues
8
p
19. p t p ∧ t p T T T T F T F F
p
p q r q ∨ r p ∧ q p ∧ r p ∧ (q ∨
p ∧ q
∨
p ∧ r) T T T T T T T T T T F T T F T T T F T T F T T T T
F
F F
22.
r) (
)
(
F F F
F F
T T T F F F F F T F T F F F F F F T T F F F F F F F F F F F T
Thetruthtableshowsthat p ∧ (q ∨ r)and(p ∧ q) ∨ (p ∧ r)alwayshavethesametruthvalues. Thereforetheyarelogicallyequivalent.Thisprovesthedistributivelawfor ∧ over ∨
differenttruthvalues
Thetruthtableshowsthat(p ∨ q) ∨ (p ∧ r)and(p ∨ q) ∧ r havedifferenttruthvaluesinrows 2,3,and6.Hencetheyarenotlogicallyequivalent.
26.SamisnotanorangebeltorKateisnotaredbelt.
28.Theunitsdigitof467 isnot4anditisnot6.
29.Thiscomputerprogramdoesnothavealogicalerrorinthefirsttenlinesanditisnotbeing runwithanincompletedataset.
30.Thedollarisnotatanall-timehighorthestockmarketisnotatarecordlow.
31.Thetrainisnotlateandmywatchisnotfast.
Thusanegationis(num orders ≥ 50or num instock ≤ 300)and((50 > num orders or num orders ≥ 75)or num instock ≤ 500).
Since allthetruthvaluesof((∼ p ∧ q) ∧ (q ∧ r))∧∼ q are F ,((
) ∧ (q
r))∧∼ q isa contradiction.
Section 2.1 9
p q r p ∨ q p ∧
p ∨ q) ∨ (p ∧ r) (p ∨ q) ∧ r T T T T T T T T T F T F T F ← T F T T T T T ← T F F T F T F F T T T F T T F T F T F T F ← F F T F F F F F F F F F F F
24.
r (
10
35. x> 1and x ≤ 1 37.0 ≤ x or x< 7
33.
≥ x or x ≥ 2
∧ q) ∨ ((r ∧ s) ∧ t),
∼ ((p ∧ q) ∨ ((r ∧ s) ∧ t)) ≡∼ (p ∧ q) ∧∼ ((r ∧ s) ∧ t)) ≡ (∼ p ∨∼ q) ∧ (∼ (r ∧ s)∨∼ t)) ≡ (∼ p ∨∼ q) ∧ ((∼ r ∨∼ s) ∨∼ t))
39.Thestatement’slogicalformis(p
soitsnegationhastheform
42. p q r ∼ p ∼ q ∼ p ∧ q q ∧ r ((∼ p ∧ q) ∧ (q ∧ r)) ((∼ p ∧ q) ∧ (q ∧ r))∧ ∼ q T T T F F F T F F T T F F F F F F F T F T F T F F F F T F F F T F F F F F T T T F T T T F F T F T F T F F F F F T T T F F F F F F F T T F F F F all F s
∼
∧
p
q
∧
Solutions forExercises:TheLogicofCompoundStatements
45.Let b be“Bobisadoublemathandcomputersciencemajor,” m be“Annisamathmajor,” and a be“Annisadoublemathandcomputersciencemajor.”Thenthetwostatementscan besymbolizedasfollows:a
Thetruthtableshowsthat(b ∧ m)∧∼ a and ∼ (b ∧ a) ∧ (m ∧ b)alwayshavethesametruth values.Hencetheyarelogicallyequivalent.
Thetruthtableshowsthat(p ⊕ q) ⊕ r and p ⊕ (q ⊕ r)alwayshavethesametruthvalues.So theyarelogicallyequivalent.
10
43. p q ∼ p ∼ q ∼ p ∨ q p ∧ ∼ q (∼ p ∨ q) ∨ (p ∧ ∼ q) T T F F T F T T F F T F T T F T T F T F T F F T T T F T all T s Since allthetruthvaluesof(∼ p ∨ q) ∨ (p∧∼ q)are T ,(∼ p ∨ q) ∨ (p ∧∼ q)isatautology.
(b ∧ m)∧∼ a andb ∼ (b ∧ a) ∧ (m ∧ b) Note:Theentries
b m a ∼ a b ∧ m m ∧ b b ∧ a ∼ (b ∧ a) (b ∧ m)∧ ∼ a ∼ (b ∧ a) ∧ (m ∧ b) T T T F T T T F F F T T F T F T F T T T T F T F T F T F F F T F F T F F F T F F F T T F F F F T F F F T F T F F F T F F F F T F F F F T F F F F F T F F F T F F same truthvalues
inthetruthtableassumethatapersonwhoisadoublemathandcomputersciencemajoris alsoamathmajorandacomputersciencemajor.
p ⊕ q q ⊕ r (p ⊕ q) ⊕ r p ⊕ (q ⊕ r) T T T F F T T T T F F T F F T F T T T F F T F F T F T T F T T T F F F F T F T T T T F F T F T T T F F F F F F F same truthvalues
46. b. Yes. p q r
≡
≡
≡
≡ p ∧ (∼ q ∨ q) distributivelaw
≡ p ∧ (q∨∼ q) commutativelawfor ∨
≡ p ∧ t negationlawfor ∨
≡ p identitylawfor ∧
Section2.2
2.IfIcatchthe8:05bus,thenIamontimeforwork.
4.Ifyoudon’tfixmyceiling,thenIwon’tpaymyrent.
Section 2.2 11 c. Yes. p q r p ⊕ q p ∧ r q ∧ r (p ⊕ q) ∧ r (p ∧ r) ⊕ (q ∧ r) T T T F T T F F T T F F F F F F T F T T T F T T T F F T F F F F F T T T F T T T F T F T F F F F F F T F F F F F F F F F F F F F same truthvalues
p ⊕ q) ∧ r and(p ∧ r) ⊕ (q ∧ r)alwayshavethesametruthvalues. Sotheyarelogicallyequivalent. 49. a. thecommutativelawfor ∨ b. thedistributivelaw
thenegationlawfor ∧ d. theidentitylawfor ∨ 51. Solution1 : p ∧ (∼ q ∨ p) ≡ p ∧ (p ∨∼ q) commutativelawfor ∨ ≡ p absorptionlaw Solution2 : p ∧ (∼ q ∨ p) ≡ (p∧∼ q) ∨ (p ∧ p) distributivelaw ≡ (p∧∼ q) ∨ p identitylawfor ∧ ≡ p byexercise50. 52. ∼ (p ∨∼ q) ∨ (∼ p ∧∼ q) ≡ (∼ p∧∼ (∼ q)) ∨ (∼ p ∧∼ q) DeMorgan’slaw
(∼ p ∧ q) ∨ (∼ p ∧∼ q) doublenegativelaw
p ∧ (q∨∼ q) distributivelaw ≡∼ p ∧ t negationlawfor ∨ ≡∼ p identitylawfor ∧ 54. (p ∧ (∼ (∼ p ∨ q))) ∨ (p ∧ q) ≡ (p ∧ (∼ (
Thetruthtableshowsthat(
c.
≡
≡∼
∼ p)∧∼ q)) ∨ (p ∧ q)DeMorgan’slaw
(p ∧ (p∧∼ q)) ∨ (p ∧ q)doublenegativelaw
((p ∧ p)∧∼ q)) ∨ (p ∧ q)associativelawfor ∧
(p ∧∼ q)) ∨ (p ∧ q) idempotentlawfor ∧
6. p q ∼ p ∼ p ∧ q p ∨ q (p ∨ q) ∨ (∼ p ∧ q) (p ∨ q) ∨ (∼ p ∧ q) → q T T F F T T T T F F F T T F F T T T T T T F F T F F F T
Solutions forExercises:TheLogicofCompoundStatements
12
8. p q r ∼ p ∼ p ∨ q ∼ p ∨ q → r T T T F T T T T F F T F T F T F F T T F F F F T F T T T T T F T F T T F F F T T T T F F F T T F 10. p q r p → r q → r (p → r) ↔ (q → r) T T T T T T T T F F F T T F T T T T T F F F T F F T T T T T F T F T F F F F T T T T F F F T T T 11. p q r q → r p → (q → r) p ∧ q p ∧ q → r (p → (q → r)) ↔ (p ∧ q → r) T T T T T T T T T T F F F T F T T F T T T F T T T F F T T F T T F T T T T F T T F T F F T F T T F F T T T F T T F F F T T F T T 13. b. p q ∼ q p → q ∼ (p → q) p ∧ ∼ q T T F T F F T F T F T T F T F T F F F F T T F F same truthvalues Thetruthtableshowsthat ∼ (p → q)and p ∧∼ q alwayshavethesametruthvalues.Hence theyarelogicallyequivalent. 14. a. p q r ∼ q ∼ r q ∨ r p ∧ ∼ q p ∧ ∼ r p → q ∨ r p ∧ ∼ q → r p ∧ ∼ r → q T T T F F T F F T T T T T F F T T F T T T T T F T T F T T F T T T T F F T T F T T F F F F T T F F T F F T T T F T F F T T F F T T T F F T T F T F F T T T F F F T T F F F T T T same truthvalues
15.
Thetruthtableshowsthatthethreestatementforms p → q ∨ r, p ∧∼ q → r,and p ∧∼ r → q alwayshavethesametruthvalues.Thustheyarealllogicallyequivalent.
b. If n isprimeand n isnotodd,then n is2.
And:If n isprimeand n isnot2,then n isodd.
p q r q → r p → q p → (q → r) (p → q) → r
T T T T T T T
T T F F T F F
T F T T F T T
T F F T F T T
F T T T T T T
F T F F T T F ←
F F T T T T F ←
F F F T T T F ←
differenttruthvalues
Thetruthtableshowsthat p → (q → r)and(p → q) → r donotalwayshavethesametruth values.(Theydifferforthecombinationsoftruthvaluesfor p, q,and r showninrows6,7, and8.)Thereforetheyarenotlogicallyequivalent.
17.Let p represent“2isafactorof n,” q represent“3isafactorof n,”and r represent“6isa factorof n.”Thestatement“If2isafactorof n and3isafactorof n,then6isafactorof n” hastheform p ∧ q → r.Andthestatement“2isnotafactorof n or3isanotafactorof n or6isafactorof n”hastheform ∼ p ∨∼ q ∨ r
Thetruthtableshowsthat p ∧ q → r and ∼ p ∨∼ q ∨ r alwayshavethesametruthvalues. Thereforetheyarelogicallyequivalent.
18. Part1 :Let p represent“Itwalkslikeaduck,” q represent“Ittalkslikeaduck,”and r represent “Itisaduck.”Thestatement“Ifitwalkslikeaduckandittalkslikeaduck,thenitisaduck” hastheform p ∧ q → r.Andthestatement“Eitheritdoesnotwalklikeaduckoritdoesnot talklikeaduckoritisaduck”hastheform ∼ p ∨∼ q ∨ r
Section 2.2 13
p q r ∼ p ∼ q p ∧ q p ∧ q → r ∼ p ∨
q ∨ r T T T F T T T T T T F F T T F F T F T F F F T T T F F F F F T T F T T T T F T T F T F T T F T T F F T T F F T T F F F T F F T T same truthvalues
∼
Solutions forExercises:TheLogicofCompoundStatements
Thetruthtableshowsthat p
alwayshavethesametruthvalues. Thusthefollowingstatementsarelogicallyequivalent:“Ifitwalkslikeaduckandittalkslike aduck,thenitisaduck”and“Eitheritdoesnotwalklikeaduckoritdoesnottalklikea duckoritisaduck.”
Part2 :Thestatement“Ifitdoesnotwalklikeaduckanditdoesnottalklikeaduckthen itisnotaduck”hastheform
Thetruthtableshowsthat p ∧ q → r and(∼ p ∧∼ q) →∼ r donotalwayshavethesame truthvalues.(Theydifferforthecombinationsoftruthvaluesof p, q,and r showninrows2 and7.)Thustheyarenotlogicallyequivalent,andsothestatement“Ifitwalkslikeaduck andittalkslikeaduck,thenitisaduck”isnotlogicallyequivalenttothestatement“Ifit doesnotwalklikeaduckanditdoesnottalklikeaduckthenitisnotaduck.”Inaddition, becauseofthelogicalequivalenceshowninPart1,wecanalsoconcludethatthefollowing twostatementsarenotlogicallyequivalent:“Eitheritdoesnotwalklikeaduckoritdoesnot talklikeaduckoritisaduck”and“Ifitdoesnotwalklikeaduckanditdoesnottalklikea duckthenitisnotaduck.”
20. b. TodayisNewYear’sEveandtomorrowisnotJanuary.
c. Thedecimalexpansionof r isterminatingand r isnotrational.
e.x isnonnegativeand x isnotpositiveand x isnot0.
Or : x isnonnegativebut x isnotpositiveand x isnot0.
Or : x isnonnegativeand x isneitherpositivenor0.
g.n isdivisibleby6andeither n isnotdivisibleby2or n isnotdivisibleby3.
21.Bythetruthtablefor →,p → q isfalseif,andonlyif, p istrueand q isfalse.Underthese circumstances,(b) p ∨ q istrueand(c) q → p isalsotrue.
22. b. IftomorrowisnotJanuary,thentodayisnotNewYear’sEve.
c. If r isnotrational,thenthedecimalexpansionof r isnotterminating.
14
p q r ∼ p ∼ q p ∧ q ∼ p ∨ ∼ q p ∧ q → r (∼ p ∨ ∼ q) ∨ r T T T F F T F T T T T F F F T F F F T F T F T F T T T T F F F T F T T T F T T T F F T T T F T F T F F T T T F F T T T F T T T F F F T T F T T T same truthvalues
∧ q → r and(∼ p ∨∼ q) ∨ r
∼ p ∧∼ q →∼ r. p q r ∼ p ∼ q ∼ r p ∧ q ∼ p ∧ ∼ q p ∧ q → r (∼ p ∧ ∼ q) →∼ r T T T F F F T F T T T T F F F T T F F T ← T F T F T F F F T T T F F F T T F F T T F T T T F F F F T T F T F T F T F F T T F F T T T F F T T F ← F F F T T T F T T T differenttruthvalues
e. If x isnotpositiveand x isnot0,then x isnotnonnegative.
Or :If x isneitherpositivenor0,then x isnegative.
g. If n isnotdivisibleby2or n isnotdivisibleby3,then n isnotdivisibleby6.
23. b. Converse:IftomorrowisJanuary,thentodayisNewYear’sEve.
Inverse:IftodayisnotNewYear’sEve,thentomorrowisnotJanuary.
c. Converse:If r isrationalthenthedecimalexpansionof r isterminating.
Inverse:Ifthedecimalexpansionof r isnotterminating,then r isnotrational.
e. Converse:If x ispositiveor x is0,then x isnonnegative.
Inverse:If x isnotnonnegative,thenboth x isnotpositiveand x isnot0.
Or:If x isnegative,then x isneitherpositivenor0.
differenttruthvalues
Thetruthtableshowsthat p → qand ∼ p →∼ q havedifferenttruthvaluesinrows2and3, sotheyarenotlogicallyequivalent.Thusaconditionalstatementisnotlogicallyequivalent toitsinverse.
Thetruthtableshowsthat q → pand ∼ p →∼ q alwayshavethesametruthvalues,sothey arelogicallyequivalent.Thustheconverseandinverseofaconditionalstatementarelogically equivalenttoeachother.
Theif-thenformof“ImeanwhatIsay”is“IfIsaysomething,thenImeanit.”
Thus“ImeanwhatIsay”istheconverseof“IsaywhatImean.”Thetwostatementsarenot logicallyequivalent.
Section 2.2 15
25. p q ∼ p ∼ q p → q ∼ p →∼ q T T F F T T T F F T F T ← F T T F T F ← F F T T T T
27. p q ∼ p ∼ q q → p ∼ p →∼ q T T F F T T T F F T T T F T T F F F F F T T T T same truthvalues
28.Theif-thenformof“IsaywhatImean”is“IfImeansomething,thenIsayit.”
30.Thecorrespondingtautologyis
p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r)
Solutions forExercises:TheLogicofCompoundStatements
33.Ifthisintegeriseven,thenitequalstwicesomeinteger,andifthisintegerequalstwicesome integer,thenitiseven.
35.IfSamisnotanexpertsailor,thenhewillnotbeallowedonSigne’sracingboat. IfSamisallowedonSigne’sracingboat,thenheisanexpertsailor.
36.ThePersonnelDirectordidnotlie.Byusingthephrase“onlyif,”thePersonnelDirectorset forthconditionsthatwerenecessarybutnotsufficientforbeinghired:ifyoudidnotsatisfy thoseconditionsthenyouwouldnotbehired.ThePersonnelDirector’sstatementsaidnothing aboutwhatwouldhappenifyoudidsatisfythoseconditions.
38.Ifitdoesn’train,thenAnnwillgo.
39. b. Ifasecuritycodeisnotentered,thenthedoorwillnotopen.
41.Ifthistrianglehastwo45◦ angles,thenitisarighttriangle.
43.IfJimdoesnotdohishomeworkregularly,thenJimwillnotpassthecourse.
IfJimpassesthecourse,thenhewillhavedonehishomeworkregularly.
45.Ifthiscomputerprogramproduceserrormessagesduringtranslation,thenitisnotcorrect. Ifthiscomputerprogramiscorrect,thenitdoesnotproduceerrormessagesduringtranslation.
46. c.mustbetrue d.notnecessarilytrue e.mustbetrue f .notnecessarilytrue
Note: Tosolvethisproblem,itmaybehelpfultoimagineacompoundwhoseboilingpointis greaterthan150◦ C.Forconcreteness,supposeitis200◦ C.Thenthegivenstatementwould betrueforthiscompound,butstatements a, d,and f wouldbefalse.
16
p q r q ∨ r p ∧ q p ∧ r p ∧ (q ∨ r) (p ∧ q) ∨ (p ∧ r) p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) T T T T T T T T T T T F T T F T T T T F T T F T T T T T F F F F F F F T F T T T F F F F T F T F T F F F F T F F T T F F F F T F F F F F F F F T all T ’s The truthtableshowsthat p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r)isalwaystrue.Henceitisatautology. 31.Thecorrespondingtautologyis(p → (q → r)) ↔ ((p ∧ q) → r). p q r q → r p ∧ q p → (q → r) (p ∧ q) → r) p → (q → r) ↔ (p ∧ q) → r T T T T T T T T T T F F T F F T T F T T F T T T T F F T F T T T F T T T F T T T F T F F F T T T F F T T F T T T F F F T F T T T all T ’s The truthtableshowsthat(p → (q → r)) ↔ ((p ∧ q) → r)isalwaystrue.Henceitisa tautology.
q) ∨ r]
∧∼ [∼ (p ∧ q) ∨ r] ∨ [∼ p ∨ (∼ q ∨ r)]
b. Bypart(a),DeMorgan’slaw,andthedoublenegativelaw, (p → (q → r)) ↔ ((p ∧ q) → r) ≡∼ [∼ p ∨ (∼ q ∨ r)] ∨ [∼ (p ∧ q) ∨ r]
∧∼ [∼ (p ∧ q) ∨ r] ∨ [∼ p ∨ (∼ q ∨ r)]
≡∼ [∼ p ∨ (∼ q ∨ r)]∧∼ [∼ (p ∧ q) ∨ r]
∧∼∼ [(p ∧ q)∧∼ r]∧∼ [∼ p ∨ (∼ q ∨ r)]
≡∼∼ [p ∧∼ (∼ q ∨ r)] ∧ [(p ∧ q)∧∼ r]
∧∼∼ [(p ∧ q)∧∼ r
Thestepsintheanswertopart(b)wouldalsobeacceptableanswersforpart(a).
51.Yes.Asinexercises47-50,thefollowinglogicalequivalencescanbeusedtorewriteany statementforminalogicallyequivalentwayusingonly
Section 2.3 17 48. a.p ∨∼ q → r ∨ q ≡∼ (p ∨∼ q) ∨ (r ∨ q) [anacceptableanswer] ≡ (∼ p ∧∼ (∼ q)) ∨ (r ∨ q)byDeMorgan’slaw [anotheracceptableanswer] ≡ (∼ p ∧ q) ∨ (r ∨ q)bythedoublenegativelaw [anotheracceptableanswer] b.p ∨∼ q → r ∨ q ≡ (∼ p ∧ q) ∨ (r ∨ q) bypart(a) ≡∼ (∼ (∼ p ∧ q)∧∼ (r ∨ q))byDeMorgan’slaw ≡∼ (∼ (∼ p ∧ q) ∧ (∼ r ∧∼ q))byDeMorgan’slaw Thestepsintheanswertopart(b)wouldalsobeacceptableanswersforpart(a). 50. a. (p → (q → r)) ↔ ((p ∧ q) → r) ≡ [∼ p ∨ (q → r)] ↔ [∼ (p ∧ q) ∨ r] ≡ [∼ p ∨ (∼ q ∨ r)] ↔ [∼ (p ∧ q) ∨ r] ≡∼ [∼ p ∨ (∼ q ∨ r)] ∨ [∼ (p ∧
∧∼
∧
∧∼ r
∧
p ∧
q∧∼
] ∧ [p
(∼ q ∨ r)] ≡∼∼ [p ∧ (q ∧∼ r)] ∧ [(p ∧ q)∧∼ r] ∧∼∼ [(p
q)
]
[
(
r)].
∼ and ∧: p → q ≡∼ p ∨ q p ↔ q ≡ (∼ p ∨ q) ∧ (∼ q ∨ p) p ∨ q ≡∼ (∼ p ∧∼ q) ∼ (∼ p) ≡ p Thelogicalequivalence p ∧ q ≡∼ (∼ p ∨∼ q)canthenbeusedtorewriteanystatementform inalogicallyequivalentwayusingonly ∼ and ∨
Section2.3
2.1 0 99999 islessthaneverypositiverealnumber.
9. premises conclusion p q r ∼ q ∼ r p ∧ q p ∧ q →∼ r p∨ ∼ q ∼ q → p ∼ r T T T F F T F T T T T F F T T T T T T ✛ criticalrow T F T T F F T T T F ✛ criticalrow T F F T T F T T T T ✛ criticalrow F T T F F F T F T F T F F T F T F T F F T T F F T T F F F F T T F T T F
4.Thisfigureisnotaquadrilateral. 5.Theydidnottelephone.
Solutions forExercises:TheLogicofCompoundStatements
Rows2,3,and4ofthetruthtablearethecriticalrowsinwhichallthepremisesaretrue,but row3showsthatitispossibleforanargumentofthisformtohavetruepremisesandafalse conclusion.Hencetheargumentformisinvalid.
Rows1,3,5,7,and8ofthetruthtablerepresentthesituationsinwhichallthepremisesare true,andinalloftheserowstheconclusionisalsotrue.Therefore,theargumentformisvalid.
Rows2,3,6,7,and8ofthetruthtablerepresentthesituationsinwhichallthepremisesare true,butrow3showsthatitispossibleforanargumentofthisformtohavetruepremises andafalseconclusion.Hencetheargumentformisinvalid.
Rows3,and4ofthetruthtablerepresentthesituationsinwhichallthepremisesaretrue, butrow3showsthatitispossibleforanargumentofthisformtohavetruepremisesanda falseconclusion.Hencetheargumentformisinvalid. 13.
Row4ofthetruthtablerepresentstheonlysituationinwhichallthepremisesaretrue,and inthisrowtheconclusionisalsotrue.Therefore,theargumentform(modustollens)isvalid.
18
10. premisesconclusion p q r p ∨ ∼ q p → r q → r p ∨ q → r T T T T T T T ✛ criticalrow T T F T F F T F T T T T T ✛ criticalrow T F F T F T F T T T T T T ✛ criticalrow F T F T T F F F T F T T T ✛ criticalrow F F F F T T T ✛ criticalrow
11. premisesconclusion p q r ∼ p ∼ q ∼ r q ∨ r p → q ∨ r ∼ q∨ ∼ r ∼ p∨ ∼ r T T T F F F T T F T T F F F T T T T T ✛ criticalrow T F T F T F T T T F ✛ criticalrow T F F F T T F F T F T T T F F T T F F T F T F T T T T T ✛ criticalrow F F T T T F T T T T ✛ criticalrow F F F T T T F T T T ✛ criticalrow
b. premisesconclusion
T T
T F F F F T T
criticalrow
12.
p q p → q ∼ p ∼ q
T F
T F ✛ criticalrow F F T T T ✛
premisesconclusion p
T
q p → q ∼ q ∼ p T T T F
F F T F T T F F F T T T ✛ criticalrow
15.
16.
The truthtableshowsthatinthetwosituations(representedbyrows1and3)inwhichthe premiseistrue,theconclusionisalsotrue.Therefore,thethesecondversionofgeneralization isvalid.
The truthtableshowsthatintheonlysituation(representedbyrow1)inwhichbothpremises aretrue,theconclusionisalsotrue.Therefore,thethefirstversionofspecializationisvalid.
The truthtableshowsthatintheonlysituation(representedbyrow1)inwhichbothpremises aretrue,theconclusionisalsotrue.Therefore,thesecondversionofspecializationisvalid. 19.
The truthtableshowsthatintheonlysituation(representedbyrow3)inwhichbothpremises aretrue,theconclusionisalsotrue.Therefore,thethesecondversionofeliminationisvalid.
Section 2.3 19
T
T
F
premiseconclusion p q q p ∨ q
T T T ✛ criticalrow
F F F T T T ✛ criticalrow
F F
T
T
F
F
premiseconclusion p q p ∧ q p
T T T ✛ criticalrow
F F
T F
F F
T
T F F F T F F F F
17. premiseconclusion p q p ∧ q q T
T T ✛ criticalrow
premisesconclusion
q p ∨ q ∼ p q T T T F T F T F F T T T T ✛ criticalrow F F F T
p
premisesconclusion p q r p → q q → r p → r T T T T T T ✛ criticalrow T T F T F T F T F T T F F F T F T T T T T ✛ criticalrow F T F T F F F T T T T ✛ criticalrow F F F T T T ✛ criticalrow
20.