Factorización Para otros usos de este término, véase Factorización (desambiguación). En matemáticas, la factorización (o factoreo) es la descomposición de una expresión matemática (que puede ser un número, una suma, una matriz, un polinomio, etc) en forma de multiplicación. Existen diferentes técnicas de factorización, dependiendo de los objetos matemáticos estudiados; el objetivo es simplificar una expresión o reescribirla en términos de «bloques fundamentales», que reciben el nombre de factores, como por ejemplo un número en números primos, o un polinomio en polinomios irreducibles. El teorema fundamental de la aritmética cubre la factorización de números enteros, y para la factorización de polinomios, el teorema fundamental del álgebra. La factorización de números enteros muy grandes en producto de factores primos requiere de algoritmos sofisticados, el nivel de complejidad de tales algoritmos está a la base de la fiabilidad de algunos sistemas de criptografía asimétrica como el RSA. FORMA DE DISTINGUIR LOS CASOS DE FACTORIZACIÓ monomio (2 terminos) FACTOR COMÚN METODO: 1) Identificar la letra o letras comunes 2) Extraer la letra o letras comunes, con su menor exponente presente En caso de tener coeficientes numéricos se 3) Sacar el m.c.d. de todos los coeficientes. 4) Los factores extraídos se reunirán para efectuar la multiplicación que permita reproducir la expresión original. 5) Comprobar que la factorización este realizada correctamente al efectuar el producto, debiéndose de reproducir la expresión original. EJEMPLO 1 : FACTORIZAR 12 a2b3c 8 a4b5c + 4 a3b2e 1) a , b 2) a2 , b2 3) MCD=4 4) 4 a2b2 ( _____) 5) 4 a2b2 ( 3bc 2 a2b3c + ae ) = 12 a2b3c 8 a4b5c + 4 a3b2e / DIFERENCIA DE CUADRADOS METODO: 1) Identificar que existan dos términos 2) Verificar que ambos se estén restando 3) Extraer raíz cuadrada a ambos términos 4) Formar una diferencia con las raíces obtenidas 5) Multiplicar la diferencia obtenida por las mismas raíces en una suma. 6) comprobar.