è£œè¬æ¥çã®ç ç©¶éçº
Dotmatics ãæŽ»çšãã
AI 察å¿ããŒã¿åºç€ã®æ§ç¯



è£œè¬æ¥çã®ç ç©¶éçº
Dotmatics ãæŽ»çšãã
AI 察å¿ããŒã¿åºç€ã®æ§ç¯
æè¡ãå®éšæ©åšã®é²æ©ã«ãããç ç©¶è ã¯ãããŸã§ã«ãªãèŠæš¡ã§ããŒã¿ ãåéã»åŠçã§ããããã«ãªã£ãã
äŸãã°ãå»è¬åã®éçºããã¹ãã«ãããŠãåæ®µéã§æ°
è¬ã®åè£ããããããã©ãã€ãèŠæš¡ã®ããŒã¿ãçæã ãã ãããã®èšå€§ãªããŒã¿ã»ããã¯éåžžãæå³ã®ã ãã€ã³ãµã€ããå°ãåºãããã«ã¯ããããç¬èªã®é«åºŠ ãªåæææ³ãèšç®ããŒã«ãå¿ èŠãšããŠãããè€æ°ã®æ
è¡ã掻çšããŠåéãããã
ãã®ãããã°ããŒã¿ãã¯å€§ããªå¯èœæ§ãç§ããŠãã
æ¹ã§ãæ°å€ãã®èª²é¡ãæ±ããŠãããç ç©¶è ã¯ããŒã¿ã ç°¡åã«åéãããã®å質ãä¿¡é Œã§ããå¿ èŠãããããŸ
ããæçµçã«ãã®ããŒã¿ã掻çšããã€ã³ãµã€ããåŸãŠ ã€ãããŒã·ã§ã³ãæšé²ããããã«ã¯ãããŒã¿ãå®å šã« ä¿åã»å ±æããæ¹æ³ãå¿ èŠã§ããã
è£œè¬ R&D ã«ãããŠãç ç©¶è ã¯ãŸããŸã人工ç¥èœ ïŒAIïŒãæ©æ¢°åŠç¿ïŒMLïŒã掻çšããŠèšå€§ãªããŒã¿ ã»ãããè§£æããããšããŠãããå®éã倧æè£œè¬äŒç€Ÿ ã®çµå¶å¹¹éšã®ïŒå²ä»¥äžã AI æè¡ã掻çšããŠãããšå ± åããŠããã AI/ML æè¡ã¯èšå€§ãªããŒã¿ãã€ã³ãã è¿ éã«åŠçããããŒã¿å ã«é ããããã¿ãŒã³ãã€ã³ãµ ã€ããç §ããåºã匷åãªæäžé»ç¯ã®ããã«æ©èœããç ç©¶è ããããŸã§èŠããªãã£ããã®ãçºèŠãçè§£ããã ãšãå¯èœã«ããã
äºæž¬åããã³åŠæ¹åã® AI æè¡ã«ã¯ãåŠç¿ããŒã¿ã«äŸ åãããšããæ³šæç¹ããããããŒã¿ã¯å€§éã§ããäž ã«ãä¿¡é Œæ§ããããæ©æ¢°ãå©çšã§ããç¶æ ã§ããå¿ èŠ ããããå€ãã®äŒæ¥ã«ãšã£ãŠãããŒã¿ã®åé¡ã AI å° å ¥ã®æåã劚ããŠããããã®ãããå€§èŠæš¡ãªããŒã¿å éãš AI ã¢ãã«æ¹è¯ã®ãµããŒããã§ããã€ã³ãã©ãå° å ¥ããããšããAI äž»å°ã® R&D ãé²ããæåã®ã¹ãã ãã§ãããããã¯äŒæ¥ãåŸæ¥ãšã¯ç°ãªãæ¹æ³ã§ããŒã¿ ã管çããå¿ èŠãããããšãæå³ãããããå€ãã®å Ž åã倧ããªé害ãšãªãã
倿§ãªããŒã ãç¹ã«ç°ãªãæè¡ãç°è³ªãªããŒã¿ãæ±ã ããŒã å šäœã§ãé«å質ã§é©åã«ã©ãã«ä»ãããã AI 察å¿ããŒã¿ãåéã»ç®¡çããããã«ã¯ãæ¡åŒµæ§ãã ããæè»ã§ããªãŒãã³ãª R&D ããŒã¿ãã©ãããã©ãŒã ãå¿ èŠãšãªãã
æ¬æžã§ã¯ãè£œè¬æ¥çã«ãããæè¿ã® AI ãã¬ã³ããæ€ èšããäŒæ¥ãèªç€Ÿã® R&D ããŒã¿ã AI 察å¿ã«ãããã ã®æé©ãªæºåæ¹æ³ãæ¢ãã
è£œè¬æ¥çã¯ãããè¯ãæ²»çæ³ãè¿ éãªéçºãã³ã¹ãåæžãªã©ã倧ããªåž æãæã£ãŠ AI ã«è³ããŠãããããããã詳ããèŠãŠãããã
ããè¯ãæ²»çæ³
äŒæ¥ã¯ AI ãæŽ»çšããŠçç©åŠãååŠã®ææ³ãæ¹åãã æåçãé«ããããå®äŸ¡ã§è¿ éãªçºèŠããã»ã¹ãå®çŸ ããŠãããAI ãæŽ»çšããããšã§ãç ç©¶è ã¯ãããŸã§ ã«ãªãéåºŠã§æ°ååã®ããŒã¿ãã€ã³ããåŠçãã ããŒã¿éã®æ°ããé¢é£æ§ãé ãããã¿ãŒã³ãçºèŠãã ããã®é«åºŠãªã¢ã«ãŽãªãºã ãå©çšã§ãããäŸãã°ãå æã®çºèŠæ®µéã§ã¯ãç ç©¶è ã AI ãæŽ»çšããŠæ°ããå åç©ãã¿ãŒã²ãããããè¿ éã«ç¹å®ãåªå é äœãä»ã ãããšãè¬ã®æå¹æ§ãå¯äœçšã®äºæž¬ãæ¢åã®æ²»çæ³ã« æ°ããªçšéãèŠã€ããããšãªã©ãã§ãããåŸã®éçºæ®µ éã§ã¯ãAI ãçšããŠãéçºäžã®æ²»çæ³ãæ¯ãããã ã«å¿ èŠãªèšå€§ãªææžãããŒã¿ã®ç®¡çããŸããåå¥å å»çã®ããã®æ£è ãšæ²»çã®é©åæ§ã®è©äŸ¡ãè¡ãããã ãšãèããããã
è¿ éãªéçº
AI 㯠R&D ããã»ã¹ãæ¹åããå éãããããšãã§ ãããMIT Technology Review ã«ãããšããæ°è¬ã ãŒãããéçºããéã®åºæ¬çãªã¹ãããã¯ããŸãå€ ãã£ãŠããªãããšãããäŸãã°ãäœååå»è¬åã®èšèš ã«ãããŠãç ç©¶è ã¯äŸç¶ãšããŠã¿ãŒã²ããã®ç¹å®ãšæ€ èšŒããªãŒãã®çºèŠãšæé©åãè¬ã®éçºãªã©ã®ã¹ãã ããé²ããªããã°ãªããªããAI ã¯ãããã®ã¹ããã ãæé€ããã®ã§ã¯ãªããéå¹çæ§ãæ¹åããç ç©¶è ãé·å¹Žäœ¿çšããŠããèšç®ããŒã«ãããããã«å¹çãå äžãããããšãã§ãããMIT ã®ã¬ãã¥ãŒã«ããã°ãAI éçºè ã¯ãåµè¬ã¯ãŒã¯ãããŒã«ãããäžã€ã®äž»èŠãª 倱æãã€ã³ããããªãã¡ã¿ãŒã²ããéžå®ãååç©èš èšããããŠæ£è å¥ãããã¡ã€ãªã³ã°ã«çŠç¹ãåœãŠãŠã ãã3
èšå€§ãªéã®è¬å€ãååããŒã¿ã掻çšããŠè€é㪠AI ã¢
ãã«ãæ§ç¯ããããšã§ãç ç©¶è ã¯åæçºèŠæ®µéã®äœæ¥ ãå®éšå®€ããã³ã³ãã¥ãŒã¿ã«ç§»ããæåã®å¯èœæ§ãæ ãé«ãåè£ã«ãçµã蟌ãããšãã§ãããããæšå®ã«ã ãã°ãAI ãæŽ»çšããããšã§ãéåžž4ïœ5幎ãããæ¢çŽ¢ ç ç©¶ãã§ãŒãºã1å¹Žæªæºã«ççž®ã§ãããšããã55-6
åžå Žæå ¥ãŸã§ã®è¬ã®çµ±èš
åŸæ¥ãã©ãã€ã ã®æšå®å€
è²»çšïŒ26å 67åãã«
æéïŒ10å¹Žæªæº é«ã倱æç
è²»çšïŒ20 40%ã ãŸãã¯ãã以äžã®åæž
æéïŒæ°å¹Žåççž® 倱æçã®äœæž
AI ã«ããã³ã¹ãåæžã¯å€§ããããã®ç¯çŽã¯ããå€ãã® æ²»çéžæè¢ã«ã€ãªããå¯èœæ§ããããInsider Intelligence ã¯ãã³ã¹ãåæžã70%ã«éããå¯èœæ§ã ãããšäºæž¬ããŠããã倧ããªèŠè¿ããæåŸ ãããŠã ãã7 Morgan Stanley ã®ã¢ããªã¹ãã«ãããšãåèšåº éçºã«ããã20ïœ40%ã®ã³ã¹ãåæžã¯ã4ïœ8çš®é¡ã® æ°èŠååã®éçºãæåãããããã®è³éæºã«ãªããšèŠ ç©ãã£ãŠããã8 圌ãã¯ã10幎éã§ãAI ã ML ã®æŽ»çš ã«ãããåææ®µéã®è¬ç©éçºã®æåçãããããã«æ¹ åãããããšã§ã50以äžã®æ°èŠæ²»çæ³ãš500åãã«ä»¥ äžã®æ©äŒãçãŸããããšä¿¡ããŠããã
è£œè¬æ¥çã«ããã AI ã®åœ±é¿æ¡å€§ã®èšŒ
AI ãžã®çå®ãªæè³ã¯ãæ¢ã«åžå Žã«åœ±é¿ãäžããŠããïŒ AI ãã¡ãŒã¹ãã®ã¢ãããŒããæ¡çšã
ããã€ãªãã¯ãããžãŒäŒæ¥ã¯ ã150 以äžã®äœååè¬ç©ãçºèŠãã15ä»¥äž ãèšåºè©Šéšã«å ¥ã£ãŠããã6
ç±³åœé£åå»è¬åå±ïŒFDAïŒã¯ ãAI/ML ãæŽ»çšããäœååå»
è¬åããã€ãªå»è¬åã®ç³è«ãæ¥å¢ããŠããã2021幎ã ãã§ 100件以äžã®ç³è«ããã£ããšå ±åããŠããã11
ååçãªåãçµã¿ã AI ã«åºã¥ãã€ãããŒã·ã§ã³ãä¿é²ããŠãããåŸæ¥ã¯å°èŠæš¡ã§å€ç«ããç¬èªããŒã¿ ãä¿è·ããŠããç§åŠã³ãã¥ããã£ããçŸåšã§ã¯ååããŠã€ã³ãµã€ããå ±æããããŒã¿ãå®å šã«æŽ»çšã㊠ã¢ãã«ã®æ¹åãå³ã£ãŠãããäŸïŒ
AlphaFold ãšã¯ãå ¬éãããŠããã¿ã³ãã¯è³ªæ§é ã㌠ã¿ãçšããŠãæ°å幎ã«ããã課é¡ã§ããã¿ã³ãã¯è³ªã® ãã©ãŒã«ãã£ã³ã°äºæž¬ã解決ãããã¥ãŒã©ã«ããã ã¯ãŒã¯ããã°ã©ã ã§ãããããã¯ãã¿ã³ãã¯è³ªã®æ©èœ ãçŸç ã¡ã«ããºã ã®çè§£ãæ°è¬ã®èšèšãåæã¿ã³ã㯠質ã®éçºãæšé²ããã®ã«åœ¹ç«ã€ã12,13
DeepTracer-Refine ãšã¯ãAlphaFold ã®äºæž¬ãæ¹å ãããã¡ã€ã³éã®ãã©ãŒã«ãã£ã³ã°é åã®åé¡ãå æ ããèªååãããæ¹è¯ããŒã«ã§ããã14
AI 驿°è ã¯ææãåºãå§ããŠãããäŸïŒ
Exscientia ã¯ãAI ãæŽ»çšããŠè¿ éã«è¬ãèšåºè©Šéšã« æã¡èŸŒãã æåã®äŒæ¥ã®äžã€ã§ããããã®æåã«ã ãããµããã£ã®ãããªå€§æè£œè¬äŒç€Ÿã AI 驿°è ãšã® ããŒãããŒã·ããããŸããŸãé²ããŠããã17-19
AbSci Corporation ã¯ã2023幎åãã«ãAI ã䜿çšã ãŠæ€èšŒããããã»ããŽã©æäœã®éçºã«æåãããšçºè¡š ãããå瀟ã¯ãããã«ããæ°ããæ²»çæ³ãèšåºã«å°é ãããŸã§ã®æéã6幎ãã18 24ã¶æã«ççž®ã§ããå¯ èœæ§ããããšäºæž¬ããŠããã3 ,22
MELLODDYïŒMachine Learning Ledger Orchestration for Drug DiscoveryïŒãšã¯ãçååŠçãŸãã¯çŽ°èæŽ»æ§ã ç¥ãããŠããäœååã®äžçæå€§ã®ã³ã¬ã¯ã·ã§ã³ãæŽ»çš ããããæ£ç¢ºãªäºæž¬ã¢ãã«ãå¯èœã«ããåµè¬ã®å¹çãå äžãããã15 å ·äœçã«ã¯ã補è¬äŒç€Ÿ10瀟ã®åæ£ããã ããŒã¿ã«å¯ŸããŠãç¬èªæ å ±ãå ¬éããããšãªããäºæž¬æ© 械åŠç¿ã¢ãã«ã匷åãããããžã§ã¯ãã§ããã
FDA ã¯ãæ°ãã AI ããŒã¹ã®å®å šè©äŸ¡ããŒã«ãå°å ¥ãã çç©åŠçé¡äŒŒæ§ã蚌æããããã«æŽ»çšããŠããã16
Insilico Medicine ã¯ã2023幎6æã«ãããæ²»çè¬
ISM3091 ã第1çžè©Šéšã®æ¿èªãåããæ ¢æ§èºçŸæ£æ²»çè¬
INS018_055 ãç¹çºæ§èºç·ç¶çæ£è ã察象ãšãã第2çžè©Š éšã«å ¥ã£ãããšã§å€§ããªè©±é¡ãåŒãã ã20, 21
INS018_055 ã®çºèŠããã»ã¹ãç¹ã«AI ããŒã¹ã®ã¿ãŒã²ãã çºèŠãš AI äž»å°ã®èšèšã¯ã2020幎ã«éå§ãããã20,21
æè¡ãå®éšæ©åšã®é²æ©ã«ãããç ç©¶è ã¯ãããŸã§ã«ãªãèŠæš¡ã§ããŒã¿ ãåéã»åŠçã§ããããã«ãªã£ãŠããã
å€ãã®å°éå®¶ã«ãšã£ãŠãè£œè¬ R&D ã«ããã AI ã«é¢ã
ã話é¡ã®å€ãããäºæž¬ã¢ããªã³ã°ãåæãªã©ãæ¢ã«éŠŽ
æã¿ã®ããæŠå¿µã«çŠç¹ãåœãŠãŠããããã«æãããã
ãããããªããé·å¹Žã«ããããç ç©¶è ã¯å®éšãè£å®ã
ãããã«ãä»®æ³ã¹ã¯ãª ãã³ã°ãã¢ããªã³ã°ãšã·ãã¥
㬠ã·ã§ã³ãç©æ§èšç®ãªã©ã®ã€ã³ã·ãªã³èšèšæŠç¥ãå©
çšããŠããããããã®æççãªæŠç¥ã¯ééããªãæç
ã§ããããå šäœçãªåµè¬ããã»ã¹ãé©åœçã«å€ããã
ãšã¯ã§ããªãã£ãããã®ç¹ãçæ AI ã¯ãã倧ããªå€
åãžã®æåŸ ãçãã§ããã
äºæž¬ã¢ãã«ãããŒã¿ã®åŠçã»äºæž¬ãè¡ãã®ãšã¯ç°ãª
ããçæ AI ã¯æ¢åããŒã¿ã䜿çšããæ°ããããã¹ ããã³ ããå³ãããã«ã¯æ°è¬ã®èšèšãªã©ãå®éã«ç
æããã23-25 ChatGPT ã®ãããªå€§èŠæš¡èšèªã¢ãã«
ïŒLLMïŒãå€ãã®æ³šç®ãéããŠããããçæã¢ãã«ã«
ã¯ä»ã«ãå€ãã®çš®é¡ããããã㥠ã©ã«ããã㯠ã¯
ïŒäŸïŒçæãã°ã©ãããªã«ã¬ã³ãïŒããä»ã®æ©æ¢°åŠç¿
ãæ·±å±€åŠç¿ã¢ã«ãŽãªãºã ïŒäŸïŒã©ã³ãã ãã©ã¬ã¹ãã
ãµã ããã¯ã¿ãŒãã·ã³ãå€å㪠ããšã³ã³ ããŒã
匷ååŠç¿ã転移åŠç¿ïŒãªã©ãå«ãŸããŠããã24,27
å ã®äŸã§ç޹ä»ããäŒæ¥ã®å€ãã¯ãçæ AI æè¡ãããŒ
ã¿åæãã¢ããªã³ã°ãšã·ãã¥ã¬ ã·ã§ã³ãã¹ ã ã³
ã³ã㥠ãã£ã³ã°ãšçµã¿åãããé«åºŠãª AI äž»å°ã®åµ è¬ãã©ãããã© ã ãå°å ¥ããŠããã23-26 å®éãçæ
AI ã¯æ¥çãæ¥éã«åžå·»ããŠããã2023幎ã«ã¯åžå ŽèŠ æš¡ã1å6,000äžãã«ãè¶ ãããšäºæž¬ãããŠããã26
çæ AI ã¯ãæ¢åç¥èãå®ç§ã«é©çšããã€ãã ã·ã§ ã³ãå éãããããã®æ¬¡ã®ã¹ãããã§ãããäŒæ¥ã¯ã
ããæ§ã ãªæ¹æ³ã§å¿çšããéå¹çã§å埩ãå€ã R&D
ããã»ã¹ãããã«å¹çåããŠãã
ãã®ä»£è¡šçãªäŸããã»ããŽã©è¬å€èšèšã§ãããçæ
AI ã¯ãŸããäœååååç©ãæ²»ççšã¿ã³ãã¯è³ªé åãªã© ã®æ¢åã®æ§é ããŒã¿ãçšããŠãææãªæ°èŠæ§é ãèšèš
ããïŒããŒã¿ã ã¹ã«æ¢ã«ååšããæ§é ãè©äŸ¡ããã
ãã§ã¯ãªãïŒãAI ã¯ãããã®åè£ã«ã€ããŠãçç©æŽ»
æ§ãæœåšçãªå¯äœçšãããã³çžäºäœçšãšãã£ãéèŠãª ç¹æ§ãè©äŸ¡ããåµè¬ã§äžè¬çãªã³ã¹ãã®ããã詊è¡é¯
èª€ãæžããããšãã§ããã23,28
çæ AI ã®å¯èœæ§ã¯ç¡éã«åºãã£ãŠããããã«èŠã ããçŸæ£çµè·¯ã®ãããã³ã°ãæœåšçãªçŸæ£ã¿ãŒã²ãã ã®ææ¡ãã¢ãã ã·ã§ã³ãªã©ã®ã¿ã¹ã¯ãèªååãã ã³ ãã®çæãè«æéã®èŠçŽãææžãã¬ã ãã®ç
æãèšåºè©Šéšçµæã®äºæž¬ãªã©ãå€å²ã«ãããçšéã§å© çšãããŠããã23-25 ããããçæ AI ã¯é©ç°çãªå¯èœ æ§ãç§ããŠãããã®ã®ãäžèœè¬ã§ã¯ãªããæ¬¡ã®ã»ã¯ ã·ã§ã³ã§èª¬æããããã«ãçæ AI ã¯å€§éã®é«å質ãª
åŠç¿ããŒã¿ãä¿¡é Œã§ããã¢ãã«ããããŠåºåãè§£éã» å¿çšã§ããããŒã¿ãµã€ãšã³ã¹ã®å°éå®¶ã«äŸåããŠãã ã®ã§ããã
ãããã® AI ã®é²æ©ã¯ãæ ¹ æ¬çãªå€åãé²è¡äžã§ãã ããšã瀺ããŠããã
å®éãå°éå®¶ã¯ä»åŸæ°å¹Žéã§è£œè¬æ¥çã«å€§ããªå€é©ãèµ·ãã ãšäºæž¬ããŠããã3,22 IDC ã¯ã2026幎ãŸã§ã«ã補è¬äŒç€Ÿã«ãã ãŠãåŸæ¥ã®æ©æãã³ãããŒã¹ç ç©¶ã«ä»£ããããã€ã³ã·ãªã³ã ãã¡ãŒã¹ãæŠç¥ãäž»æµã«ãªããšäºæž¬ããŠããã9-10
ããã»ã©è¿ éãªé²å±ãèŠãããäž»ãªçç±ã®äžã€ã¯ãèªååãšæè¡ã®é²æ©ã«ãããAI 㢠ãã«ã®æ§ç¯ã容æã«ãªããå©çšå¯èœãªåŠç¿ã ã¿ïŒäŸïŒååŠã ã¿ãååã ã¿ãå® éšã ã¿ãã²ãã ã ã¿ãå¥åº·èšé²ã ã¿ãç§åŠè«æãªã©ïŒãè±å¯ã«çæãããŠãã ããã§ããã
AI ãæ¥çã®ããããåŽé¢ã«åœ±é¿ãåãŒãããã«ãªãããšã§ãçŸç¶ã¯ç¢ºå®ã«å€ããã ã ããåæçºèŠæ®µéã®ç ç©¶è ãã©ã®ããã«ããŠã¿ãŒã²ãããçºèŠããæ²»çæ³ãéçºãã ããèŠå¶åœå±ãã©ã®ããã«æ¿èªããããæäŸè ãæ£è ãã©ã®ããã«æ²»çããããšã㣠ãç¹ãŸã§ãå šãŠãå€ããããã®å€åã«åããããšãæåãžã®éµãšãªãã ããã
è£œè¬ R&D
ã人工ç¥èœïŒAIïŒã𿩿¢°åŠç¿ïŒMLïŒã¯ããã¯ãæªæ¥ã®æŠå¿µã§ã¯ãª ããç§ãã¡ãçããŠåãæ¹æ³ã®äžéšãšãªã£ãŠãã...ã
AI/ML ã®ããŒã¿éãšè€éãã®æ¡å€§ã«æå 端ã®èšç®èœåãšæ¹æ³è«ã®é²æ© ãå ããããšã§ãã¹ããŒã¯ãã«ããŒãæ²»çæ³ãéçºã補é ã䜿çšãè© äŸ¡ããæ¹æ³ãå€é©ããå¯èœæ§ãããã
æçµçã«ãAI/ML ã¯ãå®å šã§å¹æçãã€é«åè³ªãªæ²»çæ³ãããæ©ãæ£ è ã«å±ããã®ã«åœ¹ç«ã€ã ãããã
ãããªãã£ã¢ã»ã«ãŽã¡ããã©ãŒãå»åŠå士ïŒFDA å»è¬åè©äŸ¡ç ç©¶ã»ã³ã¿ãŒé·ïŒ11
è£œè¬æ¥çã«ãããåæã® AI 掻çšã¯äž»ã«äœååã®éçºã«éäžããŠãããäœååã¯ããã€ãªå»è¬
åã«æ¯ã¹ãŠæ¯èŒçåçŽã§ãããäœå幎ã«ããããããŒã¿ã AI ã¢ãã«æ§ç¯ã®åºç€ãšãªãããã
AI ã«é©ããŠããã17,29-30
ããã§ããååãªåŠç¿ããŒã¿ã®æç¡ã AI ã¢ãã«ã®è€éãã«ãããåæã®äœååå»è¬åã«ãã
ã AI å°å ¥ã®ããããã«ã¯å€§ããªã°ãã€ãããã£ããäŸãã°ãæ©æã¹ã¯ãª ãã³ã°ãç©æ§äºæž¬ ã¯æ¯èŒçå®è£ ããããã£ãããã¿ãŒã²ããã®äºæž¬ãæ¯æ§è©äŸ¡ã¯é£ããã£ãã31-32 çç©åŠç ç©¶ã«ããã AI ã®å¿çšã¯æ¥éã«é²å±ããŠããããã€ãªå»è¬åã® R&D ã ã ã¯ãçŸæ£ ãã¿ãŒã²ããã®çè§£ããšã³ãã£ãã£ã®èšèšãæé©åã®ããã«ããŸããŸã AI ã«äŸåããããã« ãªã£ãŠããŠããã33 2022å¹Žæ«æç¹ã§ã50ïœ60ã® AI 察å¿ãã€ãªå»è¬åãæ§ã ãªéçºæ®µéã«ã ãã33
è£œè¬ R&D ã«ããã AI ã®äž»ãªæ©äŒ
AI ãè£œè¬æ¥çã« çããä»ãäŒæ¥ã¯ R&D ã®æ§ã ãªåéã§ããã å¿çšãå§ããŠããïŒè¡š1ïŒã
AI ãæŽ»çšããããšã§ã補åã©ã€ããµã€ã¯ã«å šäœã«ãããããŒã ã¯ãããŒã¿ã«åºã¥ããè¿ éãªææ
決 ãè¡ãããªãœãŒã¹ãäºç®ãå°éç¥èãæã广çã«æŽ»çšã§ããå Žæã«é åããããšãå¯èœã« ãªãã
衚1ïŒ
è£œè¬æ¥çã§ AI ãå¿çšã§ããäž»ãªåé 5, 17, 33-39
åŸæ¥ãã©ãã€ã ã®æšå®
ã¿ãŒã²ããã®ç¹å®ãéžæãããã³åªå é äœä»ã
çŸ è·¯ã®ããã
æ°èŠã¿ãŒã²ããã®ç¹
3D ã¿ ãã¯è³ªã®æ§é äº
ãšãã㌠éž
ããŒã¿ã«åºã¥ããã¿ãŒã²ããéž ïŒãã«ããªãã¯
ã¹ããã§ãã¿ã€
SARïŒæ§é 掻æ§çžé¢ïŒäºãšè¡šçŸãè«æãç¹èš±ãª
å»è¬åã¿ãŒã²ããã¢ã㪠ã°ãšååã·ãã¥ã¬ãŒ ã·ã§
çµåéšäœä¿®é£Ÿã®åæ
ã¹ã¯ãªãŒãã³ã°ããã¶ã€ã³ãæé©åãããã³åªå é äœ ä»ã
é«åºŠãª åç©ã¹ã¯ãªãŒã ã°ïŒäŸ ãã¥ã¢ã«ãã€
ã㣠㰠åç© çŽ¢ ãã€ãªå»è¬åã¬ããŒããªãŒã®æé© åŠç¹æ§äº
çç©æŽ»æ§äº
ãªãã¿ãŒã²ãã广äº
ADMET/T x ãš PK/PDã®äº
å ç«åæ§ãšãã ã®äº
ç©ç åŠçç¹æ§äºæž¬ïŒäŸ 溶解æ§ãåéæ§
åè£ã®åªå é äœ
æé©ãªåæ è·¯éž ãã©ãã°ã»ãª ãžã·ã§ã ã°å
ãã»ããŽã©ã»ãã¶ã€
ç¹èš±ç¢ºèª
AI 掻çšã«ããè£œè¬æ¥çã®ç ç©¶éçº 10
éçº
çµæ¶æ§é äº
å® æ§ãšä¿åæéã®ã¢ããª
ãã€ãªå»è¬åã®éçºå¯èœæ§è©äŸ¡ïŒäŸ ç²åºŠãå
éãåè§£ïŒ
æ²»éšç®¡ç
ããŒã¿ã«åºã¥ããæ²» ãã¶ã€
ãš ã 〠ãè©
è ã®åéãšéž ã»å±€å¥
æäžé ã¢ããã¢ã©ã®æé©ã¹ïŒ
æ²»çé å®ïŒã¢ãã¿ãª ããŒã¿ã®åéã管çãåæ
åžè²©åŸã®ç£èŠ
ã±ãŒã¹åŠçãè©äŸ¡ãæåº 補
ã ã¹èšèšãšã¹ã±ãŒã«ã¢ã
é«åºŠãª ã ã¹å¶ ã ã¹ã®ã¢ãã¿ãª ã°ãšå»çäºæ ã®
è³ç£ãšãµ ã©ã€ãã§ãŒ ã®ç®¡ ã㬠ãã¢ãã¿ãª ã°ïŒäŸ
èŠæ åŠçãéšé
åïŒ
è£œè¬ R&D ã«ããã
æŠç¥ãæè¡ãå°éç¥è ããŒã¿ã«ãããèª²é¡ AI ã¢ãã«ã«é¢ããæžå¿µ
AI ãæ¢åã® R&D ã¯ãŒã¯ãããŒã«çµ±åããããšããäŒæ¥ã¯ãèªç€Ÿ ã§è¡ãã«ãããããŒãããŒã®å©ããåããã«ãããAI ãã©ãã§ã
ãªããã©ã®ããã«äœ¿çšããã®ãã«ã€ããŠæç¢ºãªããžã§ã³ãæã€å¿ èŠãããã
ããã€ãã«ãããšãæã䟡å€ã®ããããžãã¹ã± ã¹ã
ç¹å®ããããšããäŒæ¥ã® AI ã€ãã·ã¢ããã«åœ±é¿ãäž
ããæå€§ã®èª²é¡ã§ããïŒæ¬¡ã«ã ã¿ã«é¢ãã課é¡ãã
AI ãäžæãçµç¹ã«çµ±åããããšãç¶ãïŒã ãããã
R&D å šäœã§ AI ãæãã圹å²ã倧ãããªãããšã§æŠ
ç¥çèšç»ã¯è€éã«ãªãã倧ããªéå£ãšãªããå°éå®¶ã® äžã«ã¯ãç°ãªãããã°ã©ã ãæ¢çŽ¢ã¹ããŒãžã®ãã¡å
ã ã¹çšåºŠã®å ·äœçãªãŠ ã¹ã± ã¹ã«çŠç¹ãåœãŠãã
ãšãå§ããè ãããã ãŸããåªå é äœã決ãŸããèš
ç»ãåãåºããšãAI ã¢ãã«ã®åŠç¿ã«æéãèŠããã
ãããªã¿ãŒã³ãåŸããããŸã§ã«äºæ³ä»¥äžã«æéããã
ãããšãå€ããå¿èåãéèŠã«ãªãã
æè¡çãªèª²é¡ã¯ãè£œè¬æ¥çã§ AI ãæŽ»çšããéã®ãã
ã€ã®éèŠãªèª²é¡ã§ãããAI ã®é©æ°ã¯ãäŒæ¥ãåŸæ¥
ãšã¯ç°ãªãæ¹æ³ã§ã ã¿ãã¯ãŒã¯ãããŒã管çããã
ãšãæ±ããããšãå€ããæ¢åã®ã¬ã¬ã·ãŒæè¡ã€ã³ãã© ã§ã¯ãAI ãæŽ»çšããããã«å¿ èŠãªçµ±åã®ã¬ãã«ãã ã¿ã®æµåæ§ã«å¯Ÿå¿ã§ããªãããšãå€ãã41 å®éããã ã€ãã®èª¿æ»ã«ãããšããã€ãªè£œè¬ããã³å»çæè¡äŒæ¥ ã®çŽ30%ããã ã¿ã®è³ªããµã€ãåãããã ã¿ã·ã¹ ãã ãã¬ã¬ã· ã·ã¹ãã ã®çµ±åãªã©ã®åé¡ã AI ã€ã ã·ã¢ããã«æªåœ±é¿ãäžããŠãããšè¿°ã¹ãŠããã
AI ã®å°å ¥ã«ãããããäžã€ã®éèŠãªèª²é¡ã¯ãã¹ãã«ã® ã®ã£ããã§ãããé·ããæ ç»ã®äžã§èŠãç ç©¶è ã¯ãçœ è¡£ãçã幎é ã®äººç©ãèå è²ã®æ¶²äœã䞊ã¹ãããå®éš å°ã«åãã£ãŠããå§¿ãšããŠæãããŠããããä»ã®çŸå® ã¯å šãç°ãªããããŒã¿ãµã€ãšã³ã¹ã¯ç§åŠããŒã¿ãšåã ãããéèŠã§ãããäŒæ¥ããã®äºã€ã®äžçãã©ãã ã æ©æž¡ãã§ãããããAI ã€ãã·ã¢ããã®æåã«å€§ãã 圱é¿ãããããããå€ãã®äŒæ¥ããè£œè¬æ¥çã®å°éç¥ èãšåªãã
AI ã¹ãã«ãæã€äººæãèŠã€ããã®ãäŸç¶ ãšããŠé£ãããšå ±åããŠããã40
ããŒã¿ããªããã° AI ã¯ååšããªããAI ã¢ãã«ã¯å®äžçã®ããŒã¿ ãåºã«æ§ç¯ããããã®ããŒã¿ã¯è±å¯ã§è³ªãé«ããæ©æ¢°ãããã«å© çšå¯èœãªç¶æ ã§ããããšãå¿ èŠã§ããã
å»è¬åçºèŠã®éçšã« AI ãå°å ¥ããéã«ã¯ãããŒã¿ã® ãã€ã¢ã¹ãæŽåæ§ããã©ã€ãã·ãŒãšã»ãã¥ãªãã£ãåº æãé¢é£æ§ãåçŸæ§ãåå©çšå¯èœæ§ã代衚æ§ã«é¢ãã åé¡ãæãéèŠãªèª²é¡ã§ããã35 AI ãæŽ»çšãããäŒ æ¥ã¯ãé©åãªããŒã¿ç®¡çããã»ã¹ã確ç«ããªããã°ãª ããªãããªããªãã以äžã«è¿°ã¹ãããã«ãAI ã¯åå㪠éã®æ©æ¢°å©çšå¯èœããŒã¿ã«äŸåããããã§ããã
ååãªããŒã¿ïŒAI ã«ã¯è¯è³ªã§å€§éã®ããŒã¿ãå¿ èŠã§ ãããå°éå®¶ã®äžã«ã¯ãæ©æ¢°åŠç¿ã¢ãã«ãä¿¡é Œæ§ã®ã ããã®ã«ããããã«ã¯ãçŽ2ïœ3幎åã®éå»ã®åŠç¿ã㌠ã¿ãå¿ èŠã§ãããšèããè ãããã42 ããããè¯è³ªãª ããŒã¿ãå ¥æããããšã¯é£ããå Žåããããå ¬éã㌠ã¿ã¯äžååã§ããããšãå€ããäŒæ¥ã¯èªç€Ÿã®å®éšã㌠ã¿ãå°éç¥èã«äŸåããããåŸãªããç¹ã«ãå䜵ãè²· åãçµãŠæé·ããããŒã¿ãã·ã¹ãã ãçµ±åããŠã㪠ãã£ãäŒæ¥ã«ãšã£ãŠãããã¯éåžžã«å°é£ã§ãããAI ã æŽ»çšãããäŒæ¥ã¯ããŸãããã¹ã®ãªãããŒã¿ååŸã容 æã«ãããã€ç°ãªãããŒã ãããŒãããŒã«ãã£ãŠçæ ããã倧éã§å€æ§ãªããŒã¿ãåŠçã§ããããŒã¿ç®¡ç ããŒã«ãšã¯ãŒã¯ãããŒããã»ã¹ãå°å ¥ããå¿ èŠãã ãã
æ©æ¢°å©çšå¯èœãªããŒã¿ïŒåŠç¿ããŒã¿ãšããŠãããã㯠AI ã¢ãã«å ã§äœ¿çšãããããã«åéãããå®éšããŒã¿ ã¯ãæ©æ¢°ãããã«å©çšå¯èœãªç¶æ ã§ããå¿ èŠãããã
äŒæ¥ã¯ãé©åãªããŒã¿ã©ããªã³ã°ãã¢ãããŒã·ã§ã³ ãåªå ããããã»ã¹ãæšé²ããããŒã¿ã«ã¢ã¯ã»ã¹å¯èœ ã§çžäºéçšå¯èœãªã€ã³ãã©ãå°å ¥ããªããã°ãªã㪠ããæ©æ¢°å¯Ÿå¿ã«å ããŠãããŒã¿ã¯ä¿¡é Œæ§ãé«ããä¿¡çš ã§ãããã®ã§ãªããã°ãªããªããå®éš R&D ã®ã¯ãŒã¯ ãããŒã«ã¯ãååŸãããããŒã¿ã®æ£ç¢ºæ§ãšæŽåæ§ã確 èªããããã®ãã§ãã¯æšæ¥ãçµã¿èŸŒãŸããŠããã¹ãã§ ãããããã«ãããAI ã¢ãã«ã«å ¥åãããããŒã¿ãšåº åãããããŒã¿ã®å質ãä¿èšŒãããã
ãæ£ç¢ºã§é©çšå¯èœãª AI ã¢ã ã«ãçæããããã®äž»ãªèª²é¡ ã¯ãå©çšå¯èœãªå®éšããŒã¿ã¯ äžåäžã§ããã€ãºãå€ãã㟠ã°ãã§ããããšã§ãããåŸã£ ãŠãé©åãªããŒã¿ãã¥ã¬ ã·ã§ã³ãšããŒã¿åéãæãé èŠã§ãããã 41
åµè¬ã¬ãã¥ãŒã«é¢ããå°éå®¶ã®æèŠ
å šãŠã®ããŒã¿ãšåæ§ã«ãå šãŠã® AI ã¢ãã«ãçããäœã ããŠããããã§ã¯ãªãã
AI ãåµè¬ãéçºã«ãããŠãŸããŸãäž»æµãšãªãã«ã€ããAI ã¢ãã«ã®å質ãä¿¡é Œæ§ããã㊠éçã«é¢ããçåã¯é¿ããããªããã®ãšãªãã ããã35
AI ã¢ãã«ã®ç®çã«å¯ŸããŠãæ©äŒåŠç¿ã«äœ¿çšãããããŒã¿ã®å質ãšéã¯ååãïŒ
AI ã¢ãã«ã¯ã©ã®ããã«æ¢åã®å質åé¡ãé¿ããæ å ±ã®æ£ç¢ºæ§ãä¿¡é Œæ§ãæªããªãããã«ããã®ãïŒ
ã¢ãã«ã®ç¹ç°æ§ã®çšåºŠã«å¯ŸããŠãåãããŠãã質åãè€éã§ã¯ãªããïŒ
çµæã«ã¯äºæ¬¡è©äŸ¡ã粟æ»ãå¿ èŠãïŒ
èŠå¶åœå±ã¯ãAI ã®å¢ãã«è¿œãã€ããããæ£è ã«å±ãå»
è¬åã®å®å šæ§ãšæå¹æ§ã確ä¿ããªãããAI äž»å°ã®ã€
ãã ã·ã§ã³ãæ¯æŽããèŠå¶æ çµã¿ã®çå®ãéå§ã㊠ãããã¢ã¡ãªã«ã§ã¯ãFDAïŒé£åå»è¬åå±ïŒãæ¥çã
åŠçãæ£è æè·å£äœãå«ãäž»èŠãªã¹ã ã¯ãã«ããŒãš ååããé²è¡äžãŸãã¯èšç»äžã® AI 掻çšã«é¢ããç¥èŠ ãéããä»åŸã®èŠå¶ã«åœ¹ç«ãŠãäºå®ã§ããã
åå±ã¯æè¿ããå»è¬åã»ãã€ãªå»è¬åã®éçºã«ããã 人工ç¥èœïŒAIïŒã𿩿¢°åŠç¿ïŒMLïŒã®äœ¿çšããšãå»è¬ å補é ã«ããã人工ç¥èœããšãã2ã€ã®éèŠãªè«æã çºè¡šããã 34-35
ãš ãããã§ã¯ã欧å·å»è¬ååºïŒEMAïŒããå»è¬åã© ã€ããµã€ã¯ã«ã«ããã AI ã®äœ¿çšã«é¢ãããªãã¬ã¯ ã·ã§ã³ã»ã ããŒãçºè¡šããAI/ML ã®å®å šãã€å¹æç ãªäœ¿çšã®ããã®ã¬ã€ãã³ã¹ãæäŸããããšãç®æã㊠ããã44
ãAI/ML ã¢ã«ãŽãªãºã ã¯ãåº ç€ãšãªãããŒã¿ãœ ã¹ã«ååš ãããšã©ãŒãæ¢åã®ãã€ã¢ã¹
ãå¢å¹ ããå¯èœæ§ããããã ã®çµæããã¹ãç°å¢å€ã§å€æ¿ ããããšãäžè¬åå¯èœæ§ãå« ççãªåé¡ãžã®æžå¿µãçã ããã
FDAã®è«æãå»è¬åã»ãã€ãªå»è¬åé çºã«ããã人工ç¥èœïŒAIïŒã𿩿¢°åŠç¿ ïŒMLïŒã®äœ¿çšã
AI/ML ã®äœ¿çšã«é¢ããäž»ãªæžå¿µäºé ã¯ä»¥äžã®éã ã§ããïŒ
éææ§ãä¿¡é Œæ§ãèª¬ææ§ ç ç©¶è ã¯ãèªèº«ã䜿çšããŠããã¢ãã«ã®é©çšæ§ãç è§£ããããããæ£ç¢ºã§é¢é£æ§ã®ããé©åãªããŒã¿ã§ ååã«åŠç¿ãããŠãããšä¿¡é Œã§ããå¿ èŠããããã ãããFDA ã®è«æã§ææãããŠããããã«ãAI 㢠ãã«ã®è€éãããã®èª¬æå¯èœæ§ãå°é£ã«ãããŸãã æææš©ã«é¢ããæžå¿µãç¹å®ã®è©³çްã®é瀺ã劚ããå¯ èœæ§ãããã35
ãã€ã¢ã¹ã®åé¿
AI ã¢ãã«ã¯åŠç¿ããŒã¿ã®è³ªã«äŸåããŠããããã€ã¢ ã¹ãåé¿ããããã«ã¯é©åã§å€æ§ãªããŒã¿ãå¿ èŠã§ ãããæ¬§å·å»è¬ååºã«ãã AI ã®å»è¬åã©ã€ããµã€ ã¯ã«ãžã®äœ¿çšã«é¢ãããªãã¬ã¯ã·ã§ã³ã»ããŒããŒã¯ ãAI/ML ã¢ãã«ã¯ããŒã¿ã«åºã¥ããŠãããåŠç¿ã㌠ã¿ãããã®éã¿ãæœåºããããã人éã®ãã€ã¢ã¹ã çµã¿èŸŒãŸããå¯èœæ§ãããã44 ãã©ã³ã¹ã®åããåŠ ç¿ããŒã¿ã»ãããååŸããããã«ãåžå°ãªããŒã¿ã éå°ã«ãµã³ããªã³ã°ããå¿ èŠæ§ãèæ ®ããå·®å¥åã« ç¹ããå šãŠã®é¢é£æ ¹æ ãèæ ®ããã¹ãã§ããããšè¿° ã¹ãŠããã
ããã©ãŒãã³ã¹ãšä¿¡é Œæ§ æç¢ºã§èªä¿¡ã®ããçãã¯é åçãããããªãããåŠ ç¿ããŒã¿ã®åºæãã¢ãã«ã®ããã© ãã³ã¹ãä¿¡é Œ æ§ã»äžç¢ºå®æ§ã«é¢ããæ å ±ãããçšåºŠã®è¿œè·¡å¯èœæ§ ãç£æ»å¯èœæ§ããªããã°æå³ããªããAI ããŒã«ã®é çºè ã¯ããã£ããæŽçãããåŠç¿ããŒã¿ã«æå³ç㪠é¢ä¿ãæ§ç¯ãã㊠ã¶ãŒãèªä¿¡ãæã£ãŠçµæãæž¬å® ã§ãããããªè§£éå¯èœãªææšãæäŸããããšãç®æ ãã¹ãã§ããã㊠ã¶ãŒãäºæž¬ãç²ç®çã«åãå ¥ã ãã¹ãã§ã¯ãªãã
ç¹ç°æ§
ç¹ç°æ§ã®ãªãèšå€§ãªããŒã¿ã»ããã§åŠç¿ãããäžè¬ åã¢ãã«ã¯ãå°éåéã§ééããªãèŠæŠã匷ããã ããäŸãã°ãæ°è¬ã®çºèŠã«ãããŠãäºæž¬ã¢ã«ãŽãªãº ã ãã¿ã³ãã¯è³ªãšè¬ç©ã®çµåã«ã€ããŠäœååã§åŠç¿ ãããå Žåããã®çµåäºæž¬ã®ä¿¡é Œæ§ã¯ãå ¥åååã åŠç¿ã»ããã®ååãšã©ãã ãæ§é çã«é¡äŒŒããŠãã ãã«äŸåããããã®ãããªå Žåãäžç¢ºå®æ§ã®ææšã¯ ㊠ã¶ãŒã«ã¢ãã«ã®éçãç¥ãããããšã§ãéææ§ ãåäžãããããšã«åœ¹ç«ã€ã
æ°å¹Žåããé²è¡ããŠããããŒã¿äž»å°ã® R&D ãžã®æ ¹æ¬ç ãªã·ãããå éããããããäŒæ¥ã¯ AI ã«ç®ãåãå§ã ãŠããã43 å€ãã®äŒæ¥ããããè¿ éã§è²»çšå¯Ÿå¹æã®é«ã ã€ãããŒã·ã§ã³ã®å®çŸãç®æããAI ã€ãã·ã¢ããã«æ° åäžãã«ãæããŠãã40
æ®å¿µãªãããå€ãã®äŒæ¥ããèªç€ŸããŒã¿ã AI 掻çšã«é©ããŠããªããšããå³ãã çŸå®ã«çŽé¢ããŠãããããŒã¿ãžã®ã¢ã¯ã»ã¹ã®æªãããµã€ãåãããããŒã¿ãæš æºåã®æ¬ åŠãéå¹çãªã¢ãããŒã·ã§ã³ãçãããããŒã¿ã®ä¿¡é Œæ§ã远跡å¯èœæ§ ã®éçãäžé©åãªã¬ã¬ã·ãŒããŒã¿æè¡ã€ã³ãã©ãªã©ãæ ¹æ¬çãªåå ã¯å€å²ã«ã ããã40
ãã®åé¡ã¯éåžžã«åºç¯å²ã«åãã§ãããæè¿ã®èª¿æ»ã§ã¯ããã€ãªå»è¬åãå»ç æè¡ã® R&D 㪠ããŒã®çŽ30ïŒ ããããŒã¿ã®åé¡ã AI ã€ãã·ã¢ããã«æªåœ±é¿ ãäžããŠããããšãèªããŠãããç¹ã«ã質ã®äœãããŒã¿ããµã€ãåãããã㌠ã¿ã·ã¹ãã ãæå€§ã®æžå¿µäºé ãšããŠæããããŠããã
ãã®ãããªåé¡ã«çŽé¢ããŠããäŒæ¥ã¯ãããŒã¿ç®¡çã·ã¹ãã ãšããã»ã¹ãæ¹å ããããŸã§ãAI ã®æ©æµã享åããããšã¯å°é£ã§ãããã
Dotmatics ããã®åé¡ã®è§£æ±ºãæ¯æŽããã
AI 掻çšã«ããè£œè¬æ¥çã®ç ç©¶éçº 16
Dotmatics Luma⢠ã¯ãç ç©¶è ã管çè ã倧éã®ããŒã¿ãçµ± åã»åæããããè¯ãæææ±ºå®ãè¡ãããã®é©æ°çãªç§åŠã㌠ã¿ãã©ãããã©ãŒã ã§ããã
Luma ã¯ãããã«å©çšå¯èœãªããŒã³ãŒãã® SaaS ãã©ãããã©ãŒã ãæäŸããŠãããå š ãŠã®é¢é£ããŒã¿ãã€ã³ããªãžã§ã³ããªããŒã¿æ§é ã«æè»ã«éçŽãããããã«ãããã¯ãªãŒ ã³ã§ä¿¡é Œæ§ã®é«ãããŒã¿åæãå¯èœã«ãªããã¡ã¿åæã AI/ML ããŒã¹ã®ã¢ã«ãŽãªãºã ã® éãéãã
Luma ã¯ãäŒæ¥ã R&D ã€ã³ãã©ãããŒã¿ã AI 察å¿ã«åããéã«çŽé¢ããã以äžã®äžè¬ çãªé害ãåé¿ããæå©ããããïŒ
倿§ãªããŒã¿ãããã¥ãŒãµãŒ
Luma ã¯ãELNãå®éšæ©åšãåç©å®éšãèšåºè©Š éšãææç»é²ããã®ä»ã®ç§åŠã·ã¹ãã ãªã©ãè±
å¯ãªãœãŒã¹ããããŒã¿ãåã蟌ãããšãã§ãã
ããŒã¿ç®¡çã®ååŸ©äœæ¥ãå¯èœãªéãèªååã ãã
ç§åŠçã¢ããªã±ãŒã·ã§ã³ ã® å€æ§æ§
Luma ã¯ããŒã³ãŒãã®ã¢ããªã± ã·ã§ã³æ§ç¯æ©
èœãæäŸãããããçµç¹å šäœã§ããŒãºã倿§ã§ ãã£ãŠããå ±éã®ãã¶ã€ã³ãã¿ãŒã³ãšããŒã¿ã¢
ãã«ãå ±æããã¢ããªã± ã·ã§ã³ãç°¡åã«æ§ç¯ ã§ããã
ããŒã¿ ã® é ãšããŒã¿ãµ 〠ã
Luma ã¯ãå€çš®å€æ§ãªç§åŠããŒã¿ã®èšå€§ãªéãš è€éãã«å¯Ÿå¿ãããç©çã¢ãã«ãšè«çã¢ãã«ã åé¢ããã¢ãžã£ã€ã«ãªããŒã¿ã¢ããªã³ã°ã¢ã ããŒãã«ãããç§åŠç ç©¶ã«ãããã¡ãªããŒã¿ãµ ã€ããè§£æ¶ãããLuma ãçšããããšã§ãäŒæ¥ ã¯ã¬ããã³ã¹ãã¬ãŒã ã¯ãŒã¯å ã§ããŒã¿ã®ã¢ã ãªã³ã°ãä¿åãåŠçãæœåºãè¡ãããšãã§ã ãã
æ©åšã®å€ç«å
Luma ã¯ãåºåãæå·åãããŠããå Žåããã¡ã€ ã«ããŒã¹ã§ãªãå Žåã§ããæ§ã ãªæ©åšããã® ããŒã¿åºåã管çãããèšè¿°çã¡ã¿ããŒã¿ãå®
éšçµæãè§£æããåãæ©åšã¯ã©ã¹å ã®æ©åšã㌠ã¿ã調åãããã
ããŒã¿ ã® ã¢ã¯ã»ã¹æ§ãšäœ¿ãããã
Luma ã¯ãããŒã¿ã段éçã«åŒ·åãçžé¢ä»ããæ èåããããé«åºŠãªããŒã¿åŠçãšåŒ·å掻åã«å ããŠæºåããããŒã¿ããªã¥ ãã§ãŒã³ãéã ãŠãR&D ããŒã¿ã®äŸ¡å€ãæå€§åããããŸãã
API ãã¡ãŒã¹ãã®ã¢ãããŒãã«ãããå¿ èŠãªæ ã«å¿ èŠãªæ¹æ³ã§ããŒã¿ã®ãªã³ããã³ãã¢ã¯ã»ã¹ ããµããŒãããã
Dotmatics Luma äžã«æ§ç¯ããã
R&D ã€ã³ãã©ãšããŒã¿åºç€ã«ã ããäŒæ¥ã¯ AI å°å ¥ã®æºåãæŽã ã®ã§ããã
匷åºãªããŒã¿ã€ã³ãã©ãªãã§ã¯ãAI å°å ¥ã¯å®çŸã§ããªãã
Dotmatics ã¯ãäŒæ¥ã®å šãŠã® R&D ããŒã¿ãäžå åããç ç©¶è ã R&D ããŒã¿ãçæã»åæããéã«äœ¿çšããäž»èŠãªã¢ããªã±ãŒã·ã§ ã³ãšçµ±åããããšãã§ããã
ååŠãçç©åŠãææç§åŠãªã©ãæ§ã ãªç§åŠåéã§æŽ»åãã200äžäººä»¥äžã®ç ç©¶è ãã以äžã®
ç¹ã§ Dotmatics ãä¿¡é ŒããŠããïŒ
æšæºåãããæè»ãªãããã³ãŒã«ãã³ãã¬ãŒãããã©ãŒã ããŒã¹ã®å ¥åã ããŒã¿ã®ã¯ãã¹ãã§ãã¯ããµã€ã³ãªãæ©èœãåããé»åå®éšããŒãïŒELNïŒ ã«ãããèªååãããæ©åšããŒã¿åéãããŒã¿ããŒã¹ãã¢ããªã±ãŒã·ã§ã³ã® çµ±åããšã©ãŒã®ãªãããŒã¿å ¥åãªã©ãéããŠãã¯ãªãŒã³ã§ä¿¡é Œæ§ã®é«ãç ç©¶ ããŒã¿ãååŸããã
ç ç©¶è ãããããå°éããŒã«ã䜿ã£ãŠçæããååŠãçç©åŠã çç¹æ§ããŒã¿ã®ã»ããå€éšããŒãããŒãçæããããŒã¿ããã ã€ã³ã§å©çšå¯èœãªããŒã¿ãªã©ãå®éšãã¡ããªãã¯ãæ§æããå šãŠã® ããŒã¿ãã·ãŒã ã¬ã¹ã«çµ±åããããšã§ãããŒã¿ãµã€ããåãé€ãã
ç¬èªã®ããŒã¿åœ¢åŒããè±åŽããããŒã¿ãæšæºåãå質管çïŒ
ãšå質ä¿èšŒïŒQAïŒã®èªååãæéã®ããããšã©ãŒã®èµ·ããããã ããŒã¿æŽçã®æé€ã«ãããAI ã«å¿ èŠãªã¢ãã«åè³ªã®æ©æ¢°å¯Ÿå¿ã㌠ã¿ãæäŸããã
衚2ã¯ãDotmatics ãå®éšããŒã¿ãAIã«å¯Ÿå¿ãããããã® äž»ãªæ¹æ³ã瀺ããŠããã
衚2ïŒå®éš ããŒã¿ ã AI ã«å¯Ÿå¿ãã ã ãã 㮠䞻㪠㹠ããã
Dotmatics ã¯ãå®éš R&D ããŒã¿ã以äžã®ç¶æ ã«ãªãããšãä¿èšŒããïŒ
ããŒã¿åé èªåæ©åšããŒã¿åéãããŒã¿ããŒã¹çµ±åãELN ãä»ãããšã©ãŒé²æ¢ããŒã¿å ¥åãªã©ãã ã¹ãŠã®ããŒã¿ãããã¥ãŒãµãŒããã¯ãªãŒã³ã§è¿ éãªããŒã¿åéãå®çŸããã
ã©ãã«ä»ã 詳现ãªã¡ã¿ããŒã¿ãšåœåèŠåã«ãããç¹å®ã®ãŠãŒã¶ãŒãååç©ãé åããããžã§ã¯ãã CRO ãªã©ãšã®çžé¢ã容æã«ããã
æšæºå æšæºåãããããŒã¿ã¢ãã«ã«ãããç¬èªã®ããŒã¿åœ¢åŒããè±åŽããå質管çïŒQCïŒãš å質ä¿èšŒïŒQAïŒã®èªååãé²ãã詳现ãªç§åŠåæã«å¿ èŠãªã¢ãã«å質ããŒã¿ãæäŸã ãã
äžå å ç§åŠçã«èªèããããã¹ã¿ãŒãªããžããªã¯ãåé¢ãããïŒå€ãã®å Žåã¯å°éåéããš ã®ïŒããŒã¿ãµã€ããæé€ããçµç¹ãšãã®ããŒãã å šäœã®å šãŠã®ãŠãŒã¶ãŒãšå ±åç ç©¶è ã®ããã®åäžã®ä¿¡é Œã§ããæ å ±æºãäœãåºãã
çžäºéçšæ§ è£æ¹ã®ã·ã¹ãã ãã¢ããªã± ã·ã§ã³éã ãã§ãªããç ç©¶ååããŒã«ãéããŠãç°ãªã ã ã ãã³ãã¥ãã± ã·ã§ã³ãåããããŒã¿ãšã€ã³ãµã€ããå ±æãããããžã§ã¯ããå é²ãããããšãã§ãããšã³ããŠãŒã¶ãŒéã§ã®ã· ã ã¬ã¹ãªããŒã¿äº€æãå®çŸããã
ã¢ã¯ã»ã¹æ§ãšè¿œ
è·¡æ§
é¢é£æ§ã®ãã
ç§åŠæ€çŽ¢ãã¬ããŒããããã·ã¥ã ããé²èЧå¯èœãªå®éšãªã©ãéããŠãããŒã¿ã®è¿ éã ã€è¿œè·¡å¯èœãªã¢ã¯ã»ã¹ãåžžææäŸããã
è€æ°ã®ïŒå€ãã®å Žåãã ã æšªæçãªïŒåæããåŸãããããŒã¿ãã€ã³ããéããèšé² ã«ããå埩çãªããŒã¿ã¬ã€ã€ãªã³ã°ã«ãããæèãæ£ç¢ºã«åæ ããå šäœåãæäŸããã
ã»ãã¥ã¢ 詳现ãªèªèšŒãšã¢ã¯ã»ã¹å¶åŸ¡ã«ããã鿢æã»è»¢éæã®ããŒã¿ãä¿è·ãããã©ã€ãã·ãŒã è ããããšãªããç°ãªããŠãŒã¶ãŒãå ±åç ç©¶è ãCRO ãåããã©ãããã© ã ã§äœæ¥ ïŒããã³åããã©ãããã© ã å ã§ããŒã¿äº€æïŒããããšãå¯èœããã
æ¢åã®åµè¬ããã°ã©ã ã« AI ãå°å ¥ããããšã¯ãå³1ã«ç€ºãããŠã ãããã«ãéåžžãè€æ°ã®ã¹ããããèžãããšã«ãªãã
AI å°å ¥ã«äžå¯æ¬ ãªæåã®ã¹ãããã¯ãããŒã¿ã®ã¯ãªãŒã³åã§ãããåçŽã«èãããããã ããªãããå®éã«ã¯å€ãã®è£œè¬äŒç€Ÿãå€çš®å€æ§ãªããŒã¿ãå±±ã®ããã«æ±ããŠãããäŸã ã°ã50ãã¿ãã€ããã®èšå€§ãªããŒã¿ãååšãããããããã¯ãœãããŠã§ã¢ãæ©åšãã¹ã ã¬ããã·ãŒããªã©ãçžäºã«ããŸã飿ºã§ããªãæ§ã ãªå Žæã«ä¿åãããŠããã ããŒã¿ãæŽçããããšãã¬ããŒãã®äœæãã¢ãããã¯ã¯ãšãªã®å®è¡ãå¯èœã«ãªããç ç©¶è ã¯ããç°¡åã«åæãé²ããçè§£ãæ·±ããããšãã§ãããæ¬¡ã®ã¹ãããã¯ã€ã³ã¿ã©ã¯ãã£ã ãªå¯èŠåã§ãããç ç©¶è ã¯èªèº«ã®åµè¬ããŒã¿å ã®ãã¿ãŒã³ãèŠèŠçã«ç¢ºèªã§ããããã«ãª ãã
ãããããäºæž¬ã¢ããªã³ã°ãåŠæ¹åæãªã©ãAI ã®çã®å¯èœæ§ã«èžã¿èŸŒãããšã«ãªããäŸã ã°ãããéºäŒåå€ç°ãæã€æ£è ããç¹å®ã®å»è¬åã«å¯ŸããŠã¯è¯å¥œãªåå¿ã瀺ãå¯èœæ§ãé« ãããšã AI ãçºèŠã§ããã°ãåå¥åãããæ²»çèšç»ãç«ãŠãããšãã§ãããããã«ããã
æ£è ã®æ²»ç广ãå€§å¹ ã«æ¹åãããå¯äœçšãæžå°ããå¯èœæ§ããããäºæž¬ã¢ããªã³ã°ãšåŠ æ¹åæããããããå¯èœã«ããã
åŸææ®µé
æçµçã«èªåæææ±ºå®ã®æ®µéã«å°éããããšã§ãAI ãæå€§éã«æŽ»çšã§ããããã®æ®µéã§ AI ã¯ãåµè¬ããŒã¿å ã®ãã¿ãŒã³ããã¬ã³ããçžé¢é¢ä¿ã®èªåŸçãªèå¥ãäºæž¬ã®çæãæœåš çãªæ°è¬åè£ã®æäŸãå®éšãã¶ã€ã³ã®æé©åãããã«ã¯èª¿æ»ãã¹ãæ°ããä»®èª¬ã®ææ¡ãªã© ãå¯èœã«ããã
R&D ããŒã¿åºç€ã®ãµããŒãã« Dotmatics Luma ãéžã¶äŒ æ¥ã¯ãçæ AI ã«ããã¯ãšãªæ§ç¯ãªãã·ã§ã³ã®çæããå® éšã®ãã¹ããæé ã匷åããããã®äºæž¬çã»é©å¿ç AI 㮠䜿çšãªã©ãAI ã®åãæŽ»çšããæºåãæŽã£ãŠããã
å³1
åµè¬ããã°ã©ã ã« AI ãå°å ¥ããã«ã¯ããŸã AI ã«å¯Ÿå¿ã§ããããã«ããŒã¿ç®¡çã·ã¹ãã ãããã»ã¹ãæŽåããã ãšããå§ããå¿ èŠãããã
ãã©ãããã©ãŒã
AI 察å¿ããŒã¿
åææ¡çš R&D ããŒã¿å ã®ãã¿ãŒã³ãç¢ºèª ã¬ããŒã ã¢ãããã¯ã¯ãšãª ã€ã³ã¿ã©ã¯ãã£ããªå¯èŠå
äžç€
AI äž»å°ã® R&D äºæž¬ã¢ããªã³ã° åŠæ¹åæ
æçµæ®µé
èªåæææ±ºå® èªåŸçãªãã¿ãŒã³èªè äºæž¬ã®çæ ä»®èª¬ã®ææ¡
Dotmaticsã¯ãAI 察å¿ã®ç§åŠããŒã¿ãã©ãããã©ãŒã ã§ãã Luma ã¯ãã¡ãããã客æ§ãšå¯æ¥ã«é£æºããAI ãæŽ»çšããããšã§ R&D ã® ã€ãããŒã·ã§ã³ãããã«å éã§ãããããã£ããèŠæ¥µããã
AI ãã客æ§ã®ã¯ãŒã¯ãããŒãšæææ±ºå®ãæ¹åããŠããã±ãŒã¹ã¯ä»¥äžã®éãã§ããïŒ
AI ããŒã¹ã®èªåãããŒãµã€ãã¡ããªãŒã®ã²ãŒãã£ã³ã°
Dotmatics ã¯ããããŒãµã€ãã¡ããªãŒãœãããŠã§ã¢ OMIQ å ã§å©çšå¯èœãª ML ã¢ã«ãŽãª ãºã ã®åŠç¿ãã¯ã©ãŠããœãŒã·ã³ã°ã§è¡ã£ãŠããããããŒãµã€ãã¡ããªãŒã¯ã㬠ã¶ãŒã çšããŠå€§éã®çްèãè€æ°ã®ãã©ã¡ãŒã¿ãŒã§è¿ éã«è©äŸ¡ããã©ãæè¡ã§ãããç§åŠç ç©¶ã
èšåºåæãæ²»çéçºã«åºãå¿çšãããŠããã
ãã®ããã»ã¹ã§ã¯ãèšå€§ãªéã®çããŒã¿ãå®çšçãªã€ã³ãµã€ãã«å€æããå¿ èŠãããã
ãããŸã§ã¯ãã¢ããªã¹ããããŒã¿ãã€ã³ãã®åšãã«ã²ãŒããåŒããé¢å¿ãŸãã¯æžå¿µã®ã ã现èãç¹å®ããé¢å¿ã®ãã现èéå£ã«åŸã ã«çŠç¹ãåãããŠããããã»ã¹ãæäœæ¥ã§
è¡ãããŠããã
ãã®ãããªããã»ã¹ãèªååããããã«ããªãŒãã³ããŒã¿ãçšããŠãœãããŠã§ã¢ãåŠç¿
ãããããªãŒãã² ãã£ã³ã°ããšåŒã°ãã ML äž»å°ã®æè¡ã Dotmatics ã¯æ§ç¯ããã
ããã«ãããããã«è¿ éã§ãã³ã¹ããæãããããéèŠãªå»ç驿°ãå¯èœã«ãªãã
AI ã«ããè¬å€åè£ã¬ãã¥ãŒã®å¯èŠå
Dotmatics Vortex ã¯ãR&D ã®æææ±ºå®ãæ¯æŽããããŒã¿å¯èŠåã»åæããã°ã©ã ã§ã
ããAI/ML ãæŽ»çšããããšã§ãã¹ãã¬ããã·ãŒããã ãã«ã«è¡šç€ºãããããŒã¿ãåã ããããèŠèŠåããå»è¬ååè£ã®ã¬ãã¥ãŒã容æã«ãããäŸãã°ãAI/ML ã䜿çšããŠå åŠç©ºéããã©ãŒã«ãã£ã³ã°ããæåãšå€±æã®é åãè¿ éã«åŒ·èª¿ããããšãã§ããã
AI äž»å°ã®ã¿ã³ãã¯è³ªåæ
Protein Metrics ã¯ã質éåæèšãã¯ãããã°ã©ã㣠æ©åšãªã©ã§åŸãããããŒã¿ãæŽ»çš ããŠãã¿ã³ãã¯è³ªé åãè¿ éã«ç¹å®ã»å ±åã§ããããã«ããããã®ããã°ã©ã ã¯ãAI/ ML ã®æŽ»çšã«çµã£ãŠã¿ã³ãã¯è³ªã®æ€çŽ¢ãç¹å®ãã¹ã³ã¢ãªã³ã°ãªã©ã®äœæ¥ããµããŒãã ãã
Dotmatics ãšå ±ã« AI ã®æ ã é²ããŸããã
Dotmatics ãã©ã®ããã« AI ã®æ ããµããŒãã§ã ããããã¢ãã芧ãã ããã
詳ããã¯ãã¡ã
AI
D
ug D
covery. Boston Consulting Group. March 29, 2022. https://www.bcg.com/publications/2022/adopting ai-inpharmaceutical-discover
Why Artificial Intelligence Could Speed Drug D
overy. Morgan Stanley Research. September 9, 2022. https://www.morganstanley.com/ideas/ai-drug discover
Big pharma is using AI and machine learning in drug discovery and development to save lives. Insider Intelligence. April 15, 2022. https://www.insiderintelligence.com/insights/ai-machine learning-in-drug-discovery-development
Shegewi, M. , Allocato, A. , Dunbrack, L. , et. al. DC FutureScape: Worldwide Healthcare Industry 2023 redictions. ctober 2022. https://www.idc.com/getdoc.jsp?containerId S4858
Galer, S. Life Sciences Trends 2023: Clinical Research T
. SA . March 1, 2023. https://blogs.sap.com/2023/03/01/life-sciences-trends-2023-clinical-research-trials-atyour-local-pharmacy FDA Releases Two Discussion apers to Spur Conversation about Artificial Intelligence and Machine Learning in Drug Development and Manufacturing. FDA Voices. May 10, 2022. https:// www.fda.gov/n ws v nts/fda voic s/fda r l as s two discussion pap rs spur conv rsation about artificial int llig nc and machin AlphaFold rotein Structure Database Developed. DeepMind and EMBL-EBI. Accessed August 31, 2023. https://alphafold.ebi.ac.uk/
n, W.D.
News. anuary 30, 0 0. https://www.bbc.com/news/technology 131 46
Exscientia and Sanofi establish strategic research collaboration to develop AI-driven pipeline of precision-engineered medicines. Sano
eld, A. The first fully A.I.-generated drug enters clinical trials in human p
Generative AI has the potential to revolutionise drug discovery. GlobalData Healthcare. Pharmaceutical Technology. August 3, 0 3. https://www.pharmaceutical-technology.com/ comment/generative ai-revolutionise-drug-discovery
untz, . Raising the efficiency floor and innovation ceiling with generative AI in drug discovery. Drug Discovery and Development. une 9, 0 3. https://www.drugdiscover trends.com/ generative ai-drug-discover /
y 17, 2022. https://www.nature.com/articles/d43 4 -022-00104-
Lowe, D. AI and Drug Discovery: Attacking the Right Problems. Science. 2021. https:// www.science.org/content/blog-post/ai-and-drug-discovery
Huang, D.Z., Barber, C., Bahmanyar S.S. The challenges of generaliz
Honcha , N. 9 Publicly aded Biotechs Utilizing A -based Resea ch Platfo ms. Biopha ma end.com. June 9, 0 3. https://www.biopharmatrend.com/post/601-recent-iposamong-ai-driven-platforms-for-drug-discovery and-biotech
C aven, J. A in d ug manufactu ing: Stakeholde s call fo ha monization, fu the guidance. Regulato y Focus. May 9, 0 3. https: www.raps.org news-and-articles news-articles 2023 5 aiin-drug-manufacturing-stakeholders-call-for-ha
Chun, M. How A tificial ntelligence is Revolutionizing D ug Discove y. Ha va d Law Bill of Health Blog. Ma ch 0, 0 3. https://blog.petrieflom.law.harvard.edu/2023/03/20/how-artificial intelligence-is-revolutionizing-drug-discovery
Kudumala, A., Ressle , R., Mi anda, W. Scaling up A ac oss the life sciences value chain: Enhancing R&D, c eating efficiencies, and inc easing impact. Deloitte nsights. Novembe 4, 0 0. https:// www2.de oitte.com/us/en/insights/industry/ ife-sciences/ai-and-pharma.htm
Huygen, W. How leading companies scale A . Five key p inciples to build an A p oduction platfo m. owa ds Data Science. July 4, 0 0. https://towardsdatascience.com/how-leading-companiesscale-ai-4626189faed
Walch, K. he nc easing Use Of A n he Pha maceutical ndust y. Fo bes. Decembe 6, 0 0. https://www.forbes.com/sites/cognitiveworld/2020/12/26/the-increasing-use-of-ai-in-thepharmaceutical-industry
Wiles, J. Whatâs New in A tificial ntelligence f om the 0 Ga tne Hype Cycle. Ga tne . Septembe 1 , 0 . https://www.gartn r.com/ n/articl s/what-s-n w-in-artificial-int llig ncfrom-th -2022-gartn r-hyp -cycl
Reflection pape on the use of A tificial ntelligence (A ) in the medicinal p oduct lifecycle. Eu opean Medicines Agency. July 13, 0 3. https://www.ema.europa.eu/en/documents/scientific guideline/dra t-re ection-paper-use-artificial-intelligence-ai-medicinal-product-li ecycle en.pd
Fo d, J., Blai , A., Naaz, B., Ove man, J. Biopha ma leade s p io itize R&D, technological t ansfo mation, and global ma ket p esence. Deloitte. August 3, 0 0. https // .deloitte. om/ global/en/our-thinking/insights/industry/life-s ien es/pharma euti al-industry-trends.html