Page 1

30 Terminals and transport interchanges CI/SfB 114, 124, 144 UDC 725.3

KEY POINTS: This building type is subject to constant evolution and change Terminals are now more like shopping malls than Victorian railway stations Intermodality between all forms of transport is a critical consideration Safety and security are now key components of terminal and interchange design

• • • •

Contents 1 Introduction 2 Airport passenger terminals 3 Landside functions 4 Airside functions 5 Aircraft and apron requirements 6 Bus and coach stations 7 Railway stations 8 Trams and light rail 9 Bibliography

1.03 Security In the case of air travel in particular but also in principle for longdistance rail and sea travel, the checking of passengers and their possessions requires the installation and manning of suitable equipment and the strategic location of the check point in order to both ensure that no passengers evade or avoid the checking procedure and that the procedure is carried out in the most efficient manner. Terminals and interchanges should be designed to minimise discreet locations where suspicious packages and baggage containing ‘‘improvied explosive devices’’ can be hidden; buildings should be designed so that, in the event such a device does explode, it remains structurally sound, thereby preventing further loss of life due to building collapse.

1.04 Border controls Quite apart from security considerations, many terminals occur at national borders and therefore are the point of entry to or exit from sovereign areas. Accordingly, customs and immigration controls need to be conducted.

1 INTRODUCTION 1.01 This chapter addresses the aspects of passenger requirements which are common to all terminals where passengers board aeroplanes, buses and coaches or railway trains or transfer between them. (Note that for practical purposes the consideration of baggage systems is limited to the airports section.)

1.02 Space standards One person’s congestion is another’s profit: space standards are variable and subjective. The objective solution is to quote from the concept of Standard of Service. The application of this is common to all terminals and interchanges, and the differences arise, for example, from the amounts of baggage involved. Table I shows levels of service related to unit space standards in different types of space. For many passengers the criterion by which terminals such as airports are judged is the walking distance between one mode of transport and another. Although there is an inevitability about the length of a railway station platform or an airport pier, design can mitigate the strain of walking distance by providing passenger conveyors (see Chapter 5).

1.05 General legislation Places of assembly of large numbers of people require special consideration of means of escape in case of fire as well as the normal controls on the standard of building construction.

1.06 Intermodal relationships As the demand for efficient public transport systems returns after a phase when priority has been given to personal transport in the developed world, so the demand builds up for interchange between different modes. On the one hand, this can be for the reason of choice: allowing passengers to board Channel Tunnel trains in London or to drive on to them at Cheriton. Otherwise it can be for reasons of necessity: airports are located outside metropolitan areas and therefore need adjacent bus stations and railway stations, or even sea terminals in the case of Venice or Hong Kong.

1.07 Commercial opportunities Wherever large numbers of people assemble and particularly wait, they need catering and business facilities. If they are by their very nature ‘moneyed’ there will be any number of shopping opportunities.

Table I Levels of service and space standards Level of service Criteria

Area with trolley per passenger (m2)







Service level Flow Delays Subsystems Routes Comfort level

Excellent Free None In balance Direct Excellent

High Stable

Adequate Unstable Some

In balance

Good Stable Acceptable In balance

Unacceptable Unstable Some Not in balance

Total breakdown Congestion Unacceptable Total breakdown



Acceptable for short periods



Check-in and baggage reclaim






General waiting concourses Confined waiting

2.7 1.4

2.3 1.0

1.9 1.0

1.5 0.8

1.0 0.6

– – 30-1


Terminals and transport interchanges

1.08 Terminal operator’s requirements The owner and/or the operator of the terminal will be out to make the maximum return on his or her investment and this will probably involve collecting revenue from the transport operator and the commercial concessionaire rather than the passengers or the public.

2.02 A notable early example is the original terminal at Gatwick Airport, 30.3 which offered passengers in 1936 a direct and sheltered route from railway to terminal and from terminal to aeroplane. It was therefore an early true interchange facility.

1.09 Transport operator’s requirements On the other hand, the transport operator will want to get the passengers through the building as quickly as possible. Functional performance is paramount and related to speed, and the requirement for speed and efficiency is accentuated by the transfer facility. For example, the transfer time between connecting flights at airports is being increasingly reduced to provide a ‘hub’ and as different transport systems are integrated interchange times between, for example, train and plane need to be improved. 30.1 and 30.2 illustrate the interchange facilities at Heathrow Terminal 4 air/rail/bus.

2.03 Airport terminal planning There are two major influences on airport and terminal size:

2 AIRPORT PASSENGER TERMINALS 2.01 The airport terminal has been an established building type for only seventy years since London’s airport was at Croydon, but many building forms have evolved. Each has been a response to the needs of the moment, but the speed of development of air travel has meant that buildings have rapidly become obsolete and needed either replacement or reconstruction.

Key: 1 Multi-storey car park 2 Departures forecourt

demand, and • Population Airline traffic scheduling. • Other factors and forms are listed and described in this section. 2.04 Worldwide each metropolis and major population centre has by now a giant airport in its vicinity. Most cities have airports appropriate to their needs. Either because the numbers of passengers, flights and choices of destination have increased to a certain level or because of its ‘crossroads’ location, a particular airport and its one or more terminals can take on a secondary growth pattern. Traffic attracts more traffic, since a wide range of airlines and destinations in turn attracts passengers from a larger area, possibly away from what would otherwise be their nearest airport, and also attracts airlines to feed connecting flights. Ultimately high volumes of traffic attract airlines to use their routes and facilities to the maximum by creating hubs, junctions for radiating routes with convenient transfer facilities for passengers. (See 2.15 below for more about hub terminals.)

3 Arrivals forecourt 4 Departures concourse 5 Arrivals concourse

6 Airside concourse 7 Arrivals corridor 8 London Underground station

30.1 Heathrow Terminal 4 cross section: Architects Scott Brownrigg & Turner, Guildford

Key: 1 Taxis 2 Railair/Rickards/Alder Valley 3 Long-term car park 4 Car rental concession 5 Transfer to Terminal 1 6 Transfer to T2 and T3 7 Alder Valley/Careline

8 9 10 11 12 13 14 15

30.2 Heathrow Terminal 4 arrivals forecourt plan

Staff car park Jetlink National Express City of Oxford Speed link Flightline Flightline/Airbus Airbus

16 Flightlink 17 National Express 18 Southend/Premier 19–24 Group travel 25 Green line 26 London Country 27 Local hotels 28 Off airport car parking/rental

Terminals and transport interchanges


30.3 Gatwick Airport Terminal, 1936

2.05 Airport terminal capacity and size Passengers per year and passengers per hour are the key factors in terminal design. Large peak concentrations will produce a high hourly demand in relation to the annual traffic. A substantial constant traffic level will produce a high annual rate in relation to the hourly demand. Table II gives examples of predicted figures which determined the design of those terminals. UK air travel has increased five-fold since the mid-1970s; half the population now flies at least once a year. Freight traffic at UK airports has doubled since 1990. The US Federal Aviation Administration estimates that passenger numbers will increase by 3–5% annually for the foreseeable future.

2.06 Sophisticated mathematical models can be used to represent the flow of passengers. Where appropriate, standards are applied to various future times; for example, five years on and a further prediction ten years ahead.

2.07 The term standard busy rate (SBR) is used in terminal design, and is the number of passengers predicted in the thirtieth busiest hour

Table II Annual and peak traffic at typical airport terminals Type

Passengers per year

Passengers per hour at peak

Manchester Terminal 2 Phase 1 Heathrow Terminal 4 Gatwick North Terminal (completed)

International terminals

6–9 million


Zurich Terminal B

Major city

6 million



Major city

4 million


of scheduled use. This means that for 29 hours in the year the facilities will not match up to the requirement, but reasonable standards and economy are balanced. 2.08 Other factors to be considered are: movements: number of arrivals and departures per hour, • Aircraft aircraft sizes, number of stands for each size or range of sizes, passenger load factors

quantities: number of pieces per passenger, by class of • Baggage travel and traffic (international/domestic) number of accompanying visitors with departing and • Visitors: arriving passengers by class of traffic (international/domestic) number and proportion for airport, airline, conces• Employees: sionaire, control authorities, etc. and proportion of males and

females Landside transport: number of passengers visitors and employees arriving by private vehicles (note ratio of owner-drivers), by public transport (note ratios by bus, coach, hire car, taxi, train, etc.)

2.09 Constraints on building form In the 1930s multiple runways were common, but by the 1950s a pattern was emerging of single or twin runways. As traffic has grown so have the technical aids to support that growth. A single runway can now manage between 30 and 40 aircraft movements per hour, giving an airport capacity of about 25 million passengers per year. A runway’s capacity is affected by its independence from neighbouring runways, by the mix of aircraft and by the air traffic control system. Where a single runway is inadequate, a pair of parallel, and therefore independent, runways separated by at least 1600 metres is used. This allows the terminal buildings to be located between the runways, with minimal cross-runway aircraft movements. Short runway airports or STOLports (short take-off and landing), limited to small aircraft, are appropriate for some locations.


Terminals and transport interchanges

2.10 Clearances are laid down between taxiing aircraft and both parked aircraft and buildings: a series of imaginary surfaces are defined based on standards of instrumentation. These surfaces define the permissible height and position of buildings, and lines of sight from control towers and other key installations.

• •

2.11 Ownership of terminal Airport authority: terminals are built and owned by the airport authority to ensure that the terminal is non-specific and therefore likely to be more able to cope with changing demands. Airline: terminals built by and for an airline tend to be designed to meet that airline’s specific short- and medium-term requirements

• •

• 2.12 Type of traffic International: international terminals involve customs and immigration procedures. Domestic: domestic terminals do not. They can therefore be simpler buildings. However, increasing need for passenger and baggage security has caused the grouping of facilities and channelling of passengers, and has reduced the distinction between the two types. Combined international/domestic, 30.4 is a flow diagram for such a terminal.

• • •

2.13 Level organisation Side-by-side arrivals and departures on a single level, 30.5a. Suitable for the smaller-scale operations where first-floor

movement of passengers from terminal to aircraft via telescopic loading bridges is not justified. Side-by-side arrivals and departures on two levels, 30.5b. This avoids the need for elevated roads because all kerbside activity takes place at ground level. Escalators and lifts are provided to take departing passengers up to the boarding level. Vertical stacking of arrivals and departures, 30.5c. Most larger terminals now adopt this configuration. Departures facilities are invariably at the high level with the baggage handling and arrivals facilities below. It is economic and convenient for both passenger and baggage movement: departing passengers arrive at an elevated forecourt and move either on the level or down a ramp to the aircraft loading point. Arriving passengers also move downwards to baggage reclaim and landside facilities. Vertical segregation. High passenger volumes, particularly with wide-bodied aircraft on long-haul routes, are best served by unidirectional circulation. Segregation could be either vertical or horizontal, but in practice the it has been found most feasible to have departing routes at high level with downwards circulation to the aircraft, and arriving passenger routes below.

2.14 Centralised or decentralised? Most terminals are centralized – 30.6 to 30.8 – with groups of functions, commercial, passenger and baggage processing, airline operations, etc. Centralisation gives economy of management if not passenger convenience. However, where control authorities are not needed as in domestic terminals, or where the prime concern is for passenger convenience, decentralisation has proved beneficial.

30.4 Diagram showing both passenger and vehicular flow patterns for a international plus domestic airport terminal

Terminals and transport interchanges

a Single-level terminal, generally applicable to small or domestic terminals Arrival and departure routes split horizontally as flow plan diagram 30.4

b Two-level terminal – jetway type (horizontal split)

c Two-level terminal – loading bridge type (vertical segregation)

30.5 Forms of typical terminals shown by cross-sections

30.6 Satellite configuration: Charles de Gaulle, Paris, France

30.7 Pier configuration: Heathrow, London, UK



Terminals and transport interchanges

a Common landside with piers: Baltimore Washington International Airport

30.8 Linear: New Munich Airport, Germany, opened 1992 b Common landside with satellite: Atanta Airport, Georgia

2.15 Hub terminals A hub terminal is defined as one supporting a number of scheduled flights converging on an airport all within a short space of time in order to catch another series of onward flights also within a short space of time. The flights are the spokes and the terminal is the hub. Short interchange periods can take place several times in one day. The distinction needs to be drawn between transfer passengers who change planes and transit passengers who stop at the airport but do not change planes. Most hub terminal experience worldwide is based on domestic traffic where the movement of passengers is not governed by frontiers with immigration and fiscal control. When and where airlines operate a mixture of international and domestic routes in a hub situation, passengers change from being international to domestic and vice versa. As well as the full normal range of facilities for originating passengers, hub terminals need facilities for disembarkation and reboarding of aircraft for the transfer passengers. Normally when no flights have been delayed, transfer passengers move rapidly between flights. Most will have no hold baggage, being business travellers using frequent services on heavily trafficked routes between business centres. The rest with hold baggage may need to reclaim it for customs control. Especially for them, walking distances and queueing times must be kept short.

2.16 Hub terminal baggage handling Successful terminals are said to depend on their baggage systems; hub terminals are no exception. Speed is even more vital in them; the transfer passenger is there only because the airline is unable to carry him or her directly from A to B. Transferring baggage from one aircraft to many others in a short time is very different from conventional manual or automatic sorting and make-up following check-in.

2.18 Hub terminal types Rarely will the whole operation be hub-based, so the systems for interchange and for other passengers have to related. There are two fundamentally different principles:

c Unit terminal: O’Hare Airport, Chicago

30.9 Hub terminal forms from US examples 2.19 Aircraft docking, terminal or remote The number of aircraft parking places needed normally requires extended structures such as piers or satellites to provide sufficient frontage. Consideration now needs to be given to the new generation of double-deck aircraft represented by the Airbus A380, which will typically accommodate 555 passengers who will ideally enter and exit the aircraft over two levels. Stands not connected physically to the terminal use coaches to carry passengers to and from it. Often these are superior types special to airport operation or mobile lounges which raise and lower to serve terminal and aircraft doors.

3 LANDSIDE FUNCTIONS 3.01 Arriving at or leaving the terminal by car or public transport These are the factors to consider: avoid vantage points useful to terrorists (see section • Security: 4.14 for further details on security). the whole forecourt or at least the private car • Commercial: section may be incorporated into the short-term or nearest car

hub terminal is part of a larger terminal, sharing kerbside, • The • check-in, etc. with other airlines, or It is a unit terminal exclusive to the hub airline. • • 30.9 illustrates three forms as US examples applicable to Britain. 30.9c was the solution adopted for Birmingham.

park. This will force motorists to pay for the privilege of parking close to the check-in area. Baggage: baggage trolleys should be available for passenger use. For heavy package tours traffic, with coaches setting down large pre-sorted amounts of baggage, a dedicated area and route to the baggage areas may be desirable. Airline needs: in large terminals shared by many airlines, signed sections of forecourt may be appropriate. Predicted changes: allow for predictable changes in traffic mix which may affect the modal split (the percentages of passengers arriving by car or bus).

Terminals and transport interchanges

3.02 Quantities to be assessed Hourly passenger flows: in the case of a combined departures and arrivals forecourt a planned two-way rate will be relevant. Estimated dwell time: an average of 1.5 minutes may be allowed for cars and taxis. Modal split: subject to local conditions, 50 per cent of passengers may use private cars and taxis. Many buses and coaches will call at the departures forecourt, but do not need dedicated set-down positions. To provide the shortest route for the greatest number of passengers, coach and bus bays should be nearest to the doors. However, in a single-level forecourt, designated pick-up and setdown bays for specific buses and coaches may be appropriate.

• • •

3.03 Typical space calculation based on 2000 originating passengers/hour: Number of passengers/hour at kerbside for cars þ taxis: 1000 Number of passengers per car or taxi: 1.7, say Number of cars and taxis: 1000/1.7 ¼ 588 per hour Time spent at kerb by each vehicle: 1½ minutes, say Number of cars and taxis at one time: 588/40 ¼ 16 Length of kerb per vehicle: 6 m þ 10 per cent Length of kerbside for cars and taxis: 105.6 m Overall rule of thumb: 1.0 m of total kerbside (including public transport) per 10 passengers/hour

• • • • • • • •

3.04 Waiting in a landside public concourse Policy decisions to be applied: entry to the concourse can be controlled by a security • Security: comb, but this is unusual as it does involve searching passengers

3.07 Typical space calculation based on 2000 terminating passengers/hour: Number of people per hour: 5000 (1.5 visitors/passenger) Number at one time (2000/6 þ 3000/2): 1833 Space per person (level of service A): 2.7 m2 Area required: 4949 m2. Some area may be in shops and catering spaces.

• • • •

3.08 Checking-in, with or without baggage Here passengers show their tickets, have seats allocated and if necessary have large items of baggage weighed (and possibly security screened) for registration and loading into the aircraft hold. Policy decisions to be applied: procedures are now being introduced whereby all • Security: baggage is searched by the airline’s security staff at entry to

• • • •

and visitors alike.

shopping and catering facilities will be appropri• Commercial: ate here, together with bureau de change (international terminal •

• • • • •

only), flight insurance sales office (departures), hotel bookings, car hire desks (arrivals) and post office. Provision for spectators may be made as well as a car park pay station for the benefit of car drivers seeing passengers off and meeting passengers. Baggage: all circulation areas should make allowance for baggage trolleys. Government controls: access to airside for staff. Airline needs: airlines require ticket sales desks and offices. Information systems: public display of information on flights and information desk. Predictable situations: provision may be needed for exceptional conditions occasioned by delayed flights, with additional seating and extra catering space, which may also be usable as airside.

3.05 Quantity factors to be assessed

passenger flows: two-way flow will be relevant where • Hourly there is to be a combined departures and arrivals area. ratio: a common ratio in the West would be 0.5 to 0.2 • Visitor visitors per passenger (with even lower ratios for certain

domestic traffic) and in the East or Africa 2.5 to 6 or even higher. Estimated dwell time: a common time would be 20 minutes in departures or, in arrivals, 10 minutes for passengers and 30 minutes for meeters and greeters.

3.06 Typical space calculation based on 2000 originating passengers/hour Number of people per hour: 5000 (1.5 visitors/passenger) Number at one time (peaking factor, say 50 per cent in 20 minutes): 2500 Space per person (level of service A): 2.7 m2 Area required: 6750 m2. Some area may be in shops and catering spaces.

• • • •


their check-in area, or by the check-in and security staff at the desk by means of X-ray units at or near the desk. The constraint is that the owner of the bag must be at hand at the moment of search in the event of a problem arising. Baggage: one or more delivery points may be required for outof-gauge baggage. Government controls: a customs check facility for certain heavy items of baggage may be provided in the check-in area. Airline needs: offices for airlines and handling agents will be needed with close relationship with the check-in desks and preferably with a visual link. Information systems: common user terminal equipment will make it possible to allocate desks to any airline at any time, thereby reducing the number of desks needed. Otherwise the number of desks required is the sum total of those required by each handling agent. Predicted changes: the biggest single change will arise from the predicted advent of automated ticketing and issuing of boarding passes. Information technology which links the manual (conventional check-in system with baggage registration) and automated system (where the passenger simply communicates with a small machine) will make it possible to reduce the number of check-in desks while retaining the necessary central control which check-in clerks have always had.

3.09 Quantities to be assessed

passenger flows: if CUTE is in use the total hourly flow • Hourly to all desks can be used to compute the number. Landside

• • •

transfer passengers to be included. Processing rate: commonly about 1.5 minutes/passenger, with faster rates for domestic passengers. Estimated dwell time: this is dependent upon the number of staffed check-in desks for each flight, but all check-in layouts have to make provision for queueing. Assume a wait of 20 minutes is acceptable to passengers. Percentage of passengers using gate check-in: this is a new facility and trends have yet to be established. Ten per cent usage of gate-check-in would be a reasonable assumption where the facility is provided, although it may only be available there for certain flights.

3.10 Typical space calculation based on 2000 originating passengers/hour: central check-in: This will be irrespective of the configuration of desks, 30.10. of passengers per hour: 2000 excluding transfers and • Number including gate check-in numbers number/hour (peak factor, say 50 per cent in • Equivalent 20 minutes): 3000 • Number of desks: 3000/40 ¼ 76


Terminals and transport interchanges

3.11 Pre-departure security check Factors to be considered: in the case of central security, take account of bag• Baggage: gage belonging to passengers using the gate check-in facility. controls: security control will be the responsibility • Government either of the government or of the airport authority. needs: some airlines conduct their own additional secur• Airline ity checks. changes: as the demand for security increases • Predictable changes can be expected.

3.12 Quantities to be assessed Hourly passenger flows: for central security and for gate security allow for transfer passengers. Processing rate: X-ray units handle 600 items per hour, with two X-ray units per metal detector archway, 30.11. Estimated dwell time: this is not calculable, since a problem item or passenger can rapidly cause a queue to build up. The security check should not unduly interrupt the flow of passengers. In reality staffing levels cannot totally eliminate queueing, and space for a long queue must be provided to avoid obstructing other functions.

• • •

a Linear, with manual handling

b Linear, with power handling

30.11 X-ray unit search of passengers and baggage 3.13 Typical space calculation This is based on 2000 originating passengers/hour at a central security check, 30.12. Assume two items of baggage or hand baggage per passenger One set of equipment consisting of a personnel metal detector and two 2 X-ray units can handle 600 passengers per hour. 2000 passengers per hour, excluding transfers, require 4 sets.


30.10 Check-in installations without security control depth might be 20 passengers at 0.8 m per person with • Queue check-in desks at approximately 2.0 m centres (max.) per person (level of service A): 1.6 m • Space Total queueing area: 76  2.0  16 ¼ 2432 m . Note that a dis• crete area is only applicable if there is a security-based

4.01 Immigration check Factors to be considered: a central security control brings this area under • Security: surveillance. controls: national policy determines the allocation • Government of separate channels for different passport holders. There may



separation between the landside public concourse and the check-in area.

also be customs checks here for which offices and detention rooms will be required. Predictable changes: changes to border controls within the European Union are an example of the effect of international policy making.

Terminals and transport interchanges


per person (level of service A): 2.7 m • Space Area required: 2700 m . Some may be in shops and catering • spaces. 2


4.07 Gate holding areas These should be able to hold 80 per cent of the number of passengers boarding the largest aircraft which can dock here. per person (level of service A): 1.4 m . • Space • Area for 400–seater aircraft: 320  1.4 ¼ 448 m . 2


a Frontal presentation

4.08 Baggage reclaim Here passengers await and reclaim their luggage which has been unloaded from the aircraft while they have been through the terminal and passing through the immigration control. Factors to consider: some means of delivering outsized luggage to the • Baggage: passengers is required. Also some passengers need to claim

• b Side presentation

their baggage after they have passed through to the landside, either because they have forgotten it or because for some reason it has arrived on a different flight. Information systems: display the numbers of reclaim units against the arriving flight numbers, particularly where passengers enter the reclaim area.

30.12 Immigration control desks, booths or open plan passenger 4.09 Quantities to be assessed Hourly passenger flows: passengers transferring on the landside need to reclaim their baggage. Processing rate: there are several ways of calculating throughput in baggage reclaim, but the one used here is from the IATA Airport Terminals Reference Manual. Reclaim devices should have a length of 30–40 m for narrow-bodied aircraft, 50–65 m for wide-bodied. Average occupancy times are 20 and 45 minutes respectively. Estimated dwell time: Commonly about 30 minutes. Number of checked-in bags per passenger: average 1.0, depending on whether the flight is long haul or short haul, although the flow calculation method used does not depend upon this factor.

• •

• •

4.03 Typical space calculation based on 2000 originating passengers/hour Number of passengers per hour: 2000 excluding transfers Number of desks required: 5.5, say 6 Area required at 25 m2 per desk: 150 m2, 30.12.

• •

4.02 Quantities to be assessed Hourly passenger flows: include landside transfers. Processing rate: commonly 10 seconds/passenger for departures, 30 seconds/international passenger and 6 seconds/ domestic passenger for arrivals.

• • •

4.04 Airside public concourse Here passengers wait, shop, eat, drink and move sooner or later to their flight departure gate. That point may be the people-mover leading to a satellite or the coach station serving remote stands. Factors to be considered: no further security checks will be needed where there • Security: is comprehensive centralised security at entry to the airside.

• • •

Otherwise checks may be made at each gate or entry to a lounge. Commercial: there will be shopping and catering facilities here, particularly duty-free. Airline needs: airlines will have specific requirements at the gates. They often have CIP (commercially important passengers) lounges for first-class and business-class passengers. Information systems: full information on flight numbers, departure times, delays and gate numbers must be provided, throughout but especially at the entries.

4.05 Quantities to be assessed Hourly passenger flows: include landside and airside transfers. Estimated dwell time: commonly about 30 minutes.

• •

4.10 Typical space calculation based on 2000 terminating passengers/hour Number of passengers per hour: 2000 excluding transfers Number of passengers at one time: 1000 Space per person (level of service A): 1.6 m2 Area required: 1600 m2 (a minimum inclusive of waiting area).

• • • •

However, the important calculation is for the required number of reclaim units and the space round each for a flight load of passengers waiting: Assume 50 per cent of passengers arrive by wide-bodied and 50 per cent by narrow-bodied aircraft. of passengers per narrow-bodied aircraft at 80 per cent • Number load factor: 100 of passengers per wide-bodied aircraft at 80 per cent • Number load factor: 320 Number of narrow-bodied devices: 1000  (3  100) ¼ 3.3, • say 4 Number of wide-bodied devices: 1000  (1.33  320) ¼ 2.35, • say 3 Space (level of service A): 1.6 m • Waitingperareaperson for narrow-bodied device: 160 m • Waiting area for wide-bodied device: • Total waiting area: 4  160 þ 3  512512¼m2176 m (excluding • central waiting space at entry to baggage reclaim area) 2



4.06 Typical space calculation based on 2000 originating passengers/hour Passengers per hour: 2000 excluding transfers. Passengers at one time: 1000

• •


30.13 shows types of baggage reclaim installation.


Terminals and transport interchanges

circular arousal

oval carousel


linear track

30.13 Four types of baggage reclaim installation

4.11 Inbound customs clearance Factors for consideration: customs officers are increasingly on the lookout for • Security: narcotics, weapons and explosive devices rather than contraband.

controls: offices and search rooms will be required. • Government Determine type of surveillance. changes: changes to border controls within the • Predictable European Union post-1992, and the introduction of the blue channel for EU citizens moving freely between member states are an example of the effect of international policy making.

4.12 Quantities to be assessed Hourly passenger flows: include landside transfers. Processing rate: allow 2 minutes per passenger searched.

• •

4.13 Space calculation based on 2000 terminating passengers/hour Area required if rule of thumb is 0.5 m2 per passenger per hour: 1000 m2.

4.14 General security considerations Planning for security should be a priority in the design of any transport facility; designing a terminal or other transport-related building without considering security could result in costly (and unsightly) retrofits. Advance planning is essential, and designs should be drawn up within a predetermined vulnerability and security assessment. It is worth bearing in mind that one of the most effective ways of ensuring security is the alertness of staff and passengers; buildings need to be designed to allow security personnel and other staff to do their jobs effectively by, for example, maximising clear views. Security is also enhanced by making the boundaries between different zones clearly identifiable. On the other hand, security cannot become the overwhelming design priority such that airport operations are unacceptably compromised, the passenger experience becomes unacceptable and costs become prohibitive. Although it is physically possible to design a terminal in the manner of a highly-secure fortress, there is a balance to be struck. One of the most vulnerable areas of an airport terminal is the landside zone where many hundreds of people are dropped off and gather with large items of luggage. Trying to ensure that people do not enter the terminal with weapons or explosives may mean moving

Terminals and transport interchanges 30-11

security screening facilities to the ‘front door’ to create a ‘sterile’ terminal. This creates significant design issues, which includes the separation gap between vehicles and the terminal itself. Designers of airport buildings must now consider the effects of a bomb blast. US authorities consider that ensuring terminal buildings are provided with a ‘medium’ level of blast protection is sufficient; this means accepting that serious damage may be sustained, but that the primary structure will remain standing and possibly even be reuseable after a blast. Key facilities, such as the air traffic control tower and fuel depots, as well as key power, communication and telecoms facilities, need to be given a high degree of protection and located away from public access.

5 AIRCRAFT AND APRON REQUIREMENTS 5.01 Baggage handling 30.14 shows a container and trailer used to assemble baggage. The manoeuvring of trains of these trailers determines the layout of baggage loading and unloading areas.

5.02 Loading bridges 30.15 shows three types of loading bridges, otherwise known as airbridges, air-jetties or jetways, which connect terminal to aircraft.

5.03 Apron servicing 30.16 shows apron servicing arrangements with all necessary vehicles clustered around a parked aircraft. They determine the space requirement. Alternatively, fuel can be supplied by subapron hydrants and power by connection through the loading bridge.

5.04 Office, workshop, store and staff facilities will be required adjacent to the apron.

Two particular trends have affected urban bus and coach operations: buses for economy, and • One-driver Deregulation companies with new operating methods • and equipmentwithsuchnewas minibuses. 6.02 Vehicles A variety of bus and coach types are now used, 30.17 to 30.19. Turning dimensions are shown in 30.20 to 30.22. A kerbside bus stop in a layby is shown in 30.23. Overall length is A þ n B þ C, where n is the number of buses to be accommodated. So for one stop 44.6 m, two stops 56.8 m and three stops 69 m. 6.03 Factors affecting size of station Apart from the physical site constraints, station size is governed by the following: Number of bays to be incorporated (the term bay is used in bus • stations instead of bus stop), determined by the number of ser-

vices operated from the station; and by how practical it is, related to the timetable, to use each bay for a number of service routes. Vehicle approaches to the bays. Three types of manoeuvre are used, 30.24. The ‘saw-tooth’ is further explored in 30.25 and 30.26.

The choice of manoeuvre will be influenced by the size and shape of the available site, the bus operators’ present and anticipated needs, and in particular the preference of their staff. Some will accept the saw-tooth arrangement while others prefer the drive-through. The required area of the site is further increased by the need for lay-over. This is when vehicles are parked after setting down passengers, but which are not immediately required to collect more passengers. The layout for this should be as for parking, 30.27 and 30.28, preferably so that no vehicle is boxed in or interferes with other bus movements. Economy of space may be achieved, again dependent upon timetables, by using spare bays for lay-over purposes. for passengers: these will depend entirely upon antici• Facilities pated intensity of use and existing amenities. If, for example,

6 BUS AND COACH STATIONS 6.01 A bus station is an area away from the general flow of road vehicles, which enables buses and coaches, to set down and pick up passengers in safety and comfort. The best locations are near shopping centres or other transport terminals. An airport terminal bus station is shown in 30.2.

there are already public toilets, a bus and coach information centre and cafe´s nearby, then these will not be required on the station concourse. However, waiting room facilities may be required with someone on hand to give information and supervision. In more comprehensive schemes consider: Waiting room Buffet Public toilets Kiosks Enquiry and booking Left luggage Lost property. for staff: there are invariably inspectors who, as • Facilities well as assisting passengers, are primarily concerned with

30.14 Baggage handling transport: double container dolly

organising the movements of vehicles, and supervising their drivers and conductors. If there is a depot near the station then staff facilities will be provided there. If not, canteen and toilets facilities will be needed for staff on the station site, so that during breaks and between shifts they do not need to get back to the depot until they return their vehicle for long-term parking. Should the depot be even more remote, all facilities should be provided at the station and only basic amenities at the depot. In addition to those listed above these include a recreation area, locker rooms and a facility for paying in takings. This would be an office where drivers or conductors


Terminals and transport interchanges

radial drive


apron drive

30.15 Loading bridge types: plans and elevations (continued over)

Terminals and transport interchanges 30-13


30.15 Continued

30.16 Servicing arrangements for passenger model Boeing 747–100/200B þ C. Under normal conditions external electric power, airstart and air conditioning are not required when the auxiliary power unit is used

check, then hand over monies taken as fares, which in turn are checked and accounted for by clerical staff. Secure accommodation for any cash that cannot be immediately banked will be needed. Facilities for vehicle maintenance: the inspection, repair and servicing of buses and coaches is an integral part of an operator’s responsibility. Normally such work would be carried out at

a local depot, with a repair workshop together with fuelling, washing and garaging facilities. The provision of any such facility within a station complex is unusual, but not unique. For a new town bus station or one where it will be difficult and time consuming to drive to and from the station and depot because of traffic congestion, it would be advantageous to provide at least a workshop.


Terminals and transport interchanges

30.17 Single-decker bus

30.18 Articulated bus

30.19 Double-decker bus

30.20 Rigid 12 m vehicle turning through 90

Terminals and transport interchanges 30-15

30.21 Rigid 12 m vehicle turning through 180

30.22 17 m articulated vehicle turning through 180

30.23 A lay-by with one bus stop, assuming normal urban speed of approach. The transition length of 16.2 m is the minimum for a 12 m rigid vehicle. Three bus stops is the desirable maximum in a lay-by, the maximum comfortable distance for a passenger to walk


Terminals and transport interchanges

a Shunting, where a vehicle only sets down passengers on the concourse before moving off to park pick up more passengers. This avoids waiting to occupy a pre-determined bay, and reduces effective journey time

b Drive-through bays are fixed positions for setting down and/or collecting passengers. They are in a line, so a vehicle often has to approach its bay between two stationary vehicles. In practice it is often necessary to to have isolated islands for additional bays, with the inevitable conflict between passenger and vehicle circulation

c ‘Saw-tooth’ layouts have fixed bay positions for setting down and/or collecting passengers with the profile of the concourse made into an echelon or saw-tooth pattern. In theory the angle of pitch between the vehicle front and the axis of the concourse can be anything from 1° to 90°; in practice it lies between 20° and 50°. The vehicle arrives coming forward, and leaves in reverse, thus reducing the conflicts between vehicle and passenger circulation, but demands extra care in reversing

30.24 Vehicle manoeuvres used in approaching parking bays

30.25 As the angle of pitch in saw-tooth bays increases so does the distance between each bay

Terminals and transport interchanges 30-17

30.26 Passenger safety and control are particularly important when detailing saw-tooth bays

30.28 Coach park for random arrival and departure of vehicles. The larger bay size (4 m) is necessary if coach parties enter and leave the coaches in the park within a centre-town commercial development in the south-east of England, and illustrates this. The predominant company (which is a local one) favoured the saw-tooth layout, while the other preferred the drive-through arrangement. Full use has been made of a restricted site, and conflict between passenger and vehicular circulation has been minimised.

7 RAILWAY STATIONS 7.01 This section covers platform and related bridges only. In other respects railway stations have the common components of all passenger terminals: concourses, ticket offices, commercial outlets and catering and sanitary facilities.

30.27 Bus garaging layout for where the buses are parked in a pre-determined order to get the maximum number of buses in the available space, subject to the fire officer’s limitations

6.03 Whatever facilities are to be provided on the station site, the final arrangement must be carefully planned, 30.29. 6.04 Joint company use If two or more bus and coach companies operate from the same station, this can mean that different types of vehicle manoeuvre are used on one site. 30.30 is based on a proposal for a new station

7.02 Dimensional standards for railways These have progressively converged in Europe ever since the days of ‘the battle of the gauges’. However, the near-standardisation of the wheel gauge has not been matched by the loading gauge. Mainland Europe has built coaches and freight containers to larger cross-sections than in the UK. The advent of the Channel Tunnel in 1994 has highlighted the two principal standards for all-purpose stock while at the same time setting new and quite different standards for dedicated railway stock. The tunnel can accommodate 800-metre long trains of freight wagons 5.6 m high, but the passenger coaches in these trains are built to the British standard to fit under British, and therefore all bridge structures. Note that clearance dimensions are valid for straight and level track only. Due allowance must be made for the effects of horizontal and vertical curvature, including superelevation. Note that the DoT standard states that, to permit some flexibility in the design of overhead equipment, the minimum dimension between rail level and the underside of structures should be increased, preferably to 4780 mm, or more, if this can be achieved with reasonable economy 30.31 and 30.32 show European and British platforms and bridge structures in section. Platform heights in freight terminals are shown in 30.33. Platform lengths can vary, but 250 m is common for main-line stations. The Eurostar London–Paris and London–Brussels services exceptionally use trains 400 m long.


Terminals and transport interchanges

a In a small town where all services run through

b For a medium-sized town with both terminal and intransit services

c For a large new town

30.29 Relationship diagram for different types of bus station

Terminals and transport interchanges 30-19

30.30 Bus station accommodating two bus companies, each with different bay requirements

30.31 Cross-section: controlling dimensions for railway structures, European (Berne gauge) standard


Terminals and transport interchanges

30.32 Cross-section: controlling dimensions for railway structures, BR standard

30.33 Container waggon floors have different heights, and may also vary up to 100 mm in laden and unladen conditions

8 TRAMS AND LIGHT RAIL There are a wide variety of these installations. 30.34 shows a typical light rail car designed to facilitate use by wheelchair users.


30.34 Manchester Metrolink: a typical modern tramway system. Frontal view of a car, showing level access for wheelchairs from a high-level platform

9.01 Books and articles Ashford Stanton and Moore, Airport Operations, NY, Wiley Interscience, revised by Pitmans, 1991 Christopher J. Blow, Airport Terminals, London, Butterworth Architecture, 2nd edition 1996 Department of Transport, Railway construction and operations requirements, structural and electrical clearances, HMSO, 1977 Brian Edwards, The Modern Station, E&F Spon, 1999 Brian Edwards, The Modern Terminal, E&F Spon, 1998 W. Hart, Airport Passenger Terminals, NY, Wiley, 1986 Institution of Civil Engineers, Proceedings of the World Airports Conferences, London, 1973, 1976, 1979, 1983, 1987, 1991, 1994

Terminals and transport interchanges 30-21

International Air Transport Association, Airport Development Reference Manual, Montreal, Canada, 8th edition 1995. Supplemented by Airport Terminal Capacity computer programme. International Civil Aviation Organisation publications. ‘‘Recommended Security Guidelines for Airport Planning, Design and Construction’’ from the US Transportation Security Commission (last revised 15 June 2006)

9.02 Specialist journals Airports International Jane’s Airport Review Passenger Terminal World

Metric 30 terminals and transport interchanges  
Metric 30 terminals and transport interchanges