Dartmouth College Dartmouth College
Dartmouth Digital Commons
Dartmouth Digital Commons
Dartmouth College Master’s Theses Theses and Dissertations
Summer 9-26-2024
Design, Characterization, and Simulation of a 2D Dual-Rail
Design, Characterization, and of a 2D
Quantum Processor Quantum Processor
Diego Barrutia
Follow this and additional works at: https://digitalcommons.dartmouth.edu/masters_theses
Part of the Nanoscience and Nanotechnology Commons, and the Quantum Physics Commons
Design,Characterization,andSimulationofa2DDual-RailQuantum Processor
AThesis
SubmittedtotheFaculty inpartialfulfillmentoftherequirementsforthe degreeof
MasterofScience in EngineeringSciences
byDiegoBarrutiaAlta
ThayerSchoolofEngineering GuariniSchoolofGraduateandAdvancedStudies
DartmouthCollege Hanover,NewHampshire
September2024
ExaminingCommittee:
Chairman_______________________ MattiasFitzpatrick,PhD
Member________________________ LauraRay,PhD
Member________________________ JifengLiu,PhD
F.JonKull,Ph.D. DeanoftheGuariniSchoolofGraduateandAdvancedStudies
Member________________________ RufusBoyack,PhD
Abstract
Bosonicsystems,suchasthree-dimensional(3D) 4 coaxialcavitiesandtwo-dimensional (2D) 2 coplanarwaveguide(CPW)resonators,arequantumharmonicoscillatorsthat encodeinformationinphasespace,o↵eringahardware-e cientroutetowardquantum errorcorrectionandsimulationinsuperconductingcircuits.Inthisthesis,wepresent thedesign,characterization,andsimulationofadual-railprocessorconstructedwith a2D 2 coplanarwaveguideresonators,demonstratingapercenterrorbetweenexperimentalandanalyticalresultswithinarangeof3.31%-13.16%.Theanalyticalresults exhibithighprecisionbutloweraccuracyrelativetoexperimentalmeasurements.By integratingbothclosed-sourceandopen-sourcesoftwaretools,wedevelopane cient workflowforextractingcriticalsystemparametersandsimulatingquantumdynamics. Ourapproachprovidesinsightintoadesignlayoutofafullyplanardual-railarchitecturetocontributeinthedevelopmentofscalable,fault-tolerantquantumprocessors.
ListofFigures
1.1Adaptedfrom[8].Designsofsuperconductingresonatorsandtheir lifetimes.(a)Illustrationsoftwopopularresonatordesignsinbosonic cQED,withindicationsoftheirapproximatesizesandelectricfielddirection.(b)Aselectedcollectionofresonator T1 lifetimesforthetwoillustratedresonatordesignsextractedfromtheliterature.Thelifetimes ofresonatorshavebeensteadilyincreasingoverthelast15yearsdueto theengineeringofmaterialsandgeometries.Theshapeofthepoints indicatesthesuperconductingmaterial,andthecolorcorrespondsto theadjacentdiagrams.Wehighlightstudiesthatsuccessfullyintegrate oneormorenonlinearcircuitswithablackborder.References:CPW: [9,10,11,12,13,14,15],3D 4 coaxialcavity:[16,17,18,19,20]..3
2.1IllustrationofaJosephsonjunction.(a)Cross-sectionalviewshowing quantumtunnelingacrosstheinsulatingbarrier(oxidebarrier)sandwichedbytwoelectrodes.(b)Topviewofashadow-evaporatedDolan BridgeJosephsonjunctioninbetweentwoaluminumlayers(greyand red).Thequantumtunnelingoccursinthenarrow,finger-stylestructure,showninthezoomed-inarea....................10
2.2SchematiccircuitrepresentationofaCooperpairbox.Theisland isseparatedfromtherestofthecircuitbyacapacitor Cg andthe Josephsonbarrier.............................13 x
2.3Adaptedfrom[54].TheCooperpairboxisanalogoustoacharged, sti↵-rodquantumrotorinaconstantmagneticfieldrepresentedby ng .Therotor’spositionisdeterminedbythephase ',anditsangular momentumisdescribedbythediscreteoperatorˆ n...........14
2.4Adaptedfrom[54].Thisfigureillustratestheenergylevelsfordi↵erent ratiosof EJ /EC .Increasingthisratio,achievedbyshuntingtheCooper pairboxwithalargecapacitance,reducesthestrongdependenceon gatebias ng andthusminimizessensitivitytochargenoise.Thearrows in(a)indicatethesweetspot.Theregimedepictedin(d),where EJ EC ,isknownasthetransmonregime..............17
2.5Comparisonoftheenergylevelspacingbetweenaharmonicoscillator andatransmonqubit.Theharmonicoscillator’squadraticpotential resultsinequidistantenergylevels,allseparatedbythesameenergy, whichmakesitunsuitableforuseasaqubit.Incontrast,thetransmon qubit,withitscosinepotential,hasvaryingtransitionenergiesbetween subsequentenergylevels.Thisvariationallowsforprecisecontrolover individualtransitionsbetweentransmonstates.............18
2.6TheBlochsphereforageneralqubit.Thebluecirclesindicatethe sixcardinalstates: {|0i , |1i , |+i , | i , |+ii , | ii}.Thepurplelines indicatethepolarangle ✓ andtheazimuthalangle ..........25
2.7Lorentzianshapeofthequbitspectrum.Thelinewidth arisesfrom thedephasingrateandisdefinedbythefull-width-half-maximum(FWHM) ofthespectrum...............................31
3.1 TransmonCross:Transmonwithadjustabledimensions.........36
3.2 CapInterdigital:Interdigitalcapacitorwithadjustabledimensions.36
3.3CreatingaDesignPlanarobjectandinitializingitsGUI........38
3.4Metalcodeforgeneratinga TransmonCross...............40
3.5 TransmonCross designinMetal......................40
3.6Metalcodeforgeneratingadual-railsystemcoupledtotwoauxilliary TransmonCross...............................41
3.7Dual-railcoupledtotwo TransmonCross showninMetalGUI.....42
3.8Metalcodeforsettingupandrunningasimulationforadual-rail systeminHFSS..............................45
3.9(a)PlotsoftheeigenmodesobtainedusingHFSSforthedualrailchip design,showcasingthedistributionofelectromagneticfieldsforte two TransmonCross andthetwo RouteMeander.(b)FrequenciescorrespondingtoeachresonantmodefromANSYSHFSS.Both TransmonCross hasJosephsonJunctionwithinductanceof10nHandhavealmostidenticalresonantmodeasreportedinMode1andMode2.The500MHz di↵erencebetweenthesetwomodes,despitethedual-railshavingthe sameresonatorlengthandgeometry,istheresultofhybridization.(c) Illustrationofthefirstharmonicmodeforanopen-endharmonicoscillator,highlightingthedistributionofnodesatthecenterpointand antinodesattheopenendofthelengthharmonicstructure......45
3.10CodetoinitializeANSYSQ3Dforcapacitanceextraction.......48
3.11Methodoverview.(a)Illustrationofthesingledual-railsystem(partial,not-to-scale).Left: TransmonCross 1(purple)withHamiltonian
ˆ H0 connectedtoCPWwithHamiltonian ˆ H1 .Right: TransmonCross 2(orange)withHamiltonian ˆ H2 connectedtoCPWwithHamiltonian
ˆ H3 .Thelayoutisdividedintosubsystemsandcells.(b)Example simulationmodelofcell0 andcell1 withsimulationmesh.Thecells includequbitpads B0 and B2 ,CPWcouplerfingers B1 and B3 ,and thegroundsegment G consideredforthecapacitancematrix.(c)Partialschematicofthecomposite-systemnetworkshowingnodesand elementsofcell0 andcell1 ,andtheirconnectionstoneighboringcells. Nodesarecapacitivelycoupledbyafully-connectedgraph(thickline). AJosephsonjunctionconnects B0 to G and B0 to G.(d)Depictionof dressedsubsystemsasbuildingblocksandtheirinteractions,described byHamiltonians ˆ H01 , ˆ H03 , ˆ H12 , ˆ H13 ,and
3.12CodetosetupANSYSQ3Dandextractcapacitancematrix......50
3.13 Q1 capacitancematrix,withvaluesexpressedinfF...........50
3.14CompositesystemconstructionforonetransmonscoupledbyaCPW.52
3.15Criticalparametersprintedfrom hilbertspace object.........53
3.16CompositesystemHamiltonianinGHz..................54
3.17Variablestouseintheequations.....................54
3.18Pythonfunctionsforcalculating q,r , gq,r ,and Cr ............55
3.19Experimental(red)vsanalytical(blue)transmonfrequencyresultsfor apre-characterizedquantumprocessorhostingsixtransmons Q1, Q2, Q3, Q4, Q5, Q6................................57
3.20Experimental(red)vsanalytical(blue)trasmonanharmonicitiesresultsforapre-characterizedquantumprocessorhostingsixtransmons
3.21Experimental(red)vsanalytical(blue)trasmonanotherimportantresultsforapre-characterizedquantumprocessorhostingsixtransmons Q1, Q2, Q3, Q4, Q5, Q6...........................58
3.22Micrographofthedevice.Thefalsecolorsrepresenttheelementsof thelumpedelementmodel,asshowninthetoprightinset.Signals enterthesystemthrougheitherofthetwofeedlines(black).The Purcellfilter(green)isa 2 standingwaveresonator,openatboth ends,andisstronglycoupledtothefeedline,withanimpedancemismatchbetweenthemactingasafilteringstep.ThisPurcellfilteris weaklycoupledtothereadoutresonator(blue),whichisinturncoupledtothequbit(red).Signalsinjectedintothefeedlinearemostly reflectedattheweaklycoupledinterfacebetweenthePurcellfilterand thereadoutresonator.Thetransmittedenergythatreachesthereadoutresonatorexcitesitsresonance,whichinteractswiththequbit. Theresultingmodulatedsignal,influencedbythequbitstate,isthen transmittedbackthroughthePurcellfilterandexitsthroughthesame feedline.Theredarrowindicatesthepathbywhichenergyleaves thefilterthroughawirebond(notshown)andenterstheexternaldetectionhardware,includingaparametricandHEMTamplifier.This S(2,1)measurementenablesthereadoutofthequbitstatebyanalyzing changesinthetransmittedsignal’samplitudeandphase........60
3.23Cross-sectionofaCPWresonatorshowingE-fielddistribution(V/m) ata318.8phase..............................62
3.24DiagramoftheinterdigitalcapacitordesignbetweenthePurcellfilter andthefeedline,labeledwithPort1andPort2,alongwiththecorresponding Z0 impedanceplot.Theimpedanceplotshowstherealpart oftheimpedanceatbothportsacrossafrequencyrangeof1to10GHz. Port1exhibitsanimpedanceofapproximately89.5ohms,whilePort 2showsanimpedanceofabout85.5ohms,bothdeviatingsignificantly fromthestandard50-ohmcharacteristicimpedance.Thisintentional impedancemismatchenhancestheresonator-filtercouplingbycreating ahigh-impedanceenvironmentthatoptimizessignaltransmissionand minimizesunwantedreflectionsattheoperationalfrequencies.....63
3.25S-parameterplotshowingthereflectionandtransmissioncharacteristicsoftheinterdigitalcapacitordesignintheresonator-filtercoupling system.Theplotincludesthereturnloss(S (1, 1)and S (2, 2))and transmissioncoe cients(S (1, 2)and S (2, 1))betweenPorts1and2, demonstratingthefrequency-dependentbehaviorofthesystemand thee↵ectivenessoftheimpedancemismatchinachievingthedesired coupling...................................64
3.26Flux-tunabletransmoncomprisedoftwoJosephsonjunctioninparallel withashuntingcapacitortotheleft.Themagneticfluxisthreaded andinducedbysendingcurrentinthefluxlinetotherightofthe Josephsonjunctions.Aslotlineisaddedbetweenthefluxlineandthe flux-tunabletransmontoprotectthetransmonfrompotentialexeternal noiseresources...............................68
3.27Qubittransitionfrequency fqubit asafunctionofnormalizedmagnetic flux / 0 foradual-railtransmon.ThecolorscaleindicatestheasymmetrybetweenthetwoJosephsonjunctionsintheSQUIDloop....69
3.28Capacitancematrixbetweenthedriveline bus left connector arm Q1, thetransmon cross Q1,andground ground main plane.Thecapacitancebetweenthedrivelineandtransmon(redbox)isengineeredto be0.1fF..................................70
3.29Heatmapsofthecubic(c3 )andquartic(c4 )nonlinearcoe cients,obtainedviasymbolicdi↵erentiationoftheSNAILpotential,asfunctions ofthereducedexternalflux ext / 0 andtheratio betweenthelarge andsmallJosephsonjunctionenergies.Theblackcrossesmarkthe chosenwhere c3 isnonzeroand c4 isclosetozero,indicatingminimal Kerrnonlinearity..............................71
3.30Flux-tunableSNAILcomprisedofthreelargeJosephsonjunctionand asinglesmallerjunctionwithashuntingcapacitortotheleft.The magneticfluxisthreadedandinducedbyacurrentcominginfromthe
4.1Constructing |1i asa Qobj inQuTiP..................78
4.2LoweringandFockstateoperatorconstructions.............80
4.3LoweringandFockstateoperatorconstructions.............81
4.4Initialstatevectorconstructionwithauxiliarytransmonsintheexcited state.....................................81
4.5Evolvesystemwith mesolve.Notethatsincethecollapseoperatorlist c ops isempty,the mesolve usestheSchrodingerequation.....82
4.6Calculatingoccupationprobability....................83
4.7Occupationprobabilityof Transmon1, Transmon2, Cavity1Mode 1, Cavity1Mode2, Cavity2Mode1,and Cavity2Mode2 with Transmon1 and Transmon2 initiallyintheexcitedstateandtherest ofthesysteminthegroundstate.....................84
4.8 H driveTI and H driveTD functions...................85
4.9BeamsplitterinteractionsdefinitionforthedrivingHamiltonian ˆ HDrive 86
4.10 ˆ HDrive function...............................86
4.11Occupationprobabilityof Transmon1, Transmon2, Cavity1Mode 1, Cavity1Mode2, Cavity2Mode1,and Cavity2Mode2 with Transmon1 and Transmon2 initiallyintheexcitedstateandtherest ofthesysteminthegroundstate.....................87
4.12BosonicQiskitcodeforgeneratingazero-photonFockstate......88
4.132Dand3DWignerfunctionrepresentationofthevacuumstatewith respecttothequadraturesoperators ˆ X andmomentum ˆ P .......90
4.14Firstexcitedlevelwithrespecttothequadraturesoperators ˆ X and momentum ˆ P .Thenegativityofthedistribution,aclearproofofthe non-classicalcharacterofthestate,isevidentaroundtheorigin....91
4.15BosonicQiskitcodeforgeneratinganevencatstate..........93
4.162Dand3DWignerfunctionrepresentationofanevencatstateinterms ofquadratures ˆ X and ˆ P ..........................94
4.17Quantumcircuittocreateanevencatstateillustratingacontrolled operationonaqubit-resonatorsystemwithaqumodcuto↵ dimension of24 .....................................94
4.18BosonicQiskitcodeforgeneratingan+ZGKPcodeword.......95
4.192DWignerfunctionrepresentationofanevencatstateintermsof quadratures ˆ X and ˆ P ...........................96
4.20Quantumcircuittocreatea+ZCKPcodeworkillustratingacontrolledoperationonaqubit-resonatorsystemwithaqumodcuto↵ dimensionof24 ...............................97
4.21BosonicQiskitcodeforgeneratingbeam-splitterinteractionbetween twodual-rails................................99
4.22Simulationofbeam-splitterinteractionbetweenfourqumodeswith hoppingrateJandbeam-splitterinteractionstrengthU.Weinitialize thesystemsuchthat Dual-Rail1Mode1 and Dual-Rail2Mode
2 have6photonseach,and Dual-Rail1Mode2 and Dual-Rail2 Mode1 arevacant.Theaveragephotonnumberasafunctionoftime forvariousJ/Uisshownwhenthemicrowavepumpisdrivenatthe detuningbetween Dual-Rail1Mode1 and Dual-Rail2Mode1..100