Tom tat cong thuc xstk

Page 1

Tóm tắt công thức

-1-

Tóm tắt công thức Xác Suất - Thống Kê I. Phần Xác Suất 1. Xác suất cổ điển  Công thức cộng xác suất: P(A+B)=P(A)+P(B)-P(AB).  A1, A2,…, An xung khắc từng đôi  P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).  Ta có o A, B xung khắc  P(A+B)=P(A)+P(B). o A, B, C xung khắc từng đôi  P(A+B+C)=P(A)+P(B)+P(C). o P ( A)  1  P( A) . P( AB) P( AB)  Công thức xác suất có điều kiện: P( A / B)  , P( B / A)  . P( B) P( A)  Công thức nhân xác suất: P(AB)=P(A).P(B/A)=P(B).P(A/B).  A1, A2,…, An độc lập với nhau  P(A1.A2.….An)=P(A1).P(A2).….P( An).  Ta có o A, B độc lập  P(AB)=P(A).P(B). o A, B, C độc lập với nhau  P(A.B.C)=P(A).P(B).P(C).  

Công thức Bernoulli: B(k ; n; p)  Cnk p k q nk , với p=P(A): xác suất để biến cố A xảy ra ở mỗi phép thử và q=1-p. Công thức xác suất đầy đủ - Công thức Bayes o Hệ biến cố gồm n phần tử A1, A2,…, An được gọi là một phép phân  A . A  i  j;i, j 1, n hoạch của    i j  A1  A2  ...  An   o Công thức xác suất đầy đủ: n

P ( B )   P ( Ai ).P ( B / Ai ) P ( A1 ).P ( B / A1 )  P ( A2 ).P ( B / A2 )  ...  P( An ).P( B / An ) i 1

o Công thức Bayes: P( Ai ).P( B / Ai ) P( Ai / B)  P( B) với P ( B )  P ( A1 ).P ( B / A1 )  P ( A2 ).P( B / A2 )  ...  P( An ).P( B / An ) 2. Biến ngẫu nhiên a. Biến ngẫu nhiên rời rạc  Luật phân phối xác suất X x1 x2 … xn P p1 p2 … pn với pi  P ( X  xi ), i  1, n. Ta có: n

 pi  1 và P{a  f(X)  b}=  i 1

pi

a f(xi b

-1-

XSTK


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.