Marine science for cambridge international as a level coursebook 2nd edition matthew parkin

Page 1

Visit to download the full and correct content document: https://textbookfull.com/product/marine-science-for-cambridge-international-as-a-level -coursebook-2nd-edition-matthew-parkin/

Science for Cambridge International
Coursebook
Marine
AS A Level
2nd Edition Matthew Parkin

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Cambridge International AS A Level Marine Science Workbook 2nd Edition Matthew Parkin

https://textbookfull.com/product/cambridge-international-as-alevel-marine-science-workbook-2nd-edition-matthew-parkin/

Cambridge International AS and A Level Computer Science Coursebook 2nd Edition Sylvia Langfield

https://textbookfull.com/product/cambridge-international-as-anda-level-computer-science-coursebook-2nd-edition-sylvia-langfield/

Cambridge International AS and A Level Chemistry Coursebook Lawrie Ryan

https://textbookfull.com/product/cambridge-international-as-anda-level-chemistry-coursebook-lawrie-ryan/

Cambridge International AS Level History International History 1870 1945 Coursebook 2nd Edition Phil Wadsworth

https://textbookfull.com/product/cambridge-international-aslevel-history-international-history-1870-1945-coursebook-2ndedition-phil-wadsworth/

Cambridge International AS Level History Modern Europe 1750 1921 Coursebook 2nd Edition Graham Goodlad

https://textbookfull.com/product/cambridge-international-aslevel-history-modern-europe-1750-1921-coursebook-2nd-editiongraham-goodlad/

Cambridge International AS Level History The History of the USA 1820 1941 Coursebook 2nd Edition Pete Browning

https://textbookfull.com/product/cambridge-international-aslevel-history-the-history-of-the-usa-1820-1941-coursebook-2ndedition-pete-browning/

Cambridge International AS & A Level Chemistry Coursebook with Digital Access (2 Years) 3rd Edition Lawrie Ryan

https://textbookfull.com/product/cambridge-international-as-alevel-chemistry-coursebook-with-digital-access-2-years-3rdedition-lawrie-ryan/

Cambridge International AS & A Level Physics Coursebook with Digital Access (2 Years) 3rd Edition David Sang

https://textbookfull.com/product/cambridge-international-as-alevel-physics-coursebook-with-digital-access-2-years-3rd-editiondavid-sang/

Cambridge IGCSE Arabic as a First Language Coursebook

Cambridge International IGCSE Abdul Hameed

https://textbookfull.com/product/cambridge-igcse-arabic-as-afirst-language-coursebook-cambridge-international-igcse-abdulhameed/

Marine Science

COURSEBOOK

forCambridgeInternationalAS&ALevel
MatthewParkin,MelissaLorenz,ClaireBrown&JulesRobson
Teachers play an important part in shaping futures. Our Dedicated Teacher Awards recognise the hard work that teachers put in every day. Thankyoutoeveryonewhonominatedthisyear,wehavebeeninspiredand movedbyallofyourstories Welldonetoallofournomineesforyourdedication tolearningandforinspiringthenextgenerationofthinkers,leadersand innovators Congratulations to our incredible winner and finalists Formoreinformationaboutourdedicatedteachersandtheirstories,goto dedicatedteacher.cambridge.org

Introduction

Howtousethisseries

Howtousethisbook

Introductiontocommandwords

Water

1.1Particletheoryandbonding

1.2Solubilityinwater

1.3Densityandpressure

Earthprocesses

2.1Tectonicprocesses

2.2Weathering,erosionandsedimentation

2.3Tidesandoceancurrents

Interactionsinmarineecosystems

3.1Interactions

3.2Feedingrelationships

3.3Nutrientcycles

Classificationandbiodiversity

4.1Theclassificationofmarineorganisms

4.2Keygroupsofmarineorganisms

4.3Biodiversity

4.4Populationsandsamplingtechniques

Examplesofmarineecosystems

51Theopenocean

52Thetropicalcoralreef

5.3Therockyshore

5.4Thesandyshore

5.5Themangroveforest

Practicalskills

Introductiontopracticalskills

Experimentalplanningincludingmakingestimates,predictionsandhypotheses

Presentationofdataandobservations

Evaluationofproceduresanddata

Analysisofdataandconclusions

Physiologyofmarineorganisms

61Generalcellstructure

62Movementofsubstances

63Gasexchange

64Osmoregulation

Energy

71Photosynthesis

72Chemosynthesis

73Respiration

Fisheriesforthefuture

81Lifecycles

82Sustainablefisheries

83Marineaquaculture

Humanimpactsonmarineecosystems

91Ecologicalimpactsofhumanactivities

92Globalwarminganditsimpact

93Oceanacidification

94Conservationofmarineecosystems

1 2 3 4 5 6 7 8 9 Contents
Acknowledgements

Introduction

Thissecondeditionofthe Cambridge International AS & A Level Marine Science Coursebook has beenwrittentohelpyouacquiretheknowledgeandskillsrequiredbytheCambridgeInternational AS&AlevelMarineSciencesyllabus(9693) Thebookprovidesfullcoverageoftherevisedsyllabus andreflectstheslightlydifferentdemandsofthenewcontent

Thechaptersarearrangedinthesamesequenceasthesyllabus.Chapters1to5covertheAS syllabusandChapters6to9coverthefullALevelsyllabus.Eachchapterhassimilarfeaturestohelp you,including:keywordsandcommandwords,mathsskills,testyourselfquestions,practical activities,casestudiesthatlookatreal-lifescenarios,andexam-stylequestions.Lookatthe‘Howto usethisbook’sectionformoreinformationabouteachfeature.

Inordertosucceedinyourcourse,youwillneedtodevelopanumberofskills Theseinclude applyingyourknowledgetounfamiliarsituations,usingmathematicalandstatisticalskillsto determinepopulationsizes,speciesdiversityetc,aswellasrecallingkeyfacts Workingthroughthe questionsandactivitiesinthiscoursebookwillhelpyoutohonetheseskills

Althoughthebookisarrangedasaseriesofdiscretechapters,itisimportanttorememberthatthe topicsandskillsinthesechapterslinktoeachother.PracticalskillsareanimportantpartoftheAS &ALevelMarineSciencecourse.Youshouldbecomefamiliarwithcertain‘core’practicals,and understandhowtoplanpracticalinvestigationsandanalysethedata.Mostchapterscontains practicalactivitiesforyoutocarryoutanddevelopyourskills.Theexam-stylequestionsattheendof eachchapteralsoincludepracticalofeachchapterincludepracticalquestionsthepracticalskills chapterexplainsthenatureofscientificinvestigation.Furtherexercises,exam-stylequestionsand practicalactivitiescanbefoundinthe Cambridge International AS & A Level Workbook publishedby CambridgeUniversityPress.

Marinescienceisauniqueandengagingsubjectthatrequiresyoutohaveanunderstandingof subjectssuchasbiology,geography,geology,physics,chemistryandevensociology Thiscoursebook willcovermaterialfromalloftheseareasandlookatbothestablishedknowledgeandsomeofthe recentexcitingdevelopmentsinourunderstandingofthemarineworld Itwillhelpyoutoappreciate topicalissues,suchastheeffectsofhumanactivity,bylookingatrealcasestudies Ouroceansare thelifebloodoftheplanetandtheyhaveneverbeenasthreatenedbyhumanactivityastheyarenow Neveradaygoesbywithoutsomementionofnewthreatstothemarineenvironment,beitplastic, climatechangeoroverfishing Athoroughknowledgeofmarinescienceisessentialifweareto preventfurtherdamageandeducatetheworldaboutthem Peoplestudymarinescienceforavariety ofreasons:arouteintofurtherstudythroughmarinesciencecoursesatuniversities;tohelpdevelop careersthatarelinkedtotheseassuchasfishing,aquacultureortourism;orsimplyforpureinterest inourmarineworld Whateverreasonsyouhaveforstudyingmarinescience,wehopeyouenjoy learningaboutthisfascinatingsubject

The information in this section is taken from the Cambridge International syllabus based on the 9693 syllabus for examination from 2022. You should always refer to the appropriate syllabus document for the year of your examination to confirm the details and for more information. The syllabus document is available on the Cambridge International website at www.cambridgeinternational.org.

How to use this book

Chapters1–5ofthecoursebookcoverthetopicsthatyouwillstudyforCambridgeInternationalAS LevelMarineScience Chapters6–9coverthetopicsthatyouwillstudyatALevel Throughoutthis book,youwillnoticelotsofdifferentfeaturesthatwillhelpyourlearning Theseareexplainedbelow

LEARNING INTENTIONS

Thesesetthesceneforeachchapter,helpwithnavigationthroughthecoursebookandindicatethe importantconceptsineachtopic

BEFORE YOU START

Thiscontainsquestionsandactivitiesonthetopicknowledgethatyouwillneedbeforestartinga chapter.

PRACTICAL ACTIVITY

Practicalactivitiesgiveyoutheopportunitytotestoutthetheorythatyouhavelearntinachapter andinvestigateatopicforyourself YouwillfinditparticularlyhelpfultocovertheCorepractical activities,asthesearetakendirectlyfromtheAS&ALevelMarineSciencesyllabus

Test yourself

Testyourselfquestionsappearattheendofeachsectioninachapter Thesegiveyouthechanceto checkthatyouhaveunderstoodthetopicthatyouhavejustreadabout

REFLECTION

Reflectionquestionsfollowonaftereachpracticalactivity Theseaskyoutolookbackonthe practicalandencourageyoutothinkaboutyourlearning

SCIENCE IN CONTEXT

Thisfeaturepresentsreal-worldexamplesandapplicationsofthecontentinachapter, encouragingyoutolookfurtherintotopics.Therearediscussionquestionsattheendwhichlook atsomeofthebenefitsorproblemsoftheseapplications.

PROJECT

Projectsgiveyoutheopportunitytoworkcollaborativelywithotherstudents Yourgroupwill exploreaparticularquestionortopic,andwillthenpresenttheoutcomeviavariouscreative methods Afterwards,youcanreflectonorassesstheprojectwiththe‘Thinkingaboutyour project’questions

CASE STUDY

Casestudiestakeanin-depthlookatatopicinthechapterandpresentitinareal-worldsetting. Thiswillhelpyoutodiscussissuesrelatingtothistopic.

Note: Thistypeofboxshowsextensioncontentthatisnotpartofthesyllabus

MATHS SKILLS

Mathsskillscontainbackgroundinformation,workedexamplesandpracticequestionsthatwill helpyoutodevelopthemathematicalawarenessthatisneededforyourMarineSciencecourse.

EXAM-STYLE QUESTIONS

Questionsattheendofeachchapterprovidemoredemandingexam-stylequestions,someofwhich mayrequireyoutouseyourknowledgefrompreviouschapters

SELF-EVALUATION CHECKLIST

Attheendofeachchapter,youwillfind‘Ican’statementswhichmatchthelearningintentionsat thebeginningofthechapter.Youmightfindithelpfultoratehowconfidentyouareforeachof thesestatementswhenyouarerevising.Youshouldrevisitanytopicsthatyourated‘Needsmore work’or‘Almostthere’.

EXTENDED CASE STUDY

Eachchapterisfollowedbyalongercasestudy,whichillustratesamorecomplextopicinarealworldsetting.Thiswillhelpyoutothinkaboutthistopicanddiscussissuesrelatingtoitinmore depth.

Practical Skills chapter

Thischaptercontainssomeadditionalfeaturestosupportyourlearning.

A Level content

IfyouarestudyingALevelMarineScience,youwillfindthatanyrelevantcontentbeyondASLevel inthischapterishighlightedinbluefont

EXAMPLES

Youwillfindexamplesthroughoutthischapterthatpresentpracticalactivitiesthatyoumay encounteraspartofyourMarineSciencecourse Theseconcludewith‘Nowyoutry’questionsthat encourageyoutothinkaboutvariousaspectsofthepracticalforyourself

SUMMARY

Attheendofeachsectioninthischapter,youwillfindasummary.Thislistsummarisesthesteps thatyoushouldtaketocompletesomeofthekeyskillsrelatingtopracticalactivities.

I can: See topic… Needs more work Almost there Ready to move on

Introduction to command words

Commandwordsareverbsusedwithinthequestionsofexaminationpapersthatcangiveyouinsight inhowtogoaboutansweringthequestion.Thesewordscanhelpyoudeterminemuchaboutthe expectedanswerforthequestionthatisbeingpresented.Usedasclues,thesewordscanhelp determinethelengthanddepthofknowledgeananswerrequires,theappropriatestyleofresponse, anddifferentiatebetweensimilarquestionsthatneeddifferentresponses.Beingcomfortablewith thegeneraldefinitionsandstandardexpectationsforeachofthecommandwordslistedbelowcan reallyhelpyounavigateyourwaythroughyourpapers.

Analyse: examineindetailtoshowmeaning,identifyelementsandtherelationshipbetweenthem

Guidance: Thisisahigherlevel,andtypicallyhighermark,questionrequiringmultipledetails.Your responseto‘analyse’questionsislikelytobelongerthantoothertypesofquestions.

Assess: makeaninformedjudgement

Guidance: Thiscommandwordwilltypicallybeusedinascenariothatwasnotexpresslytaught throughthesyllabus.Youwillneedtopullrelatedinformationandapplyittothesituationtocreate yourjudgement.

Calculate: workoutfromgivenfacts,figuresorinformation

Guidance: Inthesequestions,youwillneedtodomathstoarriveattheanswer.Makesureto includeanyunitsandshowyourworking.

Comment: giveaninformedopinion

Guidance: Theseareshorterresponsequestionswhereyouwillapplygeneralknowledgetoanew scenario.Makesureyoujustifyyouropinionwithsupportingdetails.

Compare: identify/commentonsimilaritiesand/ordifferences

Guidance: Thesequestionsvaryinlengthsousetheprovidedmarkstodeterminehowmanypoints ofcomparisonyouneedtoprovide Makesureyoudonotrepeatthesamepointswithinyouranswer –eachmarkwillonlybegivenoncenomatterhowmanytimesyouhaverewordedit

Consider: reviewandrespondtogiveninformation

Guidance:Thesequestionsarehigherlevelandgenerallyrequiredataanalysisinthecontextofa casestudy

Contrast: identify/commentondifferences

Guidance: Thesequestionsvaryinlengthsousetheprovidedmarkstodeterminehowmanypoints ofcontrastyouneedtoprovide Focusentirelyonthedifferencesbetweentheprovidedsituations

Define: giveprecisemeaning

Guidance: Trytowordyourdefinitionsaspreciselyaspossiblewithallmajoridentifyingfeatures Thisisaconciseresponsethatshouldnotbelongerthanasentence

Demonstrate: showhoworgiveanexample

Guidance: Makesuretoprovideastep-by-stepmethodforhowtheprocessbeingaskedaboutworks oruseanexampletoillustratetheprocess

Describe: statethepointsofatopic/givecharacteristicsandmainfeatures

Guidance: Mostcommonlyconfusedwith‘explain’,‘describe’meanstoanswer what ishappening Thiscouldbeinreferencetodescribingthedata(forexample,itincreasesordecreases),the process,orthemeaningofaterm Atnopointshouldyoutrytowriteabouthoworwhysomethingis happening,asthatisthemeaningofthe‘explain’commandword

Develop: takeforwardtoamoreadvancedstageorbuildupongiveninformation

Guidance:Thistermisaskingyoutousebackgroundknowledgeinanovelsituationtopredictthe steporprocessinthesituation Thisquestionrequiresahigher-levelresponse

Discuss: writeaboutissue(s)ortopic(s)indepthinastructuredway

Guidance: Questionsusingthiscommandwordaregenerallylongerresponseandrequiredtheuse ofdetailstosupporttheyourknowledgeaboutatopic Ingeneral,responsesto‘discuss’questions requiretheuseofmultiplewell-writtenparagraphs

Evaluate: judgeorcalculatethequality,importance,amountorvalueofsomething

Guidance: For‘evaluate’questions,youwillneedtocreateanopinionorchooseasideaboutthe topicinquestion Youwillthenneedtosupportyourthesisusingdetailsfromeitheryourbackground knowledgeorinformationprovidedwithinthequestion

Examine: investigateclosely,indetail

Guidance: Thesequestionstypicallywillhaveyoulookoveradatasettopullinformationoutof Dependingonthestyleofthistypeofquestion,1-2sentencesisprobablysufficient,butusethe marksprovidedtodeterminehowmuchdetailisneeded

Explain: setoutpurposesorreasons/maketherelationshipsbetweenthingsevident/providewhy and/orhowandsupportwithrelevantevidence

Guidance: Oftenconfusedwith‘describe’,‘explain’questionsrequireyoutowriteaboutwhyorhow somethinghappens Inordertosucceedwiththesequestions,itisimportanttoprovidereasonsand clearconnectionswithinyouranswer Unlessexpresslystated,itisnotnecessarytooutline what is happening,just why or how

Give: produceananswerfromagivensourceorrecall/memory

Guidance: Questionsusing‘give’aregenerallyshortresponseandmaynotevenneedacomplete sentence Theymayrequireyoutorecallsomethingfrommemoryorlocateinonagraphordataset

Identify: name/select/recognise

Guidance: Thiscommandwordrequiresabrief,directresponse.

Justify: supportacasewithevidence/argument

Guidance: Usedtoencourageyoutoincludemanydetails,thiscommandtermwillbeseenwith high-markquestions.Youshouldprepareawell-organisedresponseofatleastoneparagraph.You mayalsoneedtocreateanopinionstatementbasedonthequestionasked,indicatingwhichpartof theargumentyouaresupporting.

Outline: setoutmainpoints

Guidance: Whileyoucanuseaparagraphtoansweran‘outline’question,adetailed,bulletedlistis alsoappropriate.Makesuretoincludeenoughdetailtoclarifyeachpoint.Thiscommandwordis oftenusedtogainanunderstandingofaprocessortheory.

Predict: suggestwhatmayhappenbasedonavailableinformation

Guidance: Questionsusingthiscommandtermdonotexpectyoutogettheinformationthrough recall.Rather,theexpectationisthatyoucanusebackgroundinformationinconjunctionwiththe informationordataprovidedinthequestiontomakeabestguessaboutwhatmayhappennext.For example,youmaysee‘predict’whendiscussingdataorbehavioroforganismsorthephysicalocean.

Sketch: makeasimplefreehanddrawingshowingthekeyfeatures,takingcareoverproportions

Guidance: Useapenciltodrawtheprocessorgraphbeingrequested.Makesuretolabelmajor featuresasnecessary.Ifdataisprovided,makesureyourproportionsareappropriatetorepresent thenumbersgiven(forexampletrophicpyramids).

State: expressinclearterms

Guidance: Thiscommandtermindicatesthattheresponseneededwillbeshort.Thiscanbeusedto haveyouidentifyimportantdatapointsonagraph,providethetermthatmatchesadefinition,orin othersituationswhereonlyaone-ortwo-wordresponsewouldbeappropriate.

Suggest: applyknowledgeandunderstandingtosituationswheretherearearangeofvalid responsesinordertomakeproposals

Guidance:Similarto‘predict’,‘suggest’asksyoutocombineinformationfromthequestionwith otherinformationlearnedduringthecourse.Generally,‘suggest’questionshaveawidevarietyof appropriateresponsesthatcouldbeusedtoproduceasuccessfulanswer.Makesuretoprovidea clearlineofreasoningforthesuggestionbeingmade.

Summarise: selectandpresentthemainpoints,withoutdetail

Guidance: Similarto‘outline’,abulletedlistcanbeappropriateforaquestionusingthe ‘summarise’commandterm.Makesuretolistoutalloftheimportantaspectsoftheprocessor theorybeingaskedabout,butrefrainfromaddingunnecessarydetailsorevidenceunlessspecifically askedforitinthequestion(thatis,iftheyaskyouto summarise and explain).

Chapter 1

Water

LEARNING INTENTIONS

Inthischapteryouwilllearnhowto:

usethekineticparticletheorytoexplainthechangesofstateinwater,betweensolid,liquidand gas

describehow thestructureofatomsleadstotheformationofdifferentbondssuchascovalent, ionic,andhydrogenbonds

explainhowhydrogenbondingprovidesspecialpropertiestowater

explain the terms solute, solvent, solution and solubility in order to apply these terms to the dissolutionofsubstancesintheocean

explain the impacts of physical factors, such as temperature and salinity and pressure, on the solubilityofsaltsandgasesinseawater

explainhowrun-off,precipitationandevaporationimpactthesalinityofseawater describethepHscaleandtechniquesusedtomeasurepHinwater

explain the effects on the density of seawater caused by water temperature, pressure and salinity

state why ice floats and explain why this is important as a thermal insulator and habitat to marineorganisms

describehowtemperatureandsalinitygradientsforminwatercolumnstoproduceoceanlayers andhowsubsequentmixingoftheselayersmayoccur

BEFORE YOU START

With a partner discuss your understanding of the term ‘atom’ Sketch a labelled diagram to show what you understand atoms to be made from Compare your drawing to others in class

• • • • • • • • • • •

Weusewatertocleanclothes,dishesandourownbodies Discusswithapartnerwhywateris sogoodforcleaning

Writeoneortwoquestionsaboutwhataffectsthedensityofseawateronastickynoteandpost them on the board With your class, compare and organise your questions into topics for discussion

THE STUDY OF

SEAWATER

Whenbeginningyourstudiesinmarinescienceithelpstogainascientificunderstandingofthe propertiesofseawater Afterall,71%ofourplanetiscoveredinwaterandthevastmajorityofthat water(about97%)isheldintheoceans Somepeoplemaythinkthatseawaterissimplysaltwater–theymaythinkthat,ifyouaddsometablesalttoaglassofwater,youcanrecreateseawaterthat issuitableforfishandotherorganismstolivein Butthisisnottrue

Seawaterisacomplexmixofchemicals.Infact,nearlyevery element inthePeriodicTablehas beenlocated,usuallycombinedwithotherelementsasmanydifferent compounds,withinthe ocean’svastwaters Wateritselfismadefromhydrogenandoxygen;itinteractswithalltheother substancesdissolvedorimmersedinit Thesesubstancesinteractwiththewater molecules to supportlifeinouroceans Theconcentrationsoftheseelementsandtheircompoundsdetermine whatorganismsarecapableoflivingwithindifferentmarineecosystems,andhowtheywill survive

Itisimperative,then,toknowhowthesesubstancesinteracttogetherandhowwatermolecules functiontosupportlife Tobeginthatstudy,wemustlooktothe atom andbuildourwayupfrom there

Questions

Do you agree that starting with the simplest form and working up is the best way to begin? Whyorwhynot?

Which of our senses can we use to try to determine what is in a sample of seawater? How reliable are these senses and can you suggest other methods or equipment to determine what isinthesampleofseawater?

• • 1 2
andreviewwithyourteacher

1.1 Particle theory and bonding

Anatomisthesmallestparticleanelementcanbeseparatedintoandstillbethesamesubstance Atomsaretheparticlesfoundineverythingaroundandwithinus

Atomic movement

The kinetic particle theory (particle theory) describesallmatterasacollectionofparticlesthat areinconstant,randommotion,evenifthosemovementsareonlysmallvibrations Theamountof movementaparticlehasisdeterminedbytheamountofenergyithas Thechairyouaresittingon, thewateryouaredrinking,andtheairyouarebreathingareallexamplesofmanyparticlesthat havejoinedtogethertocreatematerials Mattergenerallyexistsinthreestates:solid,liquid,orgas (Figure11) Asenergyistransferredawayfrom,ortransferredto,thesemolecules,thestateof mattermaychangeasthemovementofthe molecules withinthematterchanges

Figure 1.1: Thestatesofmatterandthearrangementoftheirparticles

Watermoleculescanbeusedtodemonstrateparticletheory Whenliquidwatercoolsdown,the movementofthewatermoleculesslowsuntiltheyarrangeinaregularstructurecalledalattice The moleculesbecomefixedinpositioninthislatticeresultinginasolid(ice)forming Asmoremolecules jointhelatticetheicecrystalsgrowlarger

Wheniceisheatedthewatermoleculesaregivenmoreenergy,resultinginthemvibratingfaster untiltheforcesholdingthemoleculestogetherstarttobreak Thewatermoleculesnearesttheouter surfacesoftheicecrystalsbreakfreeandareabletoflowawayfromthecrystals,takingtheshapeof thecontainertheyarein Thewatermoleculesarecloselypackedtoeachotherinaliquidbutableto movefreelypasteachother;thisexplainswhyliquidscantaketheshapeoftheircontainerbut cannotbecompressed–theyarealreadyveryclosetoeachother

Whenliquidwaterisheatedtheparticlesgainmoreenergy,makingthemmovefasterandslightly furtherfromeachother Someofthecollisionsbetweenwatermoleculestransferenoughenergyfor moleculesattheuppersurfacetoescapetheforcesattractingthemtoothermolecules,andtheycan evaporateintotheairabove.Thisprocessisessentialtothewatercycleandoccursfasterasthe surfacewaterbecomeswarmer.Whenwaterapproachesitsboilingtemperature(100°Cat1 atmospherepressure),allthewatermoleculeshaveenoughenergytobreaktheforcesholdingthem togetherandwaterrapidlyevaporates(boils). Water vapour isthetermgiventogaseouswater (bothfromevaporationandboiling).

A brief understanding of atoms

Atomsaremadeofthreesmallersubatomicparticlesthat,dependingontheirnumbers,givethe atomitscharacteristics(orproperties) Thesesubatomicparticlesare protons, neutrons and electrons Protonsarepositivelycharged,neutronsareneutral(theyhavenoelectricalcharge),and

electronsarenegativelycharged Anatomhasanequalnumberofelectronsandprotons,sotheyare neutral

Protons,neutrons,andelectronsarearrangedwithintheatomtoprovidestabilityandstructure(see Figure12) Atthecentreoftheatomisthe nucleus Thenucleusismadeoftheneutronsand protons Electronsmovearoundthenucleusinorbitscalled shells Theseshellsvaryinsizeand distancefromthenucleusdependingonhowmanyelectronsarepresent.Thefirstshellnearestthe nucleuscanholdtwoelectrons.Thisistheonlyshellpresentinbothhydrogenandhelium.Thenext twoshellsholduptoeightelectrons.Atomsareattheirmoststablewhentheiroutermostshell containingelectronsisfull.

Figure 1.2: The atomic structure of helium showing the relative positions of the protons, neutrons andelectrons.

ThePeriodicTableyoumightseehangingonthewallinmanyscienceclasseslistsalltheknown typesofatoms Thesedifferenttypesofatomsarecalledelements Anelementismadeofatomsthat haveaspecificnumberofprotons This atomic number nevervariesandhelpsustoidentifythe characteristicsofelements Seawaterisamixtureofdifferentelementsandcompounds Examplesof elementswefindintheoceanincludecarbon,hydrogenandoxygen

Bonding properties of atoms

Whenindividualatomscometogethertoformdifferentsubstances,theyform bonds.Asubstance withaspecificratioofdifferentelementsbondedtogether,suchaswater,iscalledacompound.A watermoleculeistwoatomsofhydrogenbondedtooneatomofoxygen.Watermoleculesalways havea2[H]:1[O]ratio.Acompound’spropertiescanbeverydifferentfromthoseoftheelementsthat itismadeof.Forinstance,atroomtemperature,bothhydrogenandoxygenaregaseswhichrequire verylowtemperaturesandhighpressurestobecomeliquid.Whencombinedina2H:1Oratio, however,watercanbeformed,whichisliquidatroomtemperature.Thenewcharacteristicsa compounddevelopsthroughbondingarecalled emergent properties. Thetypeofbondformedbetweentheatomsofacompoundwillalsoplayapartintheemergent propertiesofthecompound Therearethreemajorcategoriesofbondsthatwewilldiscuss: covalent bonds, ionic bonds and hydrogen bonds Allthreebondtypesplayamajorroleinhow theoceanworksandhoworganismscanmaketheoceantheirhome

Covalent bonds

Acovalentbondformswhentwoatomsshareapairofelectrons Covalentbondingoccursinmost non-metalelements,andincompoundsformedbetweennon-metals

Becausetheatomsaresharingtheelectrons,bothatomshavecompleteoutershells.Thissharingof electronsalsomakesthistypeofbondbetweenatomsoneofthestrongest,requiringalargeamount ofenergytobreak.

Compoundswithcovalentbondsareabletoexistasasolid,liquidorgasatroomtemperatureand normalatmosphericpressure Therefore,itshouldcomeasnosurprisethatwaterisoneofthemost prevalentcovalentcompoundsonourplanet Eachwatermoleculecontainstwocovalentbonds connectingtheoxygenatomtoeachofthehydrogenatoms(Figure13) Thesebondsformwhenan oxygenatom,whichonlyhassixelectronsinitsoutermostshell,reactswithtwohydrogenatoms, withonlyoneelectroneach Thehydrogenatomssharetheirindividualelectronswiththeoxygen atom Thesharedelectronsorbitaroundtheatomsconnectedinthebond,fillingtheoutershellsof

theoxygenandthehydrogen Manycompoundsinseawaterhavecovalentbonds(Figure14) As seeninFigure14(b)carbondioxidehasfourcovalentbondsasthesinglecarbonmoleculeformsa doublebondwitheachoxygenmolecule Adoublebondoccurswhenmoleculessharetwopairsof electronsinsteadofjustone

Figure 1.3: The formation of the covalent bonds in water molecules The red circles represent electronsfromtheoxygenatomandthebluecirclesrepresentelectronsfromthehydrogenatoms.

Figure 1.4: Common covalently bonded molecules in seawater: (a) water (H2O); (b) carbon dioxide (CO2);(c)oxygen(O2);(d)glucose(C6H12O6);and(e)sulfurdioxide(SO2)

Carbondioxide,neededbyplantsforphotosynthesis,andoxygen,neededbyorganismsfor respiration,alsousecovalentbondstoholdtheiratomstogether Inphotosynthesis,theglucose producedthroughphotosynthesisisalsoacovalentlybondedcarbohydrate Thisisimportant becausealotofenergyisstoredinthecovalentbondsthatjoinmolecules,makingglucoseauseful moleculeforholdingchemicalenergy Inecosystemswherephotosynthesisisnotpossible,some bacteriausetheprocessofchemosynthesistobreakapartthecovalentbondswithinthemolecule sulfurdioxideinordertoobtaintheenergyneededforsurvival(seeChapter7) Ineachinstance, theseatomsaresharingoneormorepairsofelectronscreatingstrongchemicalbonds

Ionic bonds

An ion isanatomthathasgainedorlostanelectronfromitsoutershell.Thischangeinthenumber ofelectronsgivestheatomanelectricalcharge.Anelectronwillmovefromoneatom,whichresults ineitherfilledoremptyouterelectronshells.Ifanatomlosesanelectron,theioncreatedwillhavea positivechargebecausetheprotonsinthenucleus(positivecharge)nowoutnumbertheelectronsin theoutershell(negativecharge).Ifanatomgainsanelectron,theioncreatedwillbenegatively chargedduetoanexcessofelectronscomparedtoprotons.

So,howdoionicbondsform?Whenanionlosesanelectron,itspositivechargeisattractedtothe newlyformednegativeionthatgaineditselectron Thiselectrostaticattractioncausesanionicbond toform

TheprocessofforminganionicbondisseeninFigure1.5.Instep(a)sodiumandchloridebothhave incompleteoutershells,withsodiumhavingasingleelectronandchloridehavingseven.Instep(b)

sodium’ssingleelectronbreaksawayandmovestocompletechloride’soutershell,makingbothions morestableintheprocess Instep(c)sodiumhasapositivecharge,chloridehasanegativecharge Theelectrostaticattractionbetweenthepositivesodiumionsandnegativechlorideionscreatesan ionicbond

Figure 1.5: Theformationofanionicbondbetweensodiumandchlorideatoms.

Itisimportanttorememberthatmanyatomsofsodiumandchlorinereacttogetherinthisway,and theresultingpositiveandnegativeionscancreatesolidsthathaveathree-dimensionalioniclattice structure,asmallpartofwhichisshowninFigure16

Figure 1.6: Ioniclatticestructureofsodiumandchlorideions

Saltsaremadefromions,whichareveryimportantcompoundsinouroceans,Therearemanytypes ofsaltsfoundintheocean,includingsodiumchloride(NaCl),calciumcarbonate(CaCO3),and magnesiumsulfate(MgSO4) Thesesaltsareallformedusingionicbonds Chemicaldiagramsofthe ionsinthesesaltscanbefoundinFigure17

1.7: Chemical diagrams of sodium chloride (a), calcium carbonate (b), and magnesium sulfate(c).

Hydrogen bonding

Ahydrogenbondisaweakerbondthatcanoccurbetweenmoleculescontainingahydrogenatom bondedtoanatomofoxygen,nitrogenorfluorine Waterisanexampleofsuchamolecule,asithas twohydrogenatomsbondedtoanatomofoxygen Whencreatingthiscovalentbond,theoxygenand hydrogenatomsshareelectronsunequally Theoxygenatomhasamuchstrongerattractiontothe bondingpairofelectronsbetweenoxygenandhydrogen,resultinginthesebeingpulledclosertothe oxygenatomthanthehydrogenatom Thisunequalsharingcausesapartialchargeontheatoms involvedinthebond:thehydrogenatomsarepartiallypositive(δ+),andtheoxygenatomispartially negative(δ ) Whenmoleculeshaveapartialchargeoneachendaswaterdoes,theyarereferredto as polar Duetothispolarity,themorepositivehydrogenatomsofonewatermoleculewillbe attractedtothemorenegativeoxygenatomsofanearbywatermolecule(Figure18)creatinga dipole–amoleculewithaseparationofpartialpositiveandnegativecharges

Whilehydrogenbondsareeasilybroken,theyhaveanincredibleimpactonthepropertiesofwater duetothesheernumberofwatermoleculesfoundwithinasingledropletofwater.Therefore,many hydrogenbondsarecontinuallyformingbetweenwatermolecules.

Oneofthereasonsseawaterisuniqueisbecauseofthemanydifferentelementsandcompoundsthat canbefoundwithinit Thisexceptionalvarietyisduetowater’spropertiesasa solvent Asolventis amaterialcapableofdissolvingothersubstances Thepartialchargesonthewatermoleculeallow watertointeractwithchargedionsfrommanyioniccompoundsaswellasmanycovalentsubstances, includingglucoseandgasesfromtheatmosphere Thepartialchargesonthewatermoleculeallowit toformbondswithanunusualnumberofsubstances,makingwateroneofthebestsolventsonthe planet Infact,waterisoftenreferredtoastheuniversalsolvent Moreinformationregarding water’ssolventcapabilitiescanbefoundinSection12

The density ofwaterisalsoimpactedbyhydrogenbonds.Aspreviouslymentioned,astheenergy withinmatterlowers,sotoodoesthemovementoftheindividualparticlesmakingupthatmatter.So, aswaternearsitsfreezingpoint(0°C),thewatermoleculesslowtheirmovementandgatherclosely together,allowingthehydrogenbondstobecomestronger.Thehydrogenbondsthenhelpkeepthe watermoleculesatperfectlysymmetricaldistancesfromeachother,formingacrystallattice-like shape.Theshapeformeduponfreezingactuallyspreadsthemoleculesoutfurtherthantheywere justpriortofreezing.Becausefewerwatermoleculescanfitintothesamespace,thedensityofsolid iceisactuallylessthanthatofliquidwater.Waterisoneofthefewsubstancesonearththatcan claimasolidstatethatislessdensethantheliquid.Moreinformationonwaterdensityandthe impactsoftemperaturecanbefoundinSection1.3.

Specific heat capacity,theamountofheatrequiredtochangeonekilogramofmassbyonedegree Celsius,isyetanotherpropertyofwaterthatrelatestoitshydrogenbondingproperties Waterhas oneofthehighestspecificheatcapacitiesduetothenumberofhydrogenbondsholdingthe moleculestogether Thispropertyallowswatertoactasagreattemperaturebufferandhelps moderateourplanet’sclimate Thesizeofouroceansallowsthemtoholdagreatdealofheatbefore

Figure Figure 1.8: Hydrogenbondinginwater

theyactuallychangetemperaturecreatingmildclimatesalongcoastlinesworldwide

Test yourself

Sketchacarbonatom.Labelthenucleus,electrons,protonsandneutrons. Howdocompoundsdifferfromelements?

Whatdeterminesthenumberofcovalentbondsthatanatomcanform? Howwillyourememberthedifferencesbetweenthedifferenttypesofbonds?

1 2 3 4

1.2 Solubility in water

AswesawinSection11,asolventisamaterialcapableofdissolvingothersubstancesandwateris oneofthegreatestsolventsonearth Thesubstancethatisdissolvedbyasolventiscalleda solute Therearemanysolutesinseawater,suchassodiumchloride,carbondioxide,oxygenandcalcium carbonate Themixtureofsolutesandsolventisreferredtoasa solution

Understanding solubility

Solubility referstotheextenttowhichaparticularsolute,suchassodiumchloride,canbedissolved inasolvent,suchaswater Thiscombinationthencreatesasolution,suchasseawater Ingeneral, sodiumchlorideandothersolublesaltsdissolveeasilyintowaterthrough dissolution ofions Thisis aresultofthepolarityofthewatermoleculeanditsabilitytointeractwithionsfromionic substances AswesawinSection11,sodiumchlorideisanioniccompoundformedthroughthe attractionofsodiumionstochlorideionsafterthetransferofanelectronfromsodiumtochlorine Thechangeindistributionofelectronsgivesbothatomsanelectrostaticchargethatwatermolecules areattractedto Whenplacedinwater,thesodiumandchlorideionsareeasilydissolvedwhentheir ionicbondsarebrokenbythewatermolecules Atthispoint,thepartiallypositivehydrogenendsof thewatermoleculeswillsurroundthenegativelychargedchlorideionsandthepartiallynegative oxygenendsofthewatermoleculeswillsurroundthepositivelychargedsodiumions(Figure19)

Figure 1.9: Acomparisonofsodiumchloridesolidmolecularstructureanditsdissolvedstructurein water

Solubilitycanbeimpactedbyphysicalfactorswithintheseawater,particularlytemperature Repeatedstudieshavefoundthatasthetemperatureofseawaterrises,therateofdissolutionofsalts increasesaswell Thisisbecauseaswaterheatsup,theindividualwatermoleculesmovefaster This movementhelpsmixtheionsintothewatermakingiteasierforwatermoleculestobreaktheionic bondsandsurroundthepositiveandnegativeionsthatareleft So,thewarmerthewater,thesaltier itcanbe

Salinity

Whenstudyingthechemistryoftheocean,traditionallyyoustartbylookingatthe salinity of seawater Salinityisameasureoftheconcentrationofdissolvedsaltsinseawater Theunitusedfor salinityispartsperthousand(pptor‰) Thisunitwasoriginallyderivedusingthetraditional methodfordiscoveringthesalinityofasolutioncalledtotaldissolvedsolids(TDS) Usingthis method,scientistswouldboil1000gofseawateruntilallofthewaterpresenthadevaporated The solutesleftbehind,usuallyionscalledsalts,werethenweighed,makingthemthe‘parts’thatmake up1000gofwater Afterhundredsofyearsofwatersamples,scientistsnowknowthattheaverage salinityoftheopenoceanis35ppt

While35pptistheaveragesalinityofoceanwater,theactualsalinityatanygivenlocationdoesvary locallythankstothewatercycle. Precipitation (forexample,rainorsnow)lowersthesalinityofa

CORE PRACTICAL ACTIVITY

INVESTIGATING THE EFFECT OF SALINITY ON THE FREEZING POINT OF WATER

Introduction

Asthemoleculesofwaterarecooled,theirmovementslowsandtheyformalatticepatternthat createsthesolidice.Thetemperatureatwhichliquidwaterturnstosolidiceiscalledthefreezing point.Thispropertyofwaterhasmajorimplicationsformarineorganisms.Organismscannotswim throughice;however,muchofourArcticandSouthernOceanshavethrivingecosystemsdespite thelargevolumeofwaterthatfreezeseachyear.Thisisatleastpartiallyduetothepresenceof saltsinseawater.Throughoutthisinvestigation,youwillstudyhowincreasedsalinityimpactsthe pointatwhichwaterfreezes.

Equipment

Youwillneed:

• bodyofwaterbydilutingthesaltintheseawaterwithincomingfreshwater Afteritrains,thewater willflowoverorintotheEarth’ssurface Eventually,mostofthiswater,aspartofthehydrological cycle,findsitswaytotheoceansas run-off,eitherdirectlybyfirstflowingintoariver,orthrough flowsofgroundwater(watermovingthroughsoilandporousrocks) Inareasofoceanwithfreshwaterrun-off,thesalinitymaybemuchlowerthantheopenocean Thislowersalinityiscausedby theadditionoffreshwater,ratherthantheremovalofsalts Itisimportanttonotethatasrun-off flowsovercitystreetsorthroughfarmers’fields,itdissolvesmanysubstancesandcarriesthem along Thesesubstancescouldincludevitalnutrients,pesticides,fertilisers,oilsandotherpollutants capableofchangingthesalinityorqualityofthewateritisenteringaswell Evaporation willcausesalinitylevelstoriseduetotheremovalofwaterfromthesolutionrather thantheadditionofsalts.Itisimportanttonotethatonlywaterisremovedthroughevaporation;all solutesareleftbehind.Salinityhigherthan35pptisoftenfoundinregionswithabove-average evaporationratesandalimitedfresh-waterinflow.Whenthesaltsareevenmoreconcentrated,the waterisdescribedas hypersaline.ThemosthypersalineenvironmentintheworldisDonJuanPond inAntarctica.ScientistsrefertothisregionastheMcMurdoDryValleysduetothelackof precipitationinthearea.Thatlackofrainandsnowcausesthispondtohaveasalinityof440ppt, whichistwelvetimessaltierthantheocean.Thesalinityissohighthatevenin 50°Cweather,the ponddoesnotfreeze(Figure1.10).Formoreinformationaboutthefreezingpointofwaterand salinity,seeCorePractical1.1.

or digitalthermometers

Figure 1.10: AnaerialviewDonJuanPondlocatedintheMcMurdoDryValleysofAntarctica
1.1:
,1.5moldm
and2moldm
temperatureprobe
4×mediumtesttubesmarked0.5moldm 3,1.0moldm 3
3
3

4×100mlbeakersmarked05moldm 3,10moldm 3,15moldm 3 and2moldm 3

1litrebeaker or flask or graduatedcylinder

400cm3 beaker

freezer

icecubetrays

plasticbag

rubberhammer

digitalbalance

blackmarker

230gsodiumchloride accesstotapwater(tocreateice)

500cm3 ofdistilledwater(tocreatesolutions)

Safety considerations

Followallusuallaboratorysafetyrules.

Wearsafetygoggles,labcoatsandgloveswhileinthelaboratory Handleglasswarecarefully.

Before you start

Whyareyouusingdistilledwatertocreatethesolutionsinsteadoftapwater?

In this investigation, the independent variable is the amount of sodium chloride added to the water, and the dependent variable is the freezing point of the solution What are two other variablesthatwillneedtobecontrolledinordertoreceiveaccurateresults?

What do you predict will happen to the freezing point of water as sodium chloride is added to it?

Method

CreatearesultstableinyournotebooksimilartoTable1.1.

Createyourice

Using the beaker or graduated cylinder, mix 200g of Sodium chloride into 1dm3 of tap water.

Pourthesolutionintoicetrays

Placethetraysinthefreezerandleavethemovernight.

The next day, label the four beakers and test tubes as Sodium chloride 05moldm 3 , Sodium chloride10moldm 3,Sodiumchloride15moldm 3,Sodiumchloride20moldm 3

Prepareeachofthesolutionsbelowintheappropriatelylabelledbeaker:

Sodiumchloride05moldm 3 –mix100cm3 ofdistilledwaterwith29gofsodiumchloride

Sodiumchloride10moldm 3 –mix100cm3 ofdistilledwaterwith58gofsodiumchloride

Sodiumchloride1.5moldm 3 –mix100cm3 ofdistilledwaterwith8.7gofsodiumchloride

Sodium chloride 20moldm 3 – mix 100cm3 of distilled water with 116g of sodium chloride

Usingtheicecubespreparedthepreviousday,createanicebath.

Placethepreparedicecubesinalargeplasticbag

Usingtherubberhammer(orappropriatesubstitute)carefullycrushtheice

Fillthe400cm3 beakerwiththecrushedice

Pourthesolutionineachbeakerintoitsmarkedtesttubetothehalfwaymark.

Putadigitalthermometerintoeachtube

Addthetesttubestotheicebath

Results

Observe the test tubes and record the temperature when the first ice crystals begin to form alongthesurfaceintoacopyofTable11

• • • • • • • • • • • • • • • 1 2 3 1 2 a b c 3 4 a b c d 5 a b c 6 7 8 1

Table 1.1: Datatableformeasuringfreezingpoint

Create a line graph of Concentration of sodium chloride in solution (x-axis) against Freezing point of solution (y-axis)

Create a scale for each axis based on your data. Your scale should be large enough that yourdatatakesupmorethanhalfoftheavailablespacebothverticallyandhorizontally.

Asyourtemperatureswillbebelow0°C,your x-axisshould be atthe top ratherthan along thebottom,sothe y-axiscanbetterrepresentthenegativenumbers

Remember to use a ruler to create straight lines that will connect your carefully plotted datapoints.

Evaluation and conclusions

Identifythesolventandthesoluteinoursolutions.

Comparethesolubilityofthesodiumchloridewhenyouareadding29gtothesolubilityofthe sodiumchloridewhenyouareadding116g

Describethechangeintemperatureastheconcentrationofsodiumchlorideincreased.

Predictthefreezingpointofasolutionwith40gcm 3

How could you extend this experiment to test for other factors which may impact freezing point?

REFLECTION

AftercompletingCorePracticalActivity1.1,thinkaboutthesequestions:

Howcouldyouimproveyourresultsforthispractical?

Doyouthinkthispracticalhelpedyourunderstandingofthisconcept?Whyorwhynot?

Mixing of the layers

Thesurfacelayeroftheocean,fromzerotoaround200mdeep,isthebest-mixedareaoftheocean. Asthewindblowsacrossthesurfaceoftheocean,currentsandturbulencearecreated.Thiswater movementmixestheupper200morsooftheocean,makingitfairlyuniforminbothtemperature andsalinity.

Mixingofthelayerswithintheoceanistypicallydensitydriven Forexample,ifthesurfaceofthe oceancools,thedensityofthewaterwillincreaseduetothetemperaturechange Asthedensity increases,thewatersinks,carryingwithitallthenutrientsanddissolvedgasesthatitcontainedat thesurface,mixingwiththehigherdensitywaterthatisrising Thiscanhappenincoldoceanaswell whenthedensitychangesduetochangesinsalinitylevels Boththe halocline and thermocline are consideredareasofmixingwheresignificantchangesintheabioticfactorsoftheoceanhappen

Thedeepocean,orbottomlayeroftheocean,isuniform,likethesurface.Thedeepoceantendsto beverycold,saltyanddense.Thereisoxygenandothergasespresentinthislayer,buttheyare limited.

The pH scale

Potentialofhydrogen,morecommonlyreferredtoas pH,isanimportantabioticfactorforthe survivalofaquaticorganismsinamarineenvironment Thisisusedtomeasuretheconcentrationof hydrogenionsinwater Hydrogenionsarespontaneouslycreatedinpurewaterwhenthewater moleculeswillsplitintohydrogenions(H+)andhydroxideions(OH ) Solutionswithhigh concentrationsofhydrogenionscomparedtopurewaterare acidic (calledacids),whilesolutions withlowconcentrationsofhydrogenionsarecalled alkaline (youmayhavealsoseenthisreferred toas‘basic’) Becausepurewateristhepointofcomparison,itisconsidered neutral Forscientists

2 a b c 1 2 3 4 5 1 2 Concentration of sodium chloride in solution / mol dm 3 Freezing point of solution / °C 05 10 15 2.0

toeasilydeterminethepHofasolution,theycreatedthelogarithmic pH scale (Figure1.11).Using thisscale,solutionswithapH: below70areacidic at70areneutral above70arealkaline

ThepHoftheworld’soceanshasbeenslightlyalkalinesincebeforeweeverbegancollectingdata Historically,thepHoftheopenoceanhasbeenanaverageof82;however,therehasbeenarecent dropintheworldwideaveragetoan81pHduetoincreasinglevelsofcarbondioxide(CO2)inour atmosphere Thisseemslikeasmalldrop;butitiseasytomisjudgethereadingsonthepHscale becauseitisnotlinear Inalinearscale,a01decreaseinpHwouldindicatea1%increaseinacidity Instead,becausethisscaleislogarithmic,a01decreaseinpHisactuallya25%riseinacidity Small changesinpH,therefore,canbringdrasticissuestotheenvironment

1.11: The colour pH scale used with universal indicator paper to determine hydrogen ion concentrationswithinasolution.

ScientiststypicallyuseoneofthreemethodstomeasurethepHofwatersamples:litmusindicator, universalindicatorandpHprobes.Litmusindicatoranduniversalindicatorarebothsolutions,but theyarealsocommonlyusedaspaperswhereanabsorbentpaperhasbeensoakedinthesolution andallowedtodry,providingasimpleandeasiermethodtotestwiththeseindicatorsthatcanbe dippedintoasolution.Onceincontactwiththesolutionbeingtested,theindicatorbeginstochange colour.Litmusindicatoronlydeterminesifasubstanceinanacidoranalkali,itcannotshowhow stronganacidoralkaliis.Universalindicatorshowsarangeofstrengthsforacidsandalkalis: scientiststhencomparethecolourofthepapertothecolourpHscaleprovidedtogiveawhole numberpH.Thesemethodsarequick,butalsosubjective,leadingthescientisttotrytodetermine thepHascloselyaspossible ElectronicpHprobescanalsobeusedtodeterminepH Theseprobes measurethehydrogen-ionconcentrationwithinasolutiontoprovideanumericalread-outthatis morepreciseandlesssubjectivethantheothermethods

DETERMINING THE PH OF WATER

Introduction

Whenstudyingaquaticenvironments,liketheocean,itisimportanttounderstandhowchangesin pHcanaltertheabilityofsomeorganismstosurviveorreproducewithinanenvironment. Therefore,whencheckingwaterquality,scientistsoftentestthepHofthewaterusingoneofthree methods:universalindicator,litmusindicatororpHprobes.Eachmethodmeasuresthe concentrationofhydrogenions,H+,withinthesolutionbeingstudied.Aftertesting,eachmethod providesanumbervaluebetween0and14alongthepHscale.Thosenumbersbetween0and6.9 areconsideredacidic,a7.0isconsideredneutral,and7.1to14.0areconsideredalkaline.Asthe pHscaleislogarithmic,adecreaseof1indicatesthat10timesmorehydrogenionsarepresent withinthesolution.ThischangecangreatlyaltertheenvironmentfororganismssensitivetopH.

Equipment

Youwillneed:

• •
Figure
1.2:
CORE PRACTICAL ACTIVITY

distilledwater(upto60cm3 pergroupplusextraforrinsingtesttubesandpHprobe)

whitevinegar(10cm3 pergroup)

seawaterorasolutionof35gNaClperlitreoftapwater(20cm3 pergroup)

pondwater(20cm3 pergroup)

universalindicatorsolutionorpaperwithcorrespondingcolourchart

litmusindicatorsolution(orredandbluelitmuspapers)

bakingsoda(05mgpergroup)

pHprobe

5×testtubes(wideenoughtofitthepHprobe)

testtuberack

2×smallbeakers

droppingpipettes

Safety considerations

Wearsafetygoggles,labcoatsandgloveswhileinthelaboratory.

Handleglasswarecarefully

Check the Material Safety Data Sheets (MSDS) for the universal indicator solution used, and follownecessarysafetyprecautions.

Before you start

Which properties of distilled water make it appropriate to use for cleaning and calibrating equipment?

WhatpurposemightthevinegarandbakingsodaserveinapHexperiment?

Ocean acidification is a major concern for scientists due to potential impacts on marine organisms.Whatorganismsdoyouthinkareatthegreatestriskandwhy?

Method

For each solution listed in the results table, predict whether it will be acidic, neutral, or alkaline,andrecordyourpredictioninacopyofTable1.2.

Create a solution of vinegar and distilled water in one of the small beakers by combining 10 cm3 aceticacidwith10cm3 distilledwater Setaside

Createasolutionofbakingsodaanddistilledwaterinthesecondsmallbeakerbycombining5 mgofbakingsodaand20cm3 distilledwater Setaside

Pourapproximately1cmdepthofdistilledwaterintoatesttube

UsinguniversalindicatortomeasurepH:

Withsolution:

Addafewdropsofuniversalindicatortoeachsolution.

Waitforcolourchange

ComparecolourtoassociatedpHcolourchartandnoteresultsintable.

Withuniversalindicatorpaper:

Diptheindicatorpaperintothesolutionforabout1second. Allowthepapertodrycompletely

ComparecolourtoassociatedpHcolourchartandnoteresultsintable.

Foreachoftheremainingtesttubes,pourapproximately1cmdepthoftheremainingsolutions (vinegar solution, baking soda solution, seawater, and pond water) so that each test tube only containsonesolution

Repeatstep5foreachtesttube.

Rinsealltesttubeswithdistilledwater

Createnewsamplesofeachsolutionasbefore.

Uselitmusindicatorsolutionorpaperstoseeifeachsolutionisacidic,alkalineorneutral

Recordtheresultsofthelitmusindicatorinthetable(acidic,alkalineorneutral).

Rinsealltesttubeswithdistilledwater

Createnewsamplesofeachsolutionasbefore.

• • • • • • • • • • • • • • • 1 2 3 1 2 3 4 5 a i ii iii b i ii iii 6 7 8 9 10 11 12 13

UsingpHprobe,determinethepHofeachsolution

NoteallpHreadingsintheresultstable

Results

Prediction: acidic, neutral, alkaline

Colour and pH of universal indicator

Results of litmus indicator pH probe reading

distilledwater

vinegarsolution

bakingsoda solution

seawater

pondwater

Table 1.2: DatatableformeasuringpH

Evaluation and conclusions

Did each method provide uniform results for each solution? Why do you think different methodsmayhaveproducedslightlydifferentresults?

Pond water may be slightly acidic to slightly alkaline Where did your solution fall on the pH scale?Suggestareasonforthatreading

Predict what the pH would be if the vinegar solution were added to the baking soda solution Suggestanexplanationforyourprediction

REFLECTION

AftercompletingCorePracticalActivity12,thinkaboutthesequestions: Yourresultsmaybedifferentfromthoseofothergroups.Whymightthatbe? Whatproblemsdidyouencounterwhenworkingthroughthispractical?Howdoyouthinkthey couldhaveimpactedyourresults?

The solubility of gases in seawater

Gasesintheatmosphere(nitrogen,carbondioxideandoxygen)areinastateofequilibriumwiththe gasesdissolvedinoceanwater Astheconcentrationofaparticulargasintheatmosphereincreases (carbondioxide,forinstance),theconcentrationofthatgasinseawateralsorises Mixing,asaresult of turbulence andwaveaction,workstomaintainthisequilibrium Themoreturbulencethereis, theeasieritisforgasesintheatmospheretodissolveintotheocean Thiscanleadtohigher concentrationsofcarbondioxideandoxygenwithintheupper200mdepthoftheoceanthanare foundinthewaterbelowthis Factorscontributingtotheconcentrationofgasesinseawaterinclude thefollowing

Gas solubility

Carbondioxideisverysolubleinseawaterbecauseofitsabilitytoformcarbonicacid,aweakacid, whenintroducedtowater.Oxygen,however,hasalowsolubilitybecauseitdoesnotchemically combinewiththewatermolecules.Thismeansthatthelevelofcarbondioxideheldbyseawateris higherthanthatofoxygen.

Water temperature

Coldwatercandissolvemoregasthanwateratwarmertemperatures.Whenwaterincreasesin temperatureitsmoleculesmovefaster.Thisresultsindissolvedgasmoleculesevaporatingfromthe surfaceofwatermorequickly.Allgasesarelesssolubleinwarmerwaterforthesamereason.This meansthatwaterfoundnearthepoleswilldissolvemoreoxygenthanwaterfoundinthetropics (Table1.3).Theconcentrationofdissolvedoxygenisparticularlyimportanttoaquaticorganisms,so increasesintemperaturecanhaveasignificantimpactontherangeoforganismsthatthewatercan sustain.

14 15 1 2 3 1 2

Table 1.3: Relationshipbetweentemperatureandthemaximumconcentrationofdissolvedoxygenin freshwater.

Atmospheric pressure

Thesolubilityofgasesincreaseswithincreasingpressure.Atmosphericpressureplaysaroleinhow solublegasesareattheocean’ssurface.Whenatmosphericpressureincreases,theequilibriumof gasesintheatmosphereandthosedissolvedintheoceanchanges–thereisagreaterconcentration ofthegasintheatmosphere,thispushesmoreofthosegasmoleculestodissolveintheseawaterand increasetheconcentrationofdissolvedgasesinthesurfacewatersoftheocean.Whenatmospheric pressuredecreases,duringatropicalcycloneforinstance,thisequilibriumshiftstheotherwayand moreofthedissolvedgasmoleculesescapefromthesurfaceandentertheatmosphere.

Water pressure due to depth

Asyoutraveldeeperintotheocean,thepressureofthewateraboveyoucontinuestoincreasedueto thesheermassofthewater.Withthatincreasingpressure,gasesarebetterabletodissolveintothe waterandstaydissolvedinthewater.Notethat,whendescribingdepthofwaterbeverycarefulwith yourwording–trytousewordssuchas‘deeper’or‘shallower’insteadof‘higher’or‘lower’.A statementsuchas‘higherdepths’isambiguousbecauseahighvalueisdeeper,butalowvaluecould meansomethingishigherupintheocean.

The salinity of the seawater

Gasesarebetterabletodissolveinwaterwithlowerlevelsofsalinitybecausetherearelesssolutes takingupspacebetweenthewatermoleculesandsomorewatermoleculesareabletointeractwith gasmoleculesanddissolvethem Thiscanbeseenveryclearlyifyouaddateaspoonofsalttoa carbonateddrinksuchassparklingwaterorcola–whenthesaltisaddedthegasmoleculesare releasedveryquicklyastheliquidfizzesup Gases,likeoxygenandcarbondioxide,aremostsoluble infreshwaterenteringtheoceanfromrivers,suchasinestuaries;asthefreshwatermixeswithsalt waterinthesea,thesolubilityofthesegasesdecreases Therefore,youwouldexpecttofindhigher levelsofoxygeninanestuarythanintheopenocean

Impact of solubility on marine life

Organismsanddissolvedgasesareintricatelylinked Carbondioxideandoxygenarebothnecessary forthesurvivalofmarineorganisms Atthesurface,producerstakeindissolvedcarbondioxidefor useinphotosynthesisandthenreleaseoxygenasaresult Alllivingorganismsusedissolvedoxygen forrespiration Nitrogengasistransformedintoammoniabynitrogen-fixingbacteria,makingthe nitrogeneasierforotherorganismstouseforproteincreation

Asakeyrequirementforrespiration,theconcentrationof dissolved oxygen (DO) isincredibly importantinthemarineenvironment.Ingeneral,oxygenhasalowsolubilityinwater,andthis characteristicisimpactedfurtherbytemperature,salinityandpressurecausingtheconcentrationof DOtovarygreatlythroughouttheocean.Astemperatureandsalinityincrease,theconcentrationof DOdecreases.Thesolubilityofoxygengenerallyincreaseswithdepthduetoboththedecreasein temperatureandtheincreasingpressureofthewaterabove.

Theareaoftheoceanwiththegreatestconcentrationofdissolvedoxygenisthetop100mofthe ocean,knownasthesurfacelayer Withinthislayer,thedissolvedoxygenconcentrationcanreach ‘supersaturation’ Thismeansthereismoreoxygendissolvedintheseawaterthanitwouldnormally beabletocarry Twomajorfactorsworktogethertoincreasetheamountofdissolvedoxygento supersaturationlevel:themotionofthewaterandphotosynthesisbyproducers Themoreturbulent thewater,themoreoxygenismixedintoitbythemovementofthewaves Meanwhile,producers, like phytoplankton andalgae,carryoutphotosynthesisusinglightfromtheSuntocreateglucose

Temperature of water / °C Concentration of dissolved oxygen / mg dm–3 0 146 5 12.8 10 11.3 15 10.2 20 9.2 25 8.4

(fortheproducer)andgenerateoxygenasaby-productthatisreleasedintotheocean’swaters. Photosynthesiscanonlytakeplaceintheupperlayeroftheocean,calledthephoticzone,where lightisabletopenetrateandbeusedbyproducers Thisreleaseofoxygenincreasesthe concentrationofdissolvedoxygeninthesurfacelayer Dissolvedoxygenisremovedfromthesurface layerbytherespirationbyallorganisms TheconcentrationofDOcanalsovarytremendouslywith latitude,astropicalwatershavemuchhighertemperatures,reducingtheconcentrationofDOthat thewatercandissolve Polarwatersaremuchcolderandthereforeabletodissolveamuchhigher concentrationofDO

Belowthesurfacelayeroftheocean,theconcentrationofdissolvedoxygenchangesdramatically.As thedepthoftheoceanincreases,thelevelofdissolvedoxygendecreasesuntilitreachesthe oxygen minimum layer.Theoxygenminimumlayertypicallyoccursatadepthofaround500mbuthas beenfoundanywherebetween100mand1000mdeepdependingonlocation.Atthispoint,thelevel ofDOcansometimesnearlyreachzeroduetoalackofoxygenbeingintroducedintothewaterand consumersstillperformingrespirationtosurvive.

Someorganisms,suchasthevampiresquid,arecapableoflivingwithintheoxygenminimumzone, despitethelackofdissolvedoxygen,buttheydoneedspecialadaptationsforsurvival Mostofthe organismsfoundherearefairlyinactive,whichreducestheirneedforoxygen Thegillsofthefishin thisareaareincrediblyefficientatextractingoxygenfromwater,evenatthelowlevelspresentin thislayer Additionally,manyoftheorganismsherehaveaspeciallyadaptedformofhaemoglobin,a bloodproteinresponsibleforcarryingoxygenthroughoutthebody

Afterpassingthroughtheoxygenminimumlayer,theDOconcentrationbeginstoincreasewithdepth asexpected.Severalreasonsexistforthisincreaseinoxygenasyoumovedeeper(Figure1.12).

Falling detritus is colonised by bacteria that decompose the organic matter carrying out aerobic respiration which uses up oxygen As this detritus falls below the photic zone the oxygen cannot be replaced by photosynthesis Below the oxygen minimum layer this decomposition has been completedandthereislessrespirationcarriedoutbythesebacteria

The organisms found below the oxygen minimum layer are in an area with very few food resources. This lack of food reduces the need for the organisms to respire, so they survive with lessoxygen.

Thesolubilityofoxygenincreasesasthetemperaturedecreases Asyougodeeperintotheocean, thetemperaturedecreasestonear-freezing Thelowertemperaturemeansmoreoxygencanstay dissolvedinthewater

Aspressureincreases,thesolubilityofoxygenincreases Forevery10myousinkintotheocean, thepressureincreasesbyoneatmosphere

• • • •
Figure 1.12: Oxygen minimum layer in the eastern tropical Pacific Ocean and the biological processesresponsible.

7 Test yourself

Whatmakesseawaterasolution?Howcouldyoutestthistoverifyyouranswer?

Howdoesthesalinityofseawaterdifferinareaswhereprecipitationisgreaterthanevaporation, comparedtoareaswhereevaporationisgreaterthanprecipitation?

Howdoesthesolubilityofagasimpactitsavailabilitytomarinelife?

5 6

1.3 Density and pressure

Densityisthemassofadefinedvolumeofwaterdividedbyitsvolume Theformulafordensityis: density(kgm 3)=mass(kg)volume(m3)

Whendiscussingdensityinseawater,thedenserthewateris,theloweritwillsitinthe water column Theleastdensewaterwillrisetothesurfaceofthewatercolumnandthedensestwater willsinktothebottom Temperature,salinityandwaterpressureallplayaroleindeterminingthe densityofseawater

Temperature

Temperatureisthefactormostresponsibleforchangesindensity Asthetemperatureofseawater increases,densitydecreases Warmerwatertendstofloatnearthesurfaceofabodyofwater,and thisisexposedtoheatingbytheSun,causingthislayertogetevenwarmerandlessdense This warmlayerisoftenfairlyshallowandsitsontopofcolder,denserwater Betweenthetwolayersis anareawherethetemperatureabruptlychanges,knownasthethermocline(Figure113) Waterat thesurfacemayreach25°Corhigherintropicalseasbutismorelikelytobe1°Catdepthsof2000 mormore Inpolarseas,thetemperature gradient inathermoclineislessdrastic Intheseareas, thesurfacewaterislikelytobeclosetofreezingandremainatafairlyconstanttemperaturewith increasingdepth

Figure 1.13: Thermoclineinatypicaltropicalsea.

Whyisitthatthewateratthebottomoftheoceandoesnotfreeze?Theanswerhastwoparts: salinityanddensity Assalinityincreases,thefreezingpointofwaterdecreases,makingitmore difficulttocreateice Formoreinformation,seeCorePractical11 Whenwaterbeginstofreeze,the individualwatermoleculesbegintoarrangeintoalatticepattern(asyousawinSection11)dueto thehydrogenbondsholdingthemtogether Thesebondsholdthewatermoleculesataslightly greaterdistancefromoneanother,whichisdifferentfromthearrangementinliquidwaterwherethe moleculesofwaterareconstantlymakingandbreakinghydrogenbondswitheachotherasthey movepasteachother Thisreducesthedensityoficecomparedtoliquidwater,whichcausesiceto floatatthesurfaceofliquidwater Therefore,evenifthewaterfreezesonthebottomoftheocean, unlikelyduetothesalinity,itwouldfloattothesurfaceratherthanremainatthebottomofthe ocean

Thepropertyofwaterthatallowsicetofloatisofvitalimportanceformarineorganisms.Ifice stayedatthebottomoftheocean,theoceanwouldfreezeentirelyfromthebottomtothesurface, whichwouldleavemarineorganismsnowheretogointhedeadofwinter.Wheniceformsonabody

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.