How to think about abstract algebra 1st edition lara alcock - The ebook with all chapters is availab

Page 1


https://ebookmass.com/product/how-to-think-about-abstractalgebra-1st-edition-lara-alcock/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

What are the Chances of That?: How to Think About Uncertainty 1st Edition

Andrew

C. A. Elliott

https://ebookmass.com/product/what-are-the-chances-of-that-how-tothink-about-uncertainty-1st-edition-andrew-c-a-elliott/

ebookmass.com

Contemporary Abstract Algebra 9th Edition Joseph A. Gallian

https://ebookmass.com/product/contemporary-abstract-algebra-9thedition-joseph-a-gallian/

ebookmass.com

Elementary abstract algebra: examples and applications Hill

https://ebookmass.com/product/elementary-abstract-algebra-examplesand-applications-hill/

ebookmass.com

Essentials

of

Interventional

Cancer

Pain

Management 1st ed. 2019 Edition, (Ebook PDF)

https://ebookmass.com/product/essentials-of-interventional-cancerpain-management-1st-ed-2019-edition-ebook-pdf/

ebookmass.com

Hacked: A SciFi Cyborg Romance (The Krae Chronicles Book 2) Natasha Woods

https://ebookmass.com/product/hacked-a-scifi-cyborg-romance-the-kraechronicles-book-2-natasha-woods/

ebookmass.com

Kanskiu2019s Clinical Ophthalmology E Book: A Systematic Approach 8th Edition, (Ebook PDF)

https://ebookmass.com/product/kanskis-clinical-ophthalmology-e-book-asystematic-approach-8th-edition-ebook-pdf/

ebookmass.com

The Digital Jepson Manual: Vascular Plants of California (Ebook PDF)

https://ebookmass.com/product/the-digital-jepson-manual-vascularplants-of-california-ebook-pdf/

ebookmass.com

Understanding Operating Systems 8th Edition

https://ebookmass.com/product/understanding-operating-systems-8thedition/

ebookmass.com

Practice Makes Perfect: French Conversation, Premium Third Edition Eliane Kurbegov

https://ebookmass.com/product/practice-makes-perfect-frenchconversation-premium-third-edition-eliane-kurbegov/

ebookmass.com

Teaching in Nursing E Book: A Guide for Faculty 5th Edition, (Ebook PDF)

https://ebookmass.com/product/teaching-in-nursing-e-book-a-guide-forfaculty-5th-edition-ebook-pdf/

ebookmass.com

howtothinkabout abstractalgebra

HOWTOTHINKABOUT

ABSTRACTALGEBRA

MathematicsEducationCentre,LoughboroughUniversity

GreatClarendonStreet,Oxford, ox26dp, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©LaraAlcock2021

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2021

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2020946044

ISBN978–0–19–884338–2

PrintedandboundinGreatBritainby ClaysLtd,ElcografS.p.A.

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork

PREFACE

Thisprefaceiswrittenprimarilyformathematicslecturers,butstudentsmight finditinterestingtoo.Itdescribesdifferencesbetweenthisbookandother AbstractAlgebratextsandexplainsthereasonsforthosedifferences.

ThisbookisnotlikeotherAbstractAlgebra1 books.Itisnota textbookcontainingstandardcontent.Rather,itisdesignedas pre-readingorconcurrentreadingforanAbstractAlgebracourse. Idomeanthatitisdesignedfor reading,whichisimportantbecause studentsareoftenunaccustomedtolearningmathematicsfrombooks, andbecauseresearchshowsthatmanydonotreadeffectively.Thisbook isthereforelessdenseandmoreaccessiblethantypicalundergraduate texts.ItcontainsseriousdiscussionsofcentralAbstractAlgebraconcepts,butthesebeginwherethestudentislikelytobe.Theymake linkstoearliermathematics,refutecommonmisconceptions,andexplain howdefinitionsandtheoremscaptureintuitiveideasinmathematically sophisticatedways.ThenarrativethusunfoldsinwhatIhopeisanatural andengagingstyle,whiledevelopingtherigourappropriateforundergraduatestudy.

Becauseofthisaim,thebookisstructureddifferentlyfromothertexts. Part1containsfourchaptersthatdiscussnotthecontentofAbstract Algebrabutitsstructure,explainingwhatitmeanstohaveacoherent mathematicaltheoryandwhatittakestounderstandone.Thereisno ‘preliminaries’chapter;instead,notationsanddefinitionsareintroduced wheretheyarefirstneeded,meaningthattheyarespreadacrossthetext (thoughasymbollistisprovidedonpagesxiii–xiv).Thismeansthata

1 ‘AbstractAlgebra’shouldprobablynothaveupper-case‘A’s,butIwanttomakethe subjectnamedistinctfromotherusesofrelatedterms.

studentreadingforreviewmightneedtousetheindexmorethanusual, sotheindexisextensive.

Aseconddifferenceisthatnotallcontentiscoveredatthesamedepth. ThefivemainchaptersinPart2eachcontainextensivetreatmentoftheir centraldefinition(s),especiallywherestudentsareknowntostruggle. Theyalsodiscussselectedtheoremsandproofs,someofwhichareused tohighlightstrategiesandskillsthatmightbeusefulelsewhere,andsome ofwhichareusedtodrawoutstructuralsimilaritiesandexplaintheory development.Butthesechaptersaimtoprepareastudenttolearnfroma standardAbstractAlgebracourse,ratherthantocoveritsentirecontent.

Athirddifferenceisthattheorderofthecontentisrelativelyunconstrainedbylogicaltheorydevelopment.Theoryisexplicitlydiscussed: Part1providesinformationontherolesofaxioms,definitions,theorems andproofs,andPart2encouragesattentiontologicalargument.But numeroussectionsprovideexamplesbeforeinvitinggeneralization,or introducetechnicaltermsinformallybeforetheyaredefined,orobserve phenomenatobeformalizedlater.Itakethisapproachwithcare,highlightinginformalityandnotingwhereformalversionscanbefound.But IconsideritusefulbecausethecentralideasofearlyAbstractAlgebraare sotightlyinterwoven—reallyIwouldliketointroduceallofthebook’s mainideassimultaneously.Obviouslythatisimpossible,butIdowant tokeepsomepaceinthenarrative,toprioritizeconceptsandimportant relationshipsovertechnicalities.Irealize,ofcourse,thatthisapproach goesagainstthegrainofmathematicalpresentationandmeansthatthisis notabookthatatypicalcoursecould‘follow’.ButIamcontentwiththat— theworldisfullofstandardtextbooksdevelopingtheoryfromthebottom up,andmyaimistoprovideanalternativewithafocusonconceptual understanding.

Finally,thisbookexplicitlydiscusseshowstudentsmightmakesense ofAbstractAlgebraasitispresentedinlecturesandinotherbooks. Irealizethatthis,too,iscontentious:manymathematicslecturersplace highvalueonconstructingideasandarguments,andsomehaveworked hardtodevelopinquiry-basedAbstractAlgebracourses.Iamallfor inquiry-basedcourses,andforanywell-thought-outapproachthatallows studentstoreinventmathematicalideasthroughindependentorcollaborativeproblemsolving.Buttherealityisthatmostmathematicslectures arestilljustthat:lectures.Manylecturersareconstrainedbyclasssizes

wellintothehundreds,andflippedclassroommodelsmightpromote studentengagementbutitisnotobvioushowtousethemeffectivelyto developthetheoryofAbstractAlgebra.Becauseofthis,andbecausefew studentsfolloweverydetailoftheirlectures,animportantstudenttask istomakesenseofwrittenmathematics.Researchshowsthatthetypical studentiscapableofthisbutill-informedregardinghowtogoaboutit. Thisbooktacklesthatproblem—itaimstodeliverstudentswhodonot yetknowmuchAbstractAlgebrabutwhoarereadytolearn.

Abooklikethiswouldbeimpossiblewithoutworkbynumerous researchersinmathematicseducationandpsychology.Inparticular,the self-explanationtraininginChapter3wasdevelopedincollaboration withMarkHoddsandMatthewInglis(seeHodds,Alcock&Inglis,2014) onthebasisofearlierresearchonacademicreadingbyauthorsincluding AinsworthandBurcham(2007),Bielaczyc,Pirolli,andBrown(1995), andChi,deLeeuw,ChiuandLaVancher(1994).Moreinformationon thestudiesweconductedcanbefoundinAlcock,Hodds,RoyandInglis (2015),anarticleinthe NoticesoftheAmericanMathematicalSociety. Thebibliographycontainsextensivereferencestodecades’worthof researchonstudentlearningaboutspecificconceptsinAbstractAlgebra andaboutgeneralproof-basedmathematics.Iencourageinterested readerstoinvestigatefurther.

MyspecificthanksgotoAntEdwards,TimFukawa-Connelly,Kevin Houston,ArtiePrendergast-Smith,AdrianSimpson,KeithWeber,and IroXenidou-Dervou,allofwhomgavevaluablefeedbackonchapter drafts.Similarly,tocarefulreadersRomainLambert,NeilPratt,and SimonGoss,whowerekindenoughtopointouterrors.Iamparticularly indebtedtoColinFoster,whoreadadraftoftheentirebookbeforeits chapterswenttoanyoneelse.Iamalsogratefulasevertotheteam atOxfordUniversityPress,includingDanTaber,KatherineWard, ChandrakalaChandrasekaranandRichardHutchinson.Finally,this bookisdedicatedtoKristianAlcock,whohasneverknownmenottobe writingit.Ithinkhewillbegladandamazedtoseeitinprint.

Part2TopicsinAbstractAlgebra

5BinaryOperations

5.1Whatisabinaryoperation?

5.4Binaryoperationsonfunctions

5.5Matricesandtransformations

5.6Symmetriesandpermutations

5.7Binaryoperationsasfunctions

6GroupsandSubgroups

6.1Whatisagroup?

6.2Whatisasubgroup?

6.3Cyclicgroupsandsubgroups

SYMBOLS

SYMBOLS

INTRODUCTION

ThisshortintroductiondiscussestheplaceofAbstractAlgebraintypical undergraduatedegreeprogrammesandthechallengesitpresents.Itthen explainsthisbook’scontentandintent.

MathematicsstudentstypicallyencounterAbstractAlgebraas oneoftheirfirsttheorems-and-proofscourses.Forthosein UK-likesystems,wherepeoplespecializeearly,itmightbe taughtatthebeginningofamathematicsdegree,orperhapsinthesecond termorsecondyear.ForthoseinUS-likesystems,wherepeoplespecialize late,itwillmorelikelybeanupper-levelcourseformathematicsmajors intheirjuniororsenioryear.Eitherway,acoursemightnotactuallybe called AbstractAlgebra.Thatnameisanumbrellatermforthetheoryof groups,rings,fieldsandrelatedstructures,soafirstcoursemightbetitled GroupTheory or Groups,RingsandFields orsomethingmorebasiclike SetsandGroups.

Whatevertheprecisearrangements,AbstractAlgebraisusuallystudied inparallelwithothersubjectssuchasAnalysis.BothAbstractAlgebraand Analysisinvolveashiftinmathematicalemphasis:studentswhothinkof mathematicsasasetofalgorithmsmustnowlearntofocusondefinitions, theoremsandproofs.Part1ofthisbookprovidesadviceonthat.But thetwosubjectscanfeelquitedifferent,andawarenessofthedifferences mighthelpwithunderstandingtheirrespectivechallenges.

InAnalysis,themainchallengeisthereasoning:thesubjectmakes heavyuseoflogicallycomplexstatements,whichfewstudentsarewell equippedtoprocess.Butitsobjectsarerelativelygraspable:numbers, sequences,seriesandfunctionsarealreadyfamiliarorreadilyrepresentedindiagrams.InAbstractAlgebra,themainchallengeisalmost theopposite.Thelogicismorestraightforward,butmanyoftheobjects arelessfamiliarandlesseasytorepresent.Forstudents,thiscanrender

thesubjectsomewhatmeaningless—eventhosewhodowellmightnot developastrongsenseofwhatitis‘about’.Thatwasmyexperience. Despitehavingaverygoodlecturer,1 IneverreallylikedAbstractAlgebra becauseIneverreally got it.Icouldperformthemanipulations,applythe theorems,andreconstructtheproofs,butIdidn’treallyunderstandwhat itallmeant.

Inowbelievethatthishappenedfortworeasons.Thefirstisgeneral butparticularlyrelevantinAbstractAlgebra:mathematicsishierarchical, witheachlevelbuildingonthelast.Shiftingupaleveloftenrequires compressingsomeaspectofyourunderstandinginordertotothink ofitinrelationtofourorfivenewthings.Ifyouhaven’tcompressed itenough,thisisdifficult,andhigherlevelscanseemlikemeaningless symbol-pushing.AbstractAlgebrainvolvesalotofcompression,andthis bookwillpointoutexplicitlywhereitisneeded.

ThesecondreasonisthatIdidn’taccessgoodrepresentationsfor AbstractAlgebra’skeyideas.Ilikevisualrepresentations—imagesthat enablemeto‘see’howconceptsarerelatedandtodevelopintuitionfor whythingsworkastheydo.Idon’toftengetthatfeelingfromalgebraic arguments,nomatterhowsureIamthateachstepisvalid.AndAbstract Algebradidn’tseemtohavemanyvisualrepresentations,soIdidn’tfind muchtoholdonto.Idon’tblamemylecturerforthis—Ifailedrather badlytokeepup,soIdidn’tfollowhislectureseffectivelyandIprobably missedsomeenlighteningexplanations.Butintuitionforthesubjectcan bedevelopedusingdiagramsandtables,sothisbookcontainsmany ofthose.

ThisbookalsocontainsexplicitdiscussionofwhatAbstractAlgebra is,beginninginChapter1withsectionsonwhatisabstractabout AbstractAlgebra,andwhatisalgebraicaboutit.Theremainderof Part1discussesaxiomsanddefinitionsandtheirrolesinmathematical theory(Chapter2),theoremsandproofsandproductivewaystointeract withthese(Chapter3),andresearch-basedstrategiesforeffective learning(Chapter4).PleasereadChapter4evenifyouareasuccessful

1 IntheUKwesay‘lecturer’wherethoseinUS-likesystemsmightsay‘instructor’ or‘professor’.

student—youmightfindthatyoucantweakyourstrategiestoimprove yourlearningorreduceyourworkloadorboth.2

Part2coverstopicsinAbstractAlgebra,startingwithbinaryoperations (Chapter5)andmovingontogroupsandsubgroups(Chapter6), quotientgroups(Chapter7),isomorphismsandhomomorphisms (Chapter8)andrings(Chapter9).Becausethisisnotastandard textbook,itdoesnottryto‘cover’alloftherelevantcontentforthese topics.Instead,ittreatsthemainideasindepth,usingexamplesand visualrepresentationstoexplainwaystothinkaboutthemaccurately. Eachchapteralsoincludesselectedtheoremsandproofsanddiscusses relationshipsbetweentopics.

BecauseAbstractAlgebraisatightlyinterconnectedtheory,early chaptersoftentouchonideasnotformalizeduntillater.Forthisreason, Irecommendreadingthewholebookinorder,althougheachchapter shouldalsobereadableasaself-containedunit.Ifyougetstuck,rememberthatthereisanextensiveindex,andthatpagesxiii–xivlistwhere symbolsareexplainedinthetext.Ifitispractical,Ialsorecommend readingtheentirebookbeforestartinganAbstractAlgebracourse.I intendtosetyouupwithmeaningfulunderstandingofthemainideasand agoodgraspofhowtolearneffectively,soyouwilllikelygetmaximum benefitbyreadingbeforeyoustart.However,ifyouhavecometothis bookbecauseyourcoursehasbegunandyoufindyourselflostinthe abstractions,itshouldprovideopportunitiestoreworkyourunderstandingsothatyoucanengageeffectively.Eitherway,IhopethatAbstract Algebradeepensyourunderstandingofbothfamiliarmathematicsand higher-leveltheory.

2 Comparedwith HowtoStudyforaMathematicsDegree anditsAmericancounterpart HowtoStudyasaMathematicsMajor,theadviceinChapter4iscondensed, specifictoAbstractAlgebra,andmoreexplicitlylinkedtoresearchonlearning. INTRODUCTION xvii

PART1 StudyingAbstractAlgebra

WhatisAbstractAlgebra?

ThischaptercontrastsAbstractAlgebrawiththealgebrastudiedinearlier mathematics.Ithighlightsthesubject’sfocusonvalidityofalgebraicmanipulationsacrossarangeofstructures.Itthendescribesthreeapproachescommon inAbstractAlgebracourses:aformalapproach,anequation-solvingapproach andageometricapproach.

1.1WhatisabstractaboutAbstractAlgebra?

AbstractAlgebraisabstractinthesamesenseinwhichother humanthinkingisabstract:itsconceptscanbeinstantiatedin multipleways.Forinstance,yourecognizethingsliketreesand windows.Youcandothatbecauseyouunderstandtheabstractideas‘tree’ and‘window’,andyoucanmatchthemtoobjectsintheworld.Youdonot needtolookatonetreetoidentifyanother;youdoitbyreferencetothe abstractidea.

Now,treesandwindowsarephysicalobjects—youcanwalkupand touchthem,andidentifythembysight.Butyoucanthinkaboutconcepts thataremoreabstract,too.Forinstance,youcanidentifyanaunt.You dothatbyreferencetoacriterion:isthisafemalepersonwithasibling whohaschildren?Ifyes,it’sanaunt.Ifno,it’snot.Moreover,youcan thinkaboutabstractconceptsthatarenotsingleobjects,like family. Afamilyincludesmultiplepeople—perhapsmany—whoarerelatedto oneanother—geneticallyorbymarriageorbyothercaringrelationships. Familiesvaryalot,andyoucouldn’tnecessarilyrecognizeafamilyby

sightorbycheckingsimplecriteria.Butyouneverthelessunderstand theidea.

AbstractAlgebraisaboutconceptsthataresomewhatlikeeachof thesemoreabstractideas.Theyarelikeauntsinthattheyaredefinedby criteria.AbstractAlgebraisstricter,though.Everydayhumanconcepts, evendefinedoneslike‘aunt’,tendtobeusedflexibly.Isyourmum’s brother’sfemalepartneryouraunt?Maybe,maybenot.AndwhereIgrew up,adultfemaleneighboursandfriendswerecommonlyreferredtoas ‘Auntie’,evenwheretherewerenofamilyrelationships.Suchflexibility doesn’thappeninAbstractAlgebra,becausemathematicalconceptsare specifiedbyprecisedefinitionsaboutwhichallmathematiciansagree.1

TheconceptsofAbstractAlgebraarelikefamiliesinthatnotallare justsinglethings:somearesetswithparticularinternalrelationships.This meansthattheycanbebigandcomplex,thoughthatdoesnotnecessarily makethemhardtothinkabout.Asingletree,afterall,mighthavetens ofbranchesandthousandsofleaves—ithaslotsofinternalstructure, butyoucantreatitasasinglething.Mathematicalobjectscanbelike thistoo.Forinstance, thesetofallevennumbers isinfiniteandhaslots ofinternalstructure,butagainyoucantreatitasasinglething.Such thinkingisimportantinAbstractAlgebra:oftenitisusefultoswitch betweenexamininganobject’sinternalstructureandthinkingofitasa unifiedwhole.

1.2WhatisalgebraicaboutAbstractAlgebra?

TounderstandwhatisalgebraicaboutAbstractAlgebra,itisprobably usefultoconsiderwhatisalgebraicaboutearlieralgebra.Manystudents thinkofalgebraassomethingyou do,where doingalgebra meansmanipulatinganexpressionorequationinvalidwaystoarriveatanother.Thisis ofteninserviceofagoal:solvingamechanicsproblem,say.Andthinking ofalgebrainthiswayisnotwrong—certainlyitcapturesmoststudents’

1 Moreaccurately,mathematiciansagreeabouttheprinciplethatconceptsshould bedefinedinthisway,andmostundergraduatemathematicsworkslikethis.But, historically,thereweredebatesabouthowbesttodefineeverything,andsuchdebates continueindevelopingsubjects.

4 WHATISABSTRACTALGEBRA?

experiencepriortoundergraduatemathematics.Butitisnotenoughto grasptheaimsofAbstractAlgebra.

AbstractAlgebrafocusesnotonperformingalgebraicmanipulations butonunderstandingthemathematicalstructuresthatmakethose manipulationsvalid.ToseewhatImean,considerthisalgebraicargument (thearrow‘⇒’means‘implies’).

Probablyyoucanwritesuchargumentsquickly,fluentlyandwithonly occasionalerrors.Butwhyexactlyiseachstepvalid?Onestep(which?) assumesthat xy = yx.Thisisvalidbecausemultiplicationis commutative,meaningthat xy and yx alwaystakethesamevalue.Anotherstep (which?)assumesthatif x2 = 0then x = 0.Thisisvalidbecause0isthe onlynumberthat,whensquared,gives0.Butsuchassumptionsrelyon propertiesofoperationsandobjects.Multiplicationiscommutative,but notalloperationssharethisproperty.Divisionisnotcommutative,for instance: x/y couldnotbereplacedby y/x.Andnotallobjectsbehave likenumbers.If x and y were2 × 2matrices,2 wecouldnotassumethat xy = yx becausematrixmultiplicationworkslikethis:

So,forexample, (12 34)(56 78) = ( 5 + 146 + 16 15 + 2818 + 32) = (1922 4350)

2 Thisbookincludesexamplesbasedonmatricesandcomplexnumbers.Ifyou arestudyinginaUK-likesystemandhavenotcomeacrossthese,youcanfind introductionsinA-levelFurtherMathematicstextbooksorreliableonlineresources.

but (56 78)(12 34) = (5 + 1810 + 24 7 + 2414 + 32) = (2334 3146).

Similarly,wecouldnotassumethatif x2 = 0then x = 0.Thematrix (01 00)

isnotthezeromatrix,butnevertheless (01 00)(01 00) = (0 + 00 + 0 0 + 00 + 0) = (00 00).

Algebraicvaliditythereforedependsuponpropertiesofboth binary operations,includingmultiplication,divisionandotherstobediscussed inChapter5,andthe sets onwhichtheseoperate,whichmightbesetsof numbers,matricesorobjectsofothertypes—again,seeChapter5.Binary operationsmightbecommutativeonsomesetsbutnotonothers.Insome setstherearefewwaystocombineobjectstogivezero;inothers,there aremany.Thus,‘facts’thataretrueforoneoperationononesetdonot necessarilyholdelsewhere,andAbstractAlgebrarequiresconcentration toensurethatyoudonotovergeneralizefromafamiliarcontext.Iwon’t lie:thisishard.Whenyouareaccustomedto‘doing’algebrainnumerical contexts,itmightnotrequiremucheffort.Themanipulationsbecome naturalenoughthatyoudothemeasily,muchasyoumightwalkortype easily.Andconcentratingonsomethingthatyoudoeasilyfeelsweirdand disruptive.Ifyouconcentrateonyourmusclesasyouwalk,youbecome slowandungainly.Ifyoucantouch-type,butyouforceyourselftolookat thekeyboardandthinkaboutwhichlettersyouwant,youmightfindthat youcan’ttypeatall.Focusingonwhyalgebraicmanipulationsarevalid canfeelsimilar:slow,clunkyandthereforelikeastepbackwardinyour learningratherthanastepforward.Ittakesdiscipline,andforawhile mightfeelfrustrating.

Buttherewardisworthit.Differencesoccurinthedetail,butat largerscalesAbstractAlgebrarevealsstrikinglysimilarstructures.Sets

andoperationsthatappearquitedifferentturnouttohavenumerous commonproperties.Thissortofthingexcitespuremathematicians.But evenifyou’renotbynatureoneofthose—ifyou’reintomathematicsfor itspracticalapplications—Iencourageyoutobeopentotheideas.There ispleasureinrecognizingstructuresthatcutacrossthesubject.

1.3ApproachestoAbstractAlgebra

ToappreciateAbstractAlgebra,youwillneedtoengageeffectivelywith yourcourse.Andcoursesdiffer.Lecturershaveindividualapproaches, andeventhosewhofollowbookswillemphasizesomethingsandskip overothers.Thatsaid,manyAbstractAlgebracoursesstartwithgroup theory.Somestartwithringsoracombinationofstructuresbut,asthe grouptheorybeginningiscommon,itformsthegreaterpartofthisbook.

Inteachinggrouptheory,therearethreebroadapproaches:a formal approach,an equation-solving approachanda geometric approach.Your coursewilllikelyhavesomethingincommonwithatleastoneofthese, andthisbookwilldrawonallthree.HereIwilldescribeeachinturn, commentingontheiradvantagesanddisadvantages.Thedescriptions arenecessarilycaricatures,buttheygiveaflavourofwhatyoumight encounter.

A formal approachisinonesensethesimplest.Lecturerstakingthis approachtendtobeginwithdefinitions,likethatforgroupshownbelow.3 ThisisexplainedindetailinChapters2,5and6;fornow,youmightlike toknowthatthesymbol‘∈’means‘(which)isanelementof’andisoften readsimplyas‘in’.

Definition: A group isaset G withabinaryoperation ∗ suchthat:

Identity thereexists e ∈ G suchthatforevery g ∈ G,

Inverses forevery g ∈ G, ∃g′ ∈ G suchthat g ∗ g′ = g′ ∗ g = e.

3 Ifyourcourseusesadefinitionthatomitsthe closure criterion,seeSection5.7.

;

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.