lecture_6_single-degree-of-freedom-system_forced-harmonic-vibration_2

Page 1

CE-5113: DYNAMICS OF STRUCTURES By: Dr. Mohammad Ashraf (engineerashraf@yahoo.com) Office: CE: B109

Department of Civil Engineering, University of Engineering and Technology, Peshawar

Module-4 Single Degree of Freedom System: Forced Harmonic Vibration (Cont..)

Dynamics of Structures

2

1


Rotating Vector Presentation: Damped System

The harmonic vibration response of undamped system is given by: u static =

po sin Ωt k

u steady = ρ sin (Ωt − φ )

ρ=

po k

1

(1 − β ) + (2ζβ ) 2 2

2

,− − tan φ =

2ζβ 1− β 2

Dynamics of Structures

3

Force Balance Diagram: Damped System p = po sin Ωt

u steady = ρ sin (Ωt − φ ),

u& steady = ρΩ cos(Ωt − φ )

u&&steady = − ρΩ 2 sin (Ωt − φ ) f I = mu&& = − mΩ 2 ρ sin (Ωt − φ )

f D = cu& = cΩρ cos(Ωt − φ )

f S = ku = kρ sin (Ωt − φ )

Dynamics of Structures

4

2


Dynamic Response Factors

The steady state harmonic response is:

u (t ) =

po k

1

(1 − β ) + (2ζβ ) 2 2

2

sin (Ωt − φ )

u (t ) = Rd sin (Ωt − φ ) po / k Rd =

Dynamics of Structure by A. K. Chopra p = po sin Ωt

1

(1 − β ) + (2ζβ ) 2 2

u& (t ) = po / km

2

m Rd Ω cos(Ωt − φ ) = Rv cos(Ωt − φ ) k

u&&(t ) m = − Rd Ω 2 sin (Ωt − φ ) = − Ra sin (Ωt − φ ) po / m k Ra

β

u steady = ρ sin (Ωt − φ ),

= Rv = β Rd Dynamics of Structures

5

Four-way Logarithmic Plot

Dynamics of Structure by A. K. Chopra Dynamics of Structures

6

3


Resonant Frequencies and Responses

The frequency at which largest response amplitude occurs is called resonant frequency The steady state displacement, velocity and acceleration response of a dynamic system are: u (t ) =

u&&(t ) = −

po k

po k

1

sin (Ωt − φ ),

(1 − β ) + (2ζβ ) 2 2

2

Ω2

(1 − β ) + (2ζβ ) 2 2

2

u& (t ) =

po k

(1 − β ) + (2ζβ ) 2 2

2

cos(Ωt − φ )

sin (Ωt − φ ),

By setting the first derivatives of u, u& and u&& w.r.t β equal to zero we can determine the resonant frequencies. z z z

Displacement resonant frequency ratio : Velocity resonant frequency ratio : Acceleration resonant frequency ratio :

β d = 1 − 2ζ 2

βv = 1 β a = 1 / 1 − 2ζ 2

Dynamics of Structures

7

Resonant Frequencies and Responses (Cont..)

The three dynamic response factors are: Rd = Rv =

Ra =

1

2

⇒ Rd =

2

⇒ Rv =

(1 − β ) + (2ζβ ) 2 2

β

(1 − β ) + (2ζβ ) 2 2

β2

(1 − β ) + (2ζβ ) 2 2

2

⇒ Ra =

1 2ζ 1 − ζ 2 1 2ζ 1 2ζ 1 − ζ 2

Dynamics of Structures

8

4


Half-Power Bandwidth The difference of frequency ratios on either side of the resonant frequency at which the amplitude is 1/√2 times the resonant amplitude. For small damping:

Rd =

1

(1 − β ) + (2ζβ ) 2 2

2

Rd ,resonant =

,

Dynamics of Structure by A. K. Chopra

1 2ζ

For half-power bandwidth:

1

(1 − β ) + (2ζβ ) 2 2

(β )

2

(

2 2

=

1 1 ⇒ 1− β 2 2 2ζ

(

) + (2ζβ ) 2

2

= 8ζ 2

)( )

− 2 1 − 2ζ 2 β 2 + 1 − 8ζ 2 = 0

2 2 2 β 2 = (1 − 2ζ 2 ) ± (1 − 2ζ 2 ) − (1 − 8ζ 2 ) = (1 − 2ζ ) ± 2ζ 1 + ζ

For small damping:

β = (1 − 2ζ 2 ) − 2ζ _ and _ β b2 = (1 − 2ζ 2 ) + 2ζ 2 a

β b − β a = 2ζ ⇒ ζ =

βb − β a 2

Dynamics of Structures

9

Rotating Machinery/Eccentric Mass Vibrator In case of rotating machinery:

sin

p (t ) = mo eΩ sin Ωt 2

Here po is moeΩ2 the response is therefore:

u (t ) = ρ sin (Ωt − φ )

ρ=

mo eΩ 2 k

(1 − β ) + (2ζβ )

tan φ =

2 2

2

=

e

Ω 2 mo k/m m

(1 − β ) + (2ζβ ) 2 2

2

=

eβ 2

mo m

(1 − β ) + (2ζβ ) 2 2

2

2ζβ 1− β 2

Dynamics of Structures

10

5


Example 6.2

Dynamics of Structures

11

Dynamics of Structures

12

Example 6.2

6


Example 6.2

Dynamics of Structures

13

Transmissibility: Support Movement

Let the support move according to the equation:

u g = G sin Ωt

u&&g = −GΩ 2 sin Ωt

ut

Equation of motion is:

mu&&t + cu& + ku = 0

m(u&& + u&&g ) + cu& + ku = 0

mu&& + cu& + ku = −mu&&g = mGΩ 2 sin Ωt

2 Here p(t ) = mGΩ sin Ωt

Therefore u (t ) =

mGΩ 2 k

u (t ) = G

1

(1 − β ) + (2ζβ ) 2 2

2

β2

(1 − β ) + (2ζβ ) 2 2

2

sin (Ωt − φ )

sin (Ωt − φ ),

Dynamics of Structures

tan φ =

2ζβ 1− β 2

14

7


Transmissibility: Support Movement (Cont..)

The total displacement is: β2

u t = u g + u = G sin Ωt + G ⇒ u t = χ sin (Ωt − γ ),

(1 − β ) + (2ζβ ) 2 2

2

where χ = G

sin (Ωt − φ )

1 + (2ζβ )

2

, 2

(1 − β ) + (2ζβ ) 2 2

and

tan γ =

2ζβ 3

(1 − β ) + (2ζβ ) 2 2

2

The ratio of amplitude of total displacement (χ) to amplitude of ground displacement (G) is called transmissibility (TR) TR =

χ G

1 + (2ζβ )

2

=

(1 − β ) + (2ζβ ) 2 2

2

Dynamics of Structures

15

Dynamics of Structures

16

Example 6.3

8


Example 6.3

Dynamics of Structures

17

Force Transmission

The total force transmitted to the base is: fT = f D + f S = cu& + ku

The displacement and velocity response to harmonic force is: u (t ) =

po k

1

(1 − β ) + (2ζβ ) 2 2

2

sin (Ωt − φ ),

po k

(1 − β ) + (2ζβ ) 2 2

2

cos(Ωt − φ )

Therefore: f T = po

1

(1 − β ) + (2ζβ ) 2 2

2

c ⎧ ⎫ ⎨sin (Ωt − φ ) + Ω cos(Ωt − φ )⎬ k ⎩ ⎭

1 + (2ζβ )

2

⇒ fT = po

u& (t ) =

(1 − β ) + (2ζβ ) 2 2

2

sin (Ωt − γ )

Transmissibility is also the ratio amplitudes of force transferred to the base to that of applied force Dynamics of Structures

TR =

fT = po

1 + (2ζβ )

2

(1 − β ) + (2ζβ ) 2 2

2

18

9


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.