Special relativity: a heuristic approach sadri hassani - Read the ebook online or download it to own

Page 1


https://ebookmass.com/product/special-relativity-aheuristic-approach-sadri-hassani/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Solutions manual for Special Relativity: A Heuristic Approach Sadri Hassani

https://ebookmass.com/product/solutions-manual-for-special-relativitya-heuristic-approach-sadri-hassani/

ebookmass.com

Special relativity, electrodynamics, and general relativity : from Newton to Einstein Second Edition Kogut

https://ebookmass.com/product/special-relativity-electrodynamics-andgeneral-relativity-from-newton-to-einstein-second-edition-kogut/

ebookmass.com

Assessment in Special Education: A Practical Approach (What’s New in Special Education)

https://ebookmass.com/product/assessment-in-special-education-apractical-approach-whats-new-in-special-education/

ebookmass.com

Learning VMware Workstation for Windows: Implementing and

Managing

VMware’s Desktop Hypervisor Solution 1st Edition

Peter Von Oven

https://ebookmass.com/product/learning-vmware-workstation-for-windowsimplementing-and-managing-vmwares-desktop-hypervisor-solution-1stedition-peter-von-oven/ ebookmass.com

The Unplanned Life of Josie Hale 1st Edition Stephanie Eding

https://ebookmass.com/product/the-unplanned-life-of-josie-hale-1stedition-stephanie-eding/

ebookmass.com

Slow Tech and ICT: A Responsible, Sustainable and Ethical Approach 1st Edition Norberto Patrignani

https://ebookmass.com/product/slow-tech-and-ict-a-responsiblesustainable-and-ethical-approach-1st-edition-norberto-patrignani/

ebookmass.com

Cemented Carbides Igor Konyashin

https://ebookmass.com/product/cemented-carbides-igor-konyashin/

ebookmass.com

GUTS: Greatness Under Tremendous Stress—A Navy SEAL’s System for Turning Fear into Accomplishment Brian "Iron Ed" Hiner

https://ebookmass.com/product/guts-greatness-under-tremendous-stressa-navy-seals-system-for-turning-fear-into-accomplishment-brian-ironed-hiner/

ebookmass.com

The Unstoppable Human Species, The Emergence of Homo Sapiens in Prehistory John J. Shea

https://ebookmass.com/product/the-unstoppable-human-species-theemergence-of-homo-sapiens-in-prehistory-john-j-shea-2/

ebookmass.com

Read & Think Spanish, 4th Premium Edition The Editors Of Think Spanish

https://ebookmass.com/product/read-think-spanish-4th-premium-editionthe-editors-of-think-spanish/

ebookmass.com

SpecialRelativity

SpecialRelativity AHeuristicApproach

UniversityofIllinoisatUrbana-Champaign,Urbana,IL,USA

IllinoisStateUniversity,Normal,IL,USA

SadriHassani

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2017ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-810411-8

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JohnFedor

AcquisitionEditor: AnitaKoch

EditorialProjectManager: AmyClark

ProductionProjectManager: AnithaSivaraj

Designer: ChristianJ.Bilbow

TypesetbyVTeX

ToSarah,Dane,andDaisy

Preface

Thisisanintermediatetextbookonspecialrelativitywrittenwithmainly physicsjuniorsandseniorsinmind.However,asophomorewithastrong backgroundincalculusandcalculus-basedintroductoryphysics,oragraduatestudentwhofeelsthat(s)helacksthenecessaryknowledgeinspecial relativity,canalsobenefitfromthebook.Instructorswillfindamultitude ofcarefullychosenillustrativeexamplesandclosetothreehundredend-ofchapterproblems—whosedetailedsolutionsareavailableuponpurchaseor adoption—extremelyhelpfulpedagogicaltoolsforteachingrelativity.

Whywriteanotherspecialrelativitytextbookwhentherearesomany(some excellent)booksalreadyavailable?Theansweris(a)theapproachand(b)the detailedcoverageoftopicsthatareonlyglossedoverintheexistingbooks.The approachistheemphasisandabundantuseoftheLorentztransformation.The topics,emphasizedinthisbookbutmentionedonlyinpassinginmanyothers, includerelativisticphotography,interstellartravel(encompassingadetailed discussionofground-basedlaserpropulsion),spacetimetriangleinequality andtheproofofthefactthataccelerationreducesaging,connectionbetween specialrelativity,spin,andantimatter,etc.

AttheheartofspacialrelativityliestheLorentztransformation.Whilelength contractionandtimedilationarelessabstract,theycanleadto“obvious” resultswhichturnouttobeincorrect.Lorentztransformation,ontheother hand,oncemasteredandappliedcorrectly,willalwaysyieldtherightresults, eventhoughitismoreabstract.ThisbookreliesalmostexclusivelyonLorentz transformations,andappliesthemtoalargenumberofsituations,someappearingforthefirsttimeinthisbook.Totrulyappreciatetherelevanceand powerofLorentztransformations,thenoviceneedstoseenotonlytheirnumerousapplications,butalsotheiroriginandbeshownthattheyarefirmly basedonexperimentalresults.

Studentslearnnewabstractconceptsbestwhentheseconceptsareconnected— throughawell-designedanalogy—tofamiliarideas.Ibelievethatthemost

heuristicderivationofLorentztransformationistoconnectittotheconceptof therelativisticspacetimedistance,becausetheideaof“distance”isintuitively obvioustothebeginner.So,ifthefamiliarEuclideandistanceispresentedin suchawayastomakeatransparentcontactwiththespacetimedistance,the latterwillnotbeasmysteriousasitfirstappearstobe,anditsbyproduct,the Lorentztransformation,canthenbeappreciated.

Startingwithsomeintuitiveandobviousassumptionsconcerningdistance inthetwodimensionsinwhich flatlanders live—andforwhom“height”is notasdirectlyaccessibleaslengthandwidth—thebookderivesthethreedimensionalEuclideandistancebetweentwopointsintermsoftheircoordinates.Then,assumingtheinvarianceofthisdistance,itdeducesthefamiliar orthogonalcoordinatetransformation.Ihavepresentedthederivationinsuch awaythatthetransitiontospacetimebecomesself-evident.Thus,following exactlythesameprocedure,IderivetheMinkowskiandistanceandthecorrespondingtransformationthatrespectstheinvarianceofthatdistance:the Lorentztransformation.

Thefirstchapterisconceptualandrequiresnomathbeyondhighschoolalgebra.Itisagoodintuitiveintroductiontorelativityofsimultaneityandlength contraction.Chapter 2 derivesthetimedilationandlengthcontractionformulasandappliesthemtovariousexamples,includingsomeuniqueand insightfulapplicationstorelativisticphotographyinanticipationofChapter 7. Chapter 3 derivestheinvariantspacetimedistanceandLorentztransformation foraone-dimensionalrelativemotionaftershowingstudentshow flatlanders canderiveEuclideandistanceeventhoughtheycan’t“feel”thethirddimensionofheight.

Picturesareworthathousandwords.That’swhygeometrycanbeextremely usefulwhenalgebrabecomestedious.Thegeometryoftwo-dimensional spacetimeisintroducedinChapter 4 andappliedtomanyexamplessuchas Dopplereffect,re-derivationofLorentztransformations,andthewellknown “trainandtunnel”paradox.Thespacetimetriangleinequality—thefactthat thesumofthelengthsoftwosidesofatriangleis less thanthelengthofthe thirdside—isderivedinthischapterandusedtoshowthatastraightlinein spacetimegeometryisthe longest distancebetweentwoevents.Adirectconsequenceofthispropertyisthatinertialobserversagefasterthanaccelerated observers,thusexplainingthetwinparadox.

ThenaturalrelativisticsubstitutefortheNewtonianuniversaltimeinkinematicsisidentifiedasthepropertime.InChapter 5,Igeneralizetheordinary conceptofvelocityinaplane(thederivativeofdisplacementwithrespectto theuniversaltime)tothevelocityinaspacetimeplaneasthederivativeofthe spacetimedisplacementwithrespecttopropertime.Spacetimemomentumis theimmediateconsequenceofspacetimevelocity,andrelativisticmomentum andenergyareidentifiedasthecomponentsofspacetimemomentum.

Chapter 6 definesthegeneralLorentztransformationusingmatricesand,with thehelpofAppendix B,extendsthetwo-dimensionalLorentztransformations tothefullfour-dimensionalspacetime.Theconceptof4-vectorsandtheir dotproductareintroducedasarethenotionsof4-velocity,4-acceleration, 4-momentum,4-force,andthesecondlawofmotion.Variousexamplesillustratethepowerof4-vectorsandtheirdotproducts.

Chapter 7 is,asfarasIknow,uniquetothisbook.Itisthearenainwhich thepowerofLorentztransformationandthelimitation,eventheincorrectness,oftheuseoftheconceptsoftimedilationandlengthcontractionis illustrated(seeProblem 7.1 forapopularmistake).Conditionsunderwhich lengthcontractioncanbe photographed areinvestigated,andthereasonwhy ordinaryphotographyofrelativisticallymovingobjectsdoesnotrevealthis lengthcontractioniselaborated.Oneoftheoutstandingresultsofthischapteristhe rigorousproof thatthephotographofarelativisticallymovingsphere inapinholecameraisanellipse elongated alongthedirectionofmotion,and thattheimageofsuchasphereisacircleif(andonlyif)itmovesdirectlytowardorawayfromthecamera.ThisdoesnotcontradicttheresultsofPenrose andTerrell,whodemonstratethatthe cone convergingona pointobserver is circular.Byactuallyconstructingthesecircularcones,thechaptershowsthat, ifthepinholecamerapointsatthecenterofthesphere,theimageformedon itsphotographicplatecannotbecircular.Infact,thechapterprovesinthree differentwaysthattheimageisanellipsestretchedinthedirectionofmotion.

Chapter 8 seesanimportantapplicationof4-vectorsandfour-dimensionaldot producttoparticleinteractions.Thenotionsofcenterofmassandlabframes areintroducedandusedinvariousexamplestoinvestigateparticlecollisions anddecays.ThechapterendswithasimpleintroductiontotheDirac’sdiscoveryofantimatterandtheconnectionbetweenspecialrelativityandspin.

Chapter 9,anotherchapteruniquetothisbook,appliesfour-momentumconservationofChapter 8 torocketpropulsion.Themotionoffuelcarryingspacecraftisanalyzedformassiveaswellasphotonexhaustcasesandtheirimpracticalitydemonstrated.Thealternativeground-basedlaserpropulsioniscovered inlengthydetailinlightoftherecentinterestinsuchprojects.Certainpeculiaritiesofrelativisticmotioninonedimension,suchasthefactthatforceisan invariantquantity,arepointedoutandtheimportanceofLorentzcovariance, acrucialprerequisiteoftheapplicationofspecialrelativity,isemphasized.It isthenshownthattherequirementofLorentzcovarianceinvalidatesmany existingapproachestotheproblem.

Chapter 10 isanelementaryintroductiontotensoralgebraasappliedtospecialrelativityandusedmainlyinChapter 11 onrelativisticelectrodynamics. ThelatterderivestheLorentztransformationforelectricandmagneticfields andcalculatestheelectricandmagneticfieldsofauniformlymovingcharge startingfromtheCoulombforceofastaticcharge.Electromagneticfieldtensor

leadsnaturallytotheLorentzforcelawandanelegantwayofwritingMaxwell’s equations.

Althoughsomewhatoutsideitsmainthrust,thebookendswithaveryaccessibleintroductiontothestandardcosmologicalmodel.Afewofthetopics developedinthebookareusedtoillustratetheimportanceofrelativityinthe physicsoftheearlyuniverse.Alongtheway,anumberofideas,notrelatedto relativity,arediscussedandtherelevantequationsderivedindetail.So,Chapter 12 isalsoanaccessibleexposuretosuchtopicsasEMradiationincavities, Planckformulaoftheblackbodyradiation,Stefan-Boltzmannlaw,Friedmann equation,andtheevolutionoftheearlyuniverse.

Discussions(sometimesheated!)withsomeofmycolleaguesclarifiedmany subtleideasofrelativityandconsolidatedmybeliefthatLorentztransformationisthebedrockofspecialrelativity,andshouldbeatthecoreofteaching thesubjecttothenovice.IwouldliketothankRobertSchrockforreadingan earlyversionofChapter 7 andgivingconstructivecommentsonit.Ialsothank SörenHolstandJohnMallinckrodtformanyexchangesofemail,whichhelped medeciphertheintricaciesofapplyingLorentztransformationstovariousinterestingexamples,someofwhichappearthroughoutthebook.Needlessto say,Iamsolelyresponsiblefortheaccuracyofthecontentofthebook.

Urbana,IL,USA

December2016

ListofSymbols,Phrases,andAcronyms

ˆ a unitvectorinthedirectionof a antiparticle aparticlewhosemassandspinareexactlythesameasitscorrespondingparticle, butthesignofallits“charges”areopposite.Ifaparticleisrepresentedbytheletter p ,then itiscustomarytodenoteitsantiparticleby p .Ifaparticleisrepresentedbytheletter q (or q + ),thenitiscustomarytodenoteitsantiparticleby q + (or q ). as arcsecond;anarcsecondisanangle 1/3600 ofadegree. baryon ahadronwhosespinisanoddmultipleof /2.Baryonsarecomposedofthreequarks. Examplesofbaryonsareprotonsandneutrons.

β fractionalvelocityofoneobserverrelativetoanother, β = v/c boson aparticlewhosespinisanintegermultipleof .Allgaugeparticlesarebosonsasareall mesons,aswellastheHiggsparticle. causallyconnected referringtotwoevents.Ifanobserveroralightsignalcanbepresentattwo events,thoseeventsaresaidtobecausallyconnected. causallydisconnected referringtotwoevents.Ifanobserveroralightsignalcannotbepresent attwoevents,thoseeventsaresaidtobecausallydisconnected.

CBR CosmicBackgroundRadiation.

CM centerofmass.

CS coordinatesystem.

ˆ ex , ˆ ey , ˆ ez unitvectorsalongthethreeCartesianaxes.

EM electromagneticorelectromagnetism,oneofthefourfundamentalforcesofnature. equilibriumtemperature temperatureoftheuniverseatwhichmatterandradiationdensities areequal.

eV electronvolt,unitofenergyequalto 1 6 × 10 19 J. fermion aparticlewhosespinisanoddmultipleof /2.FermionsobeyPauli’sexclusionprinciple:notwoidenticalfermionscanoccupyasinglequantumstate.Electrons,protons,and neutronsarefermions,soareallleptonsandquarks,aswellasallbaryons.

γ theLorentzfactor, γ = 1/ 1 β 2 = 1/ 1 (v/c)2 . gaugebosons Accordingtothemoderntheoryofforces,fundamentalparticlesinteractviathe exchangeofgaugebosons.Excludinggravity,whosemicroscopicbehaviorisnotwellunderstood,thereare12gaugebosonswhoseexchangeexplainsalltheinteractions: Z 0 , W ± and γ (photon)areresponsibleforelectroweakinteraction,while8gluonsareresponsibleforstrong interaction.

gluons theparticlesresponsibleforstronginteractions:twoormorequarksparticipateinstrong interactionbyexchanginggluons.Therearefourgluons,whichwiththeirantiparticlescomprisetheeightgluonswhoseexchangebindsquarkstogether.

GTR generaltheoryofrelativity;therelativistictheoryofgravity.

Gyr gigayear,equalto 109 years.

hadron aparticlecapableofparticipatinginstrongnuclearinteractions.Examplesofhadrons areprotons,neutronsandpions.Allhadronsaremadeupofquarksand/orantiquarks. half-life thetimeintervalinwhichonehalfoftheinitialdecayingparticlessurvive.

LAV LawofAdditionofVelocities.

lepton aparticlethatparticipatesonlyinelectromagneticandweaknuclearinteractions,but notinstrongnuclearinteractions.Leptonsareelementaryparticlesinthesensethattheyare notmadeupofanythingmoreelementary.Therearethreeelectricallychargedleptons:electron,muon,andtauon.Eachchargedleptonhasitsownneutrino.So,altogethertherearesix leptons.

LHC LargeHadronCollider.

lightcone (atanevent E )Thesetofalleventsthatarecausallyconnectedto E lighthour the distance thatlighttravelsinonehour, ≈ 1.08 × 1012 m. lightminute the distance thatlighttravelsinoneminute, ≈ 1 8 × 1010 m. lightsecond the distance thatlighttravelsinonesecond, ≈ 3 × 108 m.

lightlike referringtotwoevents,when c t = x or ( s)2 = 0 luminallyconnected referringtotwoevents.Ifalightsignalcanbepresentattwoevents,those eventsaresaidtobeluminallyconnected.

ly lightyear;onelightyearis 9.467 × 1015 m.

meantime thetimeintervalinwhich 1/e oftheinitialdecayingparticlessurvive.

meson ahadronwhosespinisanintegermultipleof .Mesonsarecomposedofonequark andoneantiquark.Examplesofmesonsarepions.

MeV millionelectronvolt,unitofenergyequalto 1 6 × 10 13 J.

µm micrometer = 10 6 m.

Minkowskiandistance alsocalled“spacetimedistance,”

( s)2 = (c t)2 ( x)2

isanexpressioninvolvingthecoordinatesoftwoeventswhichisindependentofthecoordinatesusedtodescribethoseevents.

Mly millionlightyears.

MMclock sometimescalled“lightclock”isdescribedonpage 17

Mpc Megaparsec.

muon anelementaryparticlebelongingtothegroupofparticlesnamed“leptons,”towhich electronbelongsaswell.Muoniscalleda“fatelectron”becauseitbehavesverymuchlikean electronexceptthatitisheavier.

neutrino aneutralleptonwithverysmallmass.Neutrinosparticipateonlyinweaknuclear force.That’swhytheyareveryweaklyinteracting.

ns nanosecondor 10 9 s.

Parsec adistanceofabout3.26lightyears.Oneparseccorrespondstothedistanceatwhichthe meanradiusoftheEarth’sorbitsubtendsanangleofonesecondofarc.

positron theantiparticleoftheelectron.

quarks elementaryparticleswhichmakeupallhadrons.Therearesixquarks:up,down,strange, charm,bottom,top.Quarksparticipateinallinteractions,inparticular,thestronginteraction.

RF referenceframe.

spacelike referringtotwoevents,when c t< x or ( s)2 < 0.

spacetimedistance seeMinkowskiandistance.

STR specialtheoryofrelativity.

tauon anelementaryparticlebelongingtothegroupofparticlesnamed“leptons,”towhich electronbelongsaswell.Itistheheaviestleptondiscoveredsofar.

timelike referringtotwoevents,when c t> x or ( s)2 > 0

NotetotheReader

Ifyouwanttomasterspacialrelativity,you’llhavetoknowhowtoapply Lorentztransformations.Theyarerelativisticcoordinatetransformationsthat connecttwodifferentobservers.Sortofgeneralizationsoftheorthogonal transformationsusedinEuclideangeometry.

TomasterLorentztransformations,you’llhavetoreallyunderstandtheconceptofan“event.”Onceyourealizewhataneventis,thenext(andhardest step)istobeabletovisualizehowthateventlooksina“moving”reference frame.Considertwoevents:thelaunchofaspacecraftanditslandingonan exoplanet.ForanEarthobserver,thelaunchoccurshereandnow,thespacecraftstartsmovingawayatlaunch,thelandingoccursthereandthen,andat landing,thecraftapproachestheexoplanet.

Nowsupposethatyouareonthespacecraft.Ifyoucanimaginethat youarenot moving,thatthelaunchoccurshereandnow,withthe Earth startingtomove away,thatthelandingoccurs here andthen,andthatinlandingthe exoplanet approaches you,thenyouarehalfwaytounderstandingLorentztransformations.

ThereareplentyofexamplestotrainyourmindtopicturesuchLorentztransformations.Gothroughthemandtrytoreproducethesolutions withthebook closed.Yes,withthebookclosed,becausesimply“followingthesolutions”in thebookwillnotteachyouLorentztransformation(orphysics,ormath). Onceyouhavegonethroughalltheexamples,doasmanyoftheend-ofchapterproblemsasyoucan...themorethemerrier!

ASolutionsManualprovidingsolutionstoalloftheend-of-chapterproblems isavailablefordownloadat https://www.elsevier.com/books-and-journals/ book-companion/9780128104118.

QualitativeRelativity

Theseedsofrelativitytheorywereplantedonaspringdayinalecturehall onthecampusoftheUniversityofCopenhagenin1820.AsProfessorHans ChristianÖrstedwasdemonstratingthepoweroflargeelectriccurrents,he notedthedeflectionofanearbycompassneedleassoonasalargecurrent wasestablishedinthecircuit.Thushestumbledononeofnature’sbest-kept secrets,namelythatelectriccurrentscanproducemagneticfields.

1.1ITBEGANWITHMAXWELL

Youmightthinkthatbecausecurrentsareproducedbymovingchargesand becausemotionisarelativeconcept,thereisalreadyaconnectionbetween electromagnetismandrelativity.Afterall,ifyoumovewiththechargesproducingtheelectriccurrent,theywillappearmotionlesstoyouandyoushould notdetectanymagneticfield.1 Whilethisiscertainlytrue,itcontainslittle morethanthefactthatthemagneticfielddisappearsforanobservermoving alongsidetheelectriccharges.Tomakecontactwith the theoryofrelativity, youneedthefullmachineryofelectromagnetismasdescribedbyMaxwell’s equations.

Ifyouhavesomefamiliaritywithvectoranalysisandhavenotseenhow Maxwellderivedhisfamousequations,you haveto readAppendix A.Ittruly affirmsthe“powerofthemind,”notinthewaythatmystichealthguruswant youtobelieve,butthepowerinstigatedbymathematicsandvindicatedby countlesspracticalusesofitsimplications.Italsolaysthefoundationofrelativityinastatementrepeatedhere: SecondPostulateof Relativity

Note1.1.1. Electromagneticwavestravelat c = 299792458 m/s,thespeedof lightinvacuum,regardlessofthemotionoftheirsource.

1 Inarealwire,themotionofthenegativeelectronscreatesacurrent.Ifyoumovewiththeelectrons, thenthepositivebackgroundchargesmoveintheoppositedirection,andthemagneticfieldwillnot disappear.Iamnotconsideringrealwires,butthecaseinwhichonlychargesofonesignarepresent. 1

FirstPostulateof Relativity

LawofAdditionof

FIGURE1.1 Instantaneouslocationofamovingobjectrelativetotwoobservers.

Thevalueofthespeedoflightgivenhereisexact.In1983,thespeedof lightwasgiventhisexactvalue,whiletheunitoflength,meter,wasdefined asthedistancelighttravelsin 1/299732458 second.Seconditselfisdefined as 9192631770 periodsoftheoscillationofcertaintransitionofcesium133 atom.

Thestatementin Note1.1.1 issometimescalledthe secondpostulateofrelativity,andasyou’llsee,theentiretheoryofspecialrelativityisbasedonit.For completeness,let’salsostatethe firstpostulateofrelativity:

Note1.1.2. Thelawsofphysicsarethesameforallinertialobservers.

Aconsequenceofthispostulateisthatitisimpossibletodetectthe(absolute) uniformmotionofareferenceframe(RF)throughmeasurementsdoneentirelyinthatRF.Hereiswhy:Ifyou could measuretheabsolutemotionand yougotanumberasthespeedofaparticularRF,thenby Note1.1.2 thisnumbershouldbethesamefor all RFs.ButifallRFshavethesameabsolutespeed, theywouldnotbemovingrelativetooneanother.

Thesecondpostulateofrelativityisinconflictwiththeintuitiveclassical notionofthe lawofadditionofvelocities (LAV). Figure1.1 showstheinstantaneouslocationofamovingobjectrelativetoobservers O1 and O2 .From yourelementarymechanicscourse,youknowthatthesepositionvectorssatisfy r1 = r12 + r2 .Differentiatingthisequationwithrespecttotime,youobtain

, (1.1) whichstatesthatthevelocityoftheobjectrelativeto O1 isthesumofthevelocityoftheobjectrelativeto O2 andthevelocityof O2 relativeto O1 .Thisisthe LAV.Asanexample,supposethatSonyaisridingatrainmovingat200km/hr. Shefiresabulletfromherguntowardthefrontofthetrain.Ifthespeedof thebulletrelativetothegunis300km/hr,thenSam,standingontheground outside,seesthebulletflybyat500km/hr.

NowsupposethatSonya,ridingonasupertrainandholdingherlaserpointer outsidethetrain,sendsabeamoflighttowardthefrontofthetrain.Sam,who isstandingoutside,hundredsofkilometersawayfromthetrain(therefore,not evenseeingthesourceofthebeam),detectsthelaserlightandmeasuresits speedtobe299792458m/s,regardlessofhowfastthetrainismoving!That’s theessenceofthesecondpostulateofrelativityin Note1.1.1.Ontheother hand,LAVinstructsourintuitiontoaddthespeedofthetraintothespeed ofthelightrelativetothelasergun.ThisistheconflictbetweenLAVandthe secondpostulate.

TheLAVwassofirmlyestablishedinthenineteenthcenturythatthenotionof lighttravelingwiththesamespeedrelativetotwodifferentRFs—andtherefore, thesecondpostulateofrelativity—wasconsideredalogicalfallacy!So,what wasthealternative?OnepossibilitywastoconsidertheEarthasthespecialRF inwhichMaxwell’sequationshold.ButthiswasimmediatelydismissedbecauseCopernicus,threecenturiesearlier,hadalreadycautionedaboutthedangersofbestowingupontheEarthaspecialpositionintheuniverse.Moreover, theorbitalmotionoftheEarth,withitssemi-annual180-degreedirectional flip,wouldhavetohavedistortingeffectsonthelightofstarsandplanets, whichwouldbeeasilydetectable.Lackofsuchdistortionsimmediatelyrules outtheEarthasaprivilegedframe.IftheEarthisnottheprivilegedRF,then, forthesamereason,nootherplanet,northeSunnoranyotherstarorgalaxy canbeprivileged.

Theonlyremainingalternativewasthe“medium”surroundingthecelestial bodiesandfillingthespacebetweenthem.Justaswaterwaveistheoscillation

Theriseandfallofether theory. ofwaterandsoundistheoscillationofair,theundulationofthismedium, called ether,manifesteditselfaslight.Theideaofetherwasinventedandused byHuygensasearlyas1690,butitbecamethesubjectofintensescrutinyin thenineteenthcenturyafterMaxwell’spredictionoftheelectromagnetic(EM) waves.Ethertheorydemandedsomanystrangeandcomplicatednotionsthat bythelastquarterofthenineteenthcentury,physicistsstartedtodoubtitsexistence.ThefinalblowtoethercamethroughtheworksofAlbertMichelson (1852–1931)andEdwardMorley(1838–1923),oneofwhosecrucialexperimentsshowedthattherewasnodetectablemotionofEarthrelativetoether, therebyunderminingthetheoryandtheconceptofether.

1.1.1EinsteinandSignalVelocity

Whenhewasonly16yearsoldin1895,Einsteinwonderedhowtheworld wouldappeartohimifhecouldcatchupwithlight;inparticular,whatwould lightitselflooklike.Youcanappreciatetheintriguingnatureofthisquestion byananalogy.Imaginethatyouarequietlymovingovercircularwaterwaves atexactlythesamespeedastheirexpansionrate.Howwillthewavesappear Howwouldwaterwaves lookifyoucaughtupwith them? toyou?Concentrateonlyonthelocalwaves2 andassumethatyouridejust

2 Clearlyyoucannotmovewithallthewavesastheygoindifferentdirections.

aboveacrest.Youseethecrestrightunderneathyou,andsinceyoumovewith itatexactlythesamespeed,itwillremainunderneath.Theothercrestsand troughsinyourimmediatevicinityalsomoveatthesamespeed,andwillalso remainstatic.Thus,locallyatleast,thewaveceasestoexist!Itwillappearas astaticandpermanentdeformationofwatersurfacewithnomotionandno oscillation.

Ifyoucouldcatchupwithlight,andifetherreallyexisted,thentheetherwave

Howwouldlightlookif youcaughtupwithit? (i.e.,light)wouldalsoceasetoexist!Whatisevenmoreintriguingisthat,since etherwassupposedlyinvisible(transparent),therewouldbenotraceoflight left!Althoughinthecaseofwaterwaves,astaticdeformationofwater,the mediumoftransmission,waslefttoremindyouoftheoncetravelingwave,no suchreminderwillremaininthecaseoflight.Assoonasyoucatchupwithit, lightwillbecompletelygone!

Intheinterveningyearsbetween1895and1905,thequestionofthebehavior oflightandmotionwasconstantlyonEinstein’smind.Ashisscientificand mathematicalabilitiesmatured,thequestiontookonthemoredefiniteform ofhowlightbehavedinmovingframes.IntheconflictbetweenMaxwell’s constancyofthespeedoflightandNewton’sLAV,Einsteintooksideswith Maxwellandresolvedtheconflictbytheanalysisoftheconceptoftime.Here isEinstein’saccountofhisdiscoveryofSTR:

Whydothesetwoconcepts[LAVandMaxwell’sprediction]contradicteach other?Irealizedthatthisdifficultywasreallyhardtoresolve.Ispentalmost ayearinvaintryingtomodifytheideaofLorentzinthehopeofresolvingthis problem. Einsteinexplainshowhe createdSTR.

BychanceafriendofmineinBern(MicheleBesso)helpedmeout.Itwasa beautifuldaywhenIvisitedhimwiththisproblem.Istartedtheconversation withhiminthefollowingway:“RecentlyIhavebeenworkingonadifficult problem.TodayIcomeheretobattleagainstthatproblemwithyou.”Wediscussedeveryaspectofthisproblem.ThensuddenlyIunderstoodwherethe keytothisproblemlay.NextdayIcamebacktohimagainandsaidtohim, withoutevensayinghello,“Thankyou.I’vecompletelysolvedtheproblem.” Ananalysisoftheconceptoftimewasmysolution.Timecannotbeabso-

Thereisaninseparable relationbetweentime andthespeedoflight. lutelydefined,andthereisaninseparablerelationbetweentimeandsignal velocity.Withthisnewconcept,Icouldresolveallthedifficultiescompletely forthefirsttime.

Withinfiveweeksthespecialtheoryofrelativitywascompleted.Ididnot doubtthatthenewtheorywasreasonablefromaphilosophicalpointofview. ...Thisisthewaythespecialtheoryofrelativitywascreated.

Thesecondpostulateismostintriguing.Youalreadysawtheexampleof thebulletandthelasergun.Totickleyourcommonsensealittlemore,assumethatyouseealightbeampassingyouat299792458m/s.Immediately,

yougetonyoursuperfastspaceshipandchasethebeamwithaspeedof 299792450m/s.Newtonianphysics(andcommonsense)tellsyouthatthe speedofthatlightbeamrelativetoyoumustbeamere8m/s.Thesecondpos-

Strangeconsequencesof secondprinciple. tulatesaysthateventhoughyouarechasingthelightbeamat299792450m/s, asyoumeasurethespeedofthelightbeamjustaheadofyou,youfinditto be299792458m/s!Incredible,strange,impossible,yousay.Incredible?Yes. Strangeandimpossible?No.Thereisnothinglessstrangeandimpossiblethan Natureisnotstrange. Weare! aprovenlawofnature.Itiswethatarestrange,judgingaperfectlynormalnature3 byourcrudesensesanddeclaringtheimperfectionsweperceivethrough themas“normal”and“possible.”

1.2RELATIVITYOFSIMULTANEITY

Whenwesay“twoeventsaresimultaneous,”weareusingtwocommonwords whosemeaningsneedtobemadeprecise. Events arethemostessentialbuild-

Eventsasbuildingblocks ofSTR. ingblocksofrelativity.Aneventisanyabruptphysicalphenomenonwhose spatialpositionandtimeofoccurrencecanberecorded.Aneventisrelativity’s equivalentofapointingeometry,andlikethelatter,relativityalwaysdeals withidealevents,i.e.,thosethatdonothaveanyextensioneitherintimeorin space.Allobserversagreeonasingleidealevent.Inotherwords,ifaphysical Eventdefined. phenomenonisstampedasaneventbyoneobserver,thenitisstampedasan eventbyallobservers.

Note1.2.1. Aneventisdescribedbyasinglepointinspaceandasingleinstant intime.Theoccurrenceofaneventisauniversalphenomenon:Ifitoccursfor oneobserver,itoccursforall.

Asaprototypeofevents,weconsidertheexplosionofafirecrackerinthesequel.Itisnot,however,anidealevent,justasapointdrawnonapieceofpaper isnotanidealgeometricpoint.Ifweconsidertheexplosionofafirecrackermicroscopically,thechemicalprocessesleadinguptotheexplosiondonottake placeinstantaneouslyatapointinspace,butrequireafinitetimeintervaland takeplaceinavolume.Weignoresuchmicroscopicdetails,justasweignore thefiniteradiusandthethicknessofthediskleftbyapencilonpaperaswe drawfigureswhenwestudygeometry.

1.2.1SimultaneityinaSingleRF

Nowthatyouknowtheprecisenotionofanevent,youneedtounderstandthe precisemeaningof simultaneity.Howcanyoudeterminewhethertwoevents Simultaneityoftwo eventsoccurringatthe samepoint. aresimultaneousornot?Firecrackers A and B explodesomewhereinspace andyoureceivethesignalsoftheirexplosions.Question:Didtheexplosions

3 Afterall,whatismorenormalornaturalthannatureitself?

FIGURE1.2 (a)Twoadjacentfirecrackersaresaidtohaveexplodedatthesametimeifthe observerreceivestheirsignalsatthesametime.(b)Twowidelyseparatedfirecrackersaresaid tohaveexplodedatthesametimeiftheobserverreceivestheirsignalsatthesametimewhile beinglocatedontheperpendicularbisectorofthelinesegmentjoiningthefirecrackers.

occuratthesametime?If A and B wereatthesamepointwhentheyexploded, itiseasytoanswerthisquestion:Ifyoureceivetheirlightsignalsatthesame time,theymusthaveoccurredatthesametime[Figure1.2(a)].Becauseof thespecialpropertyoflightstatedinthesecondpostulate,thisconclusion isindependentofthestateofmotionofthefirecrackers: A and B couldbe movingatveryhighspeedsinarbitrarydirectionsatthetimetheyreachthe commonpointinthefigure.

Youcanappreciatethesignificanceoflightsignalsusedincommunicating simultaneitybylookingatevents A and B whichoccurin moving reference frames.Supposebulletsareusedinsteadoflightsignals.SamandSonyaare standingontwotrainsparkednexttoeachotheratpoint C adistanceof 300mfromJames.Theyfirebulletssimultaneouslyfromtheirriflesmoving at100m/s toward James.4 Threesecondslater,Jamesseesthebulletspassby himtogether.Heconcludesthatthetwoeventsoffiringthebulletsmusthave occurredsimultaneouslybecauseheknowsthatthetworifleswereatthesame locationandthespeedofthebulletswereequal.

NowsupposethatSamismovingawayfromJameswhileSonyaismoving towardJamesbothat50m/s.Whentheyreach C atthesametime,theyfire bulletstowardJames.Sonya’sbullethasaspeedof150m/swhileSam’sbulletspeedis50m/s,bothrelativetoJames.So,althoughfiredsimultaneously,

4 ...whois(hopefully)notdirectlyinfrontoftherifles!

Sonya’sbulletreachesJamesin2secondswhileSam’sreacheshimin6seconds,andhecannotconcludethatthetwoeventsoccurredsimultaneously. ThemotionoftherifleshasaffectedthespeedofthebulletsrelativetoJames. Lightdoesnothavethisproblem.IfSamandSonyaweremovingathalfthe speedoflightinoppositedirections,thelightsignalstheyemitat C willreach James atexactlythesametime.Thatiswhy,asEinsteinalludedtoitinthequote EMwavesaretheonly communicatorsof simultaneity. above,

Note1.2.2. Light(oranyotherelectromagneticwave)istheonlycommunicator ofsimultaneity.

Whatif A and B arenotlocatedatthesamepoint? Figure1.2(b)showstheline segment AB anditsperpendicularbisector PQ .Iftheobserverhappenstobe Simultaneityoftwo eventsoccurringat differentpoints. on PQ andreceivesthetwolightsignalsatthesametime,hecanconcludethat theymusthaveoccurredatthesametime.Again,duetotheinvarianceoflight speed,thisdefinitionofsimultaneityisindependentofthestateofmotion of A , B ,andtheobserver.Thus,toconcludewhethertwoeventsseparatedin spacearesimultaneous,youmustlocateyourselfontheperpendicularbisector ofthelinesegmentseparatingthemandseeifyoureceivethelightsignalsat thesametime.Ifyouareofftheperpendicularbisector,youmustallowforthe differenceinthetraveltimeoflightsignals.

Tofacilitatetheunderstandingofsimultaneity,assumethat,foreachpairof events,everyreferenceframehasadesignatedobserver Odes ,whohappens Designatedobserverofa referenceframe. tobeequidistantfromthatgivenpair.Then,wecandefinesimultaneityas follows:

Note1.2.3. ApairofeventsAandBare simultaneous inareferenceframeif thedesignatedobserverofthatRFreceivesthelightsignalfromAandBatthe sametime.

Havingdefinedthenotionofsimultaneity,Icannowask:Ifthedesignated observer Odes decidesthattheevents A and B aresimultaneous,cananother observer O callthemsimultaneous?If Odes and O donotmoverelativeto oneanother,i.e.,ifbothareinthesameRF,theanswerisyes,andhereishow simultaneitycanbecommunicatedtotheothermembersoftheRF.

Suppose Odes hasa(veryaccurate)watchthatemitsalightsignaleverysecond. Anyotherobserver,including O , atafixeddistancefrom Odes ,willreceivethose signalseverysecond,because,foranygivenobserver,eachsignalhasexactly thesamedistancetotravel.Therefore, O ’sclockcanbecomparedandmade torunatexactlythesamerateastheclockheldby Odes ,andviceversa.In

particular, Odes cansendacodedmessageto O attheexact“second”thatshe receivesthetwosimultaneoussignalsfromevents A and B ,informing O that thosetwoeventsoccurredatthesametime.

Furthermore,allclocksoftheRFcanbecompletelysynchronizedtoapartic-

AllclocksofanRFcan bemadetorunatthe samerateandbe synchronized. ularreferenceclockC.Thisisthemostaccurateclockavailable.Infact,itis soaccuratethatyoucancallitan idealclock 5 Youcanthensynchronizeany otherclockwithCevenifitislocatedfar,veryfar—lightyears—awayfromC. TosynchronizeanyclockC ,anoperatoratCdeterminesthedistancebetween CandC bymeasuringthetimeintervalbetweensendingalightsignaltoC andreceivingthereflectedechoatC.Denotingthistimeintervalby T ,she calculatesthedistancebetweenCandC tobe Tc/2

OncethedistancebetweenC andCisdetermined,theoperatorcansenda codeat12:00containingthesentence“Assoonasyoureceivethissignal,set yourtimeto12:00plus T/2!”ThentheoperatoratC cansethistimetobeexactlythesameasC.ThisiswhattakesplaceattheEarth’sRF.6 Allclocksareset toGreenwichMeanTime.However,sinceitwouldbesillyfortheresidentsof Tokyotobeforcedtocallit12:00noonwheneverywhereisdark,thesynchronizationoftheEarthclocksfollowsamoredemocraticrulebyincorporating thegeographiclocationintheprocess.

Itiscrucialtonotethatthesynchronizationprocedureisapplicablebecauseall clocksarestationaryrelativetooneanother.Asyou’llseeshortly,relativemotionbetweentwoclocksaffectstheiroperation.Theoretically,youcansynchronizealltheidealclocksofasingleRFtotickinperfectharmony:

Note1.2.4. Allobserversinasinglereferenceframekeepthesametimeand agreeonthenotionofsimultaneity.

1.2.2SimultaneityinDifferentRFs

WhathappenstosimultaneitywhentwoRFsmoverelativetooneanother? Toinvestigatethisquestion,considertwofirecrackerslocatedatthetwoends ofatraincar.SamisonthegroundandSonyastandsatthemidpointofthe traincar.Supposethatthefirecrackersproducesmokethatcanleavepermanentmarksontheground.SupposealsothatSamfindshimselfrightinthe middleofthesetwomarks.7 Finally,assumethathereceivesthesignalsfrom

5 Anidealclockneverrunsfastorslow.Suchaclockdoesnotexist,ofcourse,but atomicclocks approximatethisidealclocktoaveryhighdegreeofaccuracy.

6 Strictlyspeaking,notallresidentsofEarthhavethesameRFbecauseoftheEarth’sspin:PeopleinChina andtheUSmoveinoppositedirections,andveryaccurateglobalsynchronizationstakethismotioninto account.

7 ThefactthatIamplacingSamandSonya inthemiddle ofthetwoeventsdoesnotrestricttheconclusions Ireachconcerningsimultaneity(orlackthereof)intheirRF.Thinkofthemasdesignatedobserverswho cantransmittheirobservationtoallobserversintheirrespectiveRF.

FIGURE1.3 Differentobserversdisagreeonthesimultaneityoftwoevents.Thegroundobserver (Sam)seesthetwoeventsassimultaneous,whilethetrainobserver(Sonya)doesnot.Themarks labeled A and B areleftonthegroundbytheexplosionofthefirecrackers A and B ,respectively. ThesemarksareasseenbySam.

A and B atthesametime. Figure1.3 showsthesituationasseenbySam.The topfigureisthemomenttheexplosionsoccur,as calculated bySamafterhe receivesthesignals(allowingforthesignals’traveltime).Themiddlefigure showsthewavefrontsmovingawayfromtheirsources.NotethatSonyahas receivedthesignalfrom B ,andthatthetwowavefrontsareequidistantfrom Samandfromthepositions—accordingtoSam—ofthefirecrackers atthetime ofexplosions (i.e.,positionsof A and B inthetopfigure,orequivalently,positionsof A and B ).Finally,inthebottomfigurethetwowavefrontshave reachedSamwhileSonyaisstillwaitingforthesignalfrom A . Afterreceivingthetwosignalssimultaneously,Samwalksto A countinghis steps,walksto B countinghissteps,noticesthatthetwodistancesareequal, andconcludesthatevents A and B wereindeedsimultaneous.Whatabout Sonya?Afterreceivingthetwosignals,shemeasuresherdistancefrom A and B andverifiesthatshewashalfwaybetweenthem.Shethereforeconcludesthat B mustdefinitelyhaveoccurredbefore A .

Althoughsimultaneityoftwoeventsisnotuniversal,thefactthatSamsees A and B assimultaneous,is.Notonlydoeshesay“ A and B aresimultaneousfor me,”butalsoSonyaandallotherobserversintheuniversesay“ A and B are simultaneousforSam,”despitethefactthattheythemselvesdonotmeasure theoccurrenceof A and B tobesimultaneous.Wecanactuallydemonstrate thisbyequippingSamwithaspecialfirecracker C thathecantriggerwhenthe twosignalsreachhimatthesametime.Thus,theexplosionof C heraldsthe simultaneityof A and B asseenbySam,andallobserverskeepinganeyeon

FIGURE1.4 HereSonyaseesthetwoeventsassimultaneous.Samsees A before B .Themarks ontheplatformareasseenbySonya.

C canconcludethatSamsaw A and B atthesametime(iftheyseethesingle explosionof C )ornot(iftheydon’tseetheexplosionof C ).

TheprecedingdiscussionmayhavegivenyoutheimpressionthatSamisgettingspecialtreatmentbecauseheistheonewhoseesthetwoeventssimultaneously,orthatheistheonewho“isnotmoving.”Toeraseanyimpressionof suchspecialtreatment,giveSonyathe“honor”ofobservingthetwoeventsat thesametime. Figure1.4 showsthesituationasseenbySonya.Thetopfigure isthemomenttheexplosionsoccur,as calculated bySonyaaftershereceives thesignals,allowingforthesignals’traveltime.Themiddlefigureshowsthe wavefrontsmovingawayfromtheirsources.NotethatSamhas(almost)receivedthesignalfrom A ,andthatthetwowavefrontsareequidistantfrom Sonyaandfromthepositionsofthefirecrackers.Inthebottomfigurethe twowavefrontshavereachedSonyawhileSamisstillwaitingforthesignal from B .Asbefore,afterreceivingthetwosignals,SamandSonyameasure theirdistancesfrom A and B (ortheirmarksontheplatform)andverifythat theywerebothhalfwaybetweenthem.Sonyaconcludesthatthetwoevents occurredsimultaneouslywhileSamdecidesthat A musthaveoccurredbefore B .

Note1.2.5. Simultaneityisarelativephenomenon.IftwoeventsoccursimultaneouslyinoneRF,ingeneral,theydonotoccursimultaneouslyinotherRFs movingrelativetothefirst.However,thefactthatagivenRFseestwoeventsas simultaneous(ornot)isuniversal.

1.3RELATIVITYOFLENGTH

Beforescrutinizingtheeffectofmotiononlength,youneedtoknowhowto

Howtomeasurethe lengthofanobjectin motion. measurethelengthofanobjectwhenitmoves.Youcouldjumpontheobject anduseatapemeasure.Butthiswouldbethesameasmeasuringthelengthof theobjectwhenit doesnotmove,becausemotionisrelativeandwhenyouare ontheobject,theobjectisnotmovingrelativetoyou.Youmaytrytouseatape measurewhiletheobjectismoving—puttheheadofthetapemeasureatthe frontoftheobjectwhenitreachesyou—butbythetimeyougettotheendof theobject,ithasmovedfromwhereitwaswhenyoustartedthemeasurement. Thisshouldtellyouthat,somehowyoumustputthetwoendsofthetape measure simultaneously atthetwoendsoftheobjectinmotion.Onewaytodo thisistohavetwoeventsoccursimultaneously(accordingtoyou,ofcourse) atthetwoendsoftheobject,andmakesurethatthoseeventsleavepermanent marksinyourreferenceframe.Thedistancebetweenthesetwomarks,which youcanmeasureatyourleisure,isthelengthoftheobject.

Note1.3.1. Forobserver O tobeabletomeasurethelengthofamovingobject, twoeventsatthetwoendsoftheobjectmustoccuratthesametimeaccording to O andmustleavepermanentmarksinthereferenceframeof O .Thedistance betweenthosemarksisthelengthoftheobjectasmeasuredby O .

Let’slookattheeventsof Figure1.3,assumingthatweare repeating theexact sameexperiment.So,therearealready black marksonthegroundfromthe previousexperiment.FromSam’sperspective, A B isthelengthofthetrain. Sonyaisstandinginthemiddleofthetrain,anticipatingtheoccurrenceof B . Sheeventuallyreceivesthesignalfrom B andconcludesthat(afractionofa secondearlier)thefrontendofthetrainmusthavecoincidedwiththeblack markat B .Immediatelyshelooksback,andsincethesignalfrom A hasnot arrivedyet,sheconcludesthattherearendofthetrainhasnotreachedthe markonthegroundyet.She,therefore,concludesthatthe trainislonger than thedistancebetweenthegroundmarks!

ItseemsthatSamandSonyaareindisagreementconcerningthelengthofthe train.Sam’smeasurementofthelengthofthetrainyieldsashorterlengththan Sonya’s.Coulditbethattheircontradictingconclusionsareduetothefactthat Samsawthetwoeventssimultaneously?ThatifSonyaseesthetwoeventsat thesametimetheconclusionswillbereversed?Toseethatthatisnotthecase, let’sconductthe(double)experimentinwhichSonyaseestheexplosionof thefirecrackerssimultaneously,asshownin Figure1.4.Samisstandinginthe middleofthetwomarksontheplatform,anticipatingtheoccurrenceof A . Heeventuallyreceivesthesignalfrom A andconcludesthat(afractionofa secondearlier)therearendofthetrainmusthavecoincidedwiththeblack markat A .Immediatelyhelookstohisright,andsincethesignalfrom B has

FIGURE1.5 Sonyaseesthetwoeventsassimultaneousanddecidesthatthelength AB isthe distancebetweenthetwomarksonthetrain.Samsees A before B anddecidesthatthedistance betweenthemarksisshorterthan AB

notarrivedyet,heconcludesthatthefrontendofthetrainhasnotreachedthe markonthegroundyet.He,therefore,decidesthatthe trainisshorter thanthe distancebetweenthegroundmarks!Itdoesn’tmatterwhoseesthetwoevents atthesametime; thetrainisshorterforSam.

Isthereanythingspecialaboutthetrain?Isitbecauseitismovingandthe platformisnot?Itcan’tbe,becausemotionisrelative.ToSonyaitistheplatformthatismoving,andifrelativityiscorrect,lengthsontheplatformshould appearshortertoSonya.Isthisindeedthecase?Placethefirecrackersonthe platforminsteadofthetrain(leavingmarksonthetrainwhentheyexplode) andletSonyaandSammeasurethedistancebetweenthem(ortheirmarks). Sincetheprecedingdiscussionshaveshownthatthedistancemeasurement (whetheritisshorterorlonger)isindependentofwhoseestheexplosions simultaneously,assumethatSonya,ridingonthetrain,seesthefirecrackers explodesimultaneously.Sam,ontheotherhand,receivesthesignalfrom A beforethatfrom B Figure1.5 explainsthissituation.

Asusual,assumethatanidenticalexperimenthasbeendonebefore,anditis nowbeingrepeated.So,therearealreadyblackmarksonthetrainfromthe previousexplosionsindicatingthedistancebetweenthefirecrackers asmeasuredbySonya.Samisstandinginthemiddleofthetwofirecrackersonthe platform,anticipatingtheoccurrenceof A .Heeventuallyreceivesthesignal from A andconcludesthatafractionofasecondearliertheblackmarkatthe rearendofthetrainmusthavecoincidedwith A .Immediatelyhelookstothe front,andsincethesignalfrom B hasnotarrivedyet,heconcludesthatthe markinfrontofthetrainhasnotreached B yet.He,therefore,decidesthatthe distancebetweenthetwofirecrackersontheplatformislargerthanthemarks

onthetrain.Therefore, Sonyameasuresthedistancebetween A and B tobeless thanwhatSammeasures.

Notethesymmetrybetweenthetwoobservers.Neitherisanymorespecial thantheother.BothareclaimingthatlengthsmeasuredintheirRFarelonger thanthemovinglengths.8 Inotherwords,theybothconcludethat moving Movinglengthsshrink. lengthsshrink.Andtheshrinkageisnotduetosomekindofamechanicalcompressionofthetrainortheplatform(orcars,trucks,planes,ormetersticks). Thetwoendsofastickmerelyindicatetwopointsinspace.Forinstance,these twopointscouldbethelocationsoftwostars.AsseenfromEarth,thesetwo stars,saytheSunandAlphaCentauri,whicharealmostfixedrelativetothe Earth’sRF,9 areseentobeabout4lightyearsawayfromoneanother.Thecrew ofaspaceship,travelingatveryhighspeedtowardAlphaCentauri,seethis distancecontractedbecause,tothem,thelengthbetweentheSunandAlpha Centauriisinmotion.Thus, motionaffectsthespaceitself

Allthecontractionstreatedsofaroccurforlengthsthatarealongthepathof motion.Wouldthesameeffectoccurifthelengthmovedalongapaththat wasperpendiculartoitself?SincethemotionofSonya’strainhashelpedus somuch,I’lluseitonemoretime.Assumethatperpendicularlengthsalso shrinkwheninmotion.10 WhenSonya’strainisstationary,itswheelsreston thetracks,sothatthedistancebetweenthewheelsisequaltothedistance betweenthetracks.Whenthetrainmoves,Sonyaseesthetracksmovingrelativetoher.Sosheconcludesthatthetracksgetclosertogether,andtherefore, thetrainwillfall outside ofthetracks.Sam,ontheotherhand,seesthetrain movingandconcludesthatthedistancebetweenthewheelsmustshrinkand, therefore,thatthetrainmustfall inside ofthetracks.Butderailingofatrainis anactualphysicalprocess(anevent)andthusmustbeindependentofSonya andSam.Theonlysoundconclusionistosaythatneithershrinks.Summarizing,weconcludethat Onlylengthsparallelto motionshrink.

Note1.3.2. Allmovinglengthsparalleltothedirectionofmotionshrink.Lengths perpendiculartothedirectionofmotionarenotaffected.

1.4PROBLEMS

1.1. Arodoflength L emitslightfromallofitspointssimultaneously(inits restframe)whenaremoteswitchisturnedon.Itscenterisonthe x -axisand ismovingontheaxisinaplaneparalleltoaverylargephotographicplateand

8 Rememberthatitis theplatform thatismovingrelativetoSonya!

9 AlthoughtheSunandAlphaCentauriaremovingrelativetoEarth,theirspeedissosmallcomparedto lightspeedthattheirmotioncanbeignored.

10 Itdoesn’tmatterwhethertheyshrinkorexpand.Theconclusionwillbethesame.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.