John E Freunds Mathematical Statistics With Applications 8th Edition Miller Solutions Manual Visit to Download in Full: https://testbankdeal.com/download/john-e-freunds-mathema tical-statistics-with-applications-8th-edition-miller-solutions-manual/
3.1 (a) No, because f(4) is negative; (b) Yes; (c) No, because f(1) + f(2) + f(3) + f(4) = 18 19 is less than 1.
3.2 (a) No, because f(1) is negative; (b) Yes; (c) No, because f(0) + f(1) + f(2) + f(3) + f(4) + f(5) is greater than 1.
3.3 ()0fx for each value of x and
thus
(c) 2 11 ()(,2)
From Theorem A.1 we obtain 1 (,2)(1)(21) 6 Skkkk
Thus, for ()fx to be a distribution function, 6 , 0 (1)(21) ck kkk
1 () 4
x xx fxc
1 1 1/41 4 1 3/43 1 4 n Sn as n . Therefore, 3 c .
3.6 For c > 0, f(x) diverges. For c = 0, f(x) = 0 for all x, and it cannot be a density function
3.9 (a) No, because (4)1; F (b) No, because (2)(1);FF (c) Yes.
John E Freunds Mathematical Statistics With Applications 8th Edition Miller Solutions Manual Visit TestBankDeal.com to get complete for all chapters
23
Chapter3
Copyright © 2014 Pearson Education, Inc.
1
k x kk fxkkkkk
C
c ;
, 12 137 c
22(1) ()(12)1 (1)(1)2
3.4 (a) (1235)1; c
1 15
(b) 555 511 234
thus
kk xx fxcxcSk
(d) 11
The right-hand sum is a geometric progression with a = 1 and r = 1/4. For x = 1 to n, this sum equals
3.5 For ()(1) fxkkx to converge to 1, 0 < k < 1.
24 MathematicalStatistics,8E Copyright © 2014 Pearson Education, Inc. 3.10 41 (0); 205 f 26123 (1), 20205 f 41 (2) 205 F ()Fx 0 1/5 4/5 1 0 01 12 2 x x x x 3.11 (a) 511 632 ; (b) 111 236 ; (c) 1 (1) 3 f , 1 (4) 6 f , 1 (6) 3 f and 1 (10), 6 f 0 elsewhere. 3.12 ()Fx 0 1/15 3/15 6/15 10/15 1 1 12 23 34 45 5 x x x x x x 3.13 (a) 3 4 (b) 311 424 (c) 1 2 (d) 13 1 44 (e) 311 442 (f) 31 1 44 3.14 3 (1) 25 f , 4 (2), 25 f 5 (3) 25 f , 6 (4) 25 f , 7 (5) 25 f ()Fx 0 3/25 7/25 12/25 18/25 1 1 12 23 34 45 5 x x x x x x 63 (1) 5025 F , 147 (2) 5025 F , 2412 (3) 5025 F , 3618 (4) 5025 F , 50 (5)1 50 F , checks 3.15 (a) 111 ()1()1() PxxPxxFx for i = 1, 2, …, n (b) 11 ()1()1() ii PxxPxxFx for i = 2, …, n and 1 ()1Pxx
Chapter3 25 Copyright © 2014 Pearson Education, Inc. 3.16 0 1 ()(2) 5 1 Fxx 2 27 7 x x x 3.17 (a) 7 2 7 111 ()(72)1 2 555fxdxdxx (b) 5 3 112 (53) 555 dx 3.18 (a) ()0,fx 0, x and 0 00 ()1 x fxdxedxe (c) 1 1 (1) x Pxedxe 3.19 (a) ()0,fx 01 x and 1 0 ()1fxdx (c) 0.5 2 0.1 (0.10.5)30.124 Pxxdx 3.20 (a) 3.2 2 3.2 111 (1)(8.324)0.54 2 8828 yz ydyy (b) 3.2 2.9 3.2 111 (1)(8.327.105)0.1519 2.9 8828 x y ydyy 3.21 222 2 11111 (1)44 2 88282882 y y tyy tdtyyy 2 0 2 1 ()4 24 82 1 4 y y Fyyy y (a) 13.22 (3.2)3.240.54 82 F
26 MathematicalStatistics,8E Copyright © 2014 Pearson Education, Inc. (b) 12.92 (3.2)(2.9)0.542.940.540.38810.1519 82 FF 3.22 (a) 44 1/2 1/2 00 4 14 0 1/2 cxdxcxdxcc x 1 4 c (b) 1/4 1/2 0 1/4 1111111 0 4441/2224 4 x Pxdxxdx x 1 0 1 111 (1)11 0 22 4 Pxdxx x 3.23 1 () 2 Fxx 0 1 () 2 1 Fxx 0 04 4 x x x 1111 4224 F and 1 = 11 (1)1 22 F 3.24 00 1 ()[1](1) 222 z z zz zuuz kk Fzkzedzkeduee k = 2 3.25 0 0 () 1 0 zz z Fz ez 3.26 23 1/4 1315 (32) 0 4163232 Pxxx 1 23 1/2 1 1311 6(1)(32)1 1/2 2442 Pxxxdxxx 3.27 23 0 ()6(1)32 x Fxxxdxxx 23 0 ()32 1 Fxxx 0 01 1 x x x 1325 4166432 Px and 1321 1 2482 Px
Chapter3 27 Copyright © 2014 Pearson Education, Inc. 3.28 2 0 () 2 x x Fxxdx 0 to 1 22 1 2 1113 ()(2)22 1 222222 21 2 x x Fxxdxxxxx x x 2 2 0 0 01 2 () 21 12 2 1 2 x x x Fx x xx x 3.29 0 11 () 33 x Fxdxx 0 to 1 1 () 3 Fx 1 to 2 1 ()(2) 2 to 4 3 1 (1 3 Fxx x 0 0 1 01 3 1 () 12 3 1 (1) 24 3 1 4 x xx Fxx xx x 3.30 (a) 11.2 22 0.81 11.2 11 (2)20.32)2.40.7220.36 0.81 2222 xdxxdxxxx (b) 22 (1.2)(0.8)2(1.2)1(1.2)(0.8) 22 2.40.7210.320.36 FF 3.31 0 x ()0Fx 01 x 2 () 4 x Fx 1 (1) 4 F 12 x 11 () 24 Fxx 3 (2) 4 F 23 x 2 35 () 244 x Fxx (3) F = 1 3 x ()1Fx
28 MathematicalStatistics,8E Copyright © 2014 Pearson Education, Inc. 3.32 (a) 11311 ; 22442 FF (3)(2)110FF 3.33 dF1 dx2 , 1 () 2 fx for 11 x ; 0 elsewhere 1111 1 2222 Px ; (23)Px = 0 3.34 (a) 916 (5)1 2525 F (b) 99 1(8)11 6464 F 3.35 2 dF18 dy y for 0; y elsewhere (a) 5 22 3 5 189916 1 3 2525 dy yy ; (b) 22 8 18999 0 8 6464 dy yy 3.37 2 (2)(2)1313(0.1353)10.40740.5926 PxFe (13)(3)(1)14124212 =2(0.3679)4(0.0498)0.73580.19920.5366 PxFFeee 4 (4)1(4)55(0.0183)0.0915 PxFe 3.38 x dF xe dx for > 0; 0 elsewhere 3.39 (a) for 0 x ()0Fx (b) for 00.5 x 1 () 2 Fxx (c) for 0.51 x 1131 ()1 2242 Fxxx (d) for 1 x ()0fx 3.40 (a) ()0;fx (b) 1 (); 2 fx (c) 1 (); 2 fx (d) ()0fx 3.41 2411513 (2),(2),(21)844848 PZPZPZ and 11 (02)1 22 Pz
Chapter3 29 Copyright © 2014 Pearson Education, Inc. 3.42 (a) 1 ; 20 (b) 113 ; 488 (c) 1111 ; 64122 (d) 111287 6244012030 3.43 (a) 111 6124 ; (b) 0 ; (c) 1117 1262424 ; (d) 1119 1 120120 3.44 (25101492510101318)1 c 1 89 c 3.45 (a) 129 (10910) 8989 ; (b) 15 (14) 8989 (c) 155 (95101318) 8989 3.46 (a) (028012)1 k f(3, 1) differs in sign from all other terms 3.47 x y 0 1 2 3 0 1 2 3 0 0 1 30 1 15 1 10 0 0 1 30 1 10 1 5 y 1 1 30 1 15 1 10 2 15 1 1 30 2 15 3 10 8 15 2 1 15 1 10 2 15 1 6 2 1 10 3 10 3 5 1 density joint distribution function 3.48 (a) (,)0Pxy (b) (,)1Pxy (c) (,)(,) three probabilities FbcFac (,)(,) FbcFac 3.49 11 2 2 00 () 2 x x x xy kxxydydxkxydx x 11 33 333 00 2 1 222 xxk kxxdxkxdx k = 2
30 MathematicalStatistics,8E Copyright © 2014 Pearson Education, Inc. 3.50 1/21/21/21/2 2 2 0000 1/2 224 23 0 1/2 1 24 2412 0 22 1/2 111 121212 0 4834322464 12121 (683) 64336416 x x xy xydydxdxxxdx xxxx xxdx 3.51 (a) 1 2 (b) 12245 121 23399 (c) 12111131 2 23323393 (,)2 Fxyxy for 0,0,1xyxy 3.52 (a) 111 2 222 3.53 1/21 1/41/21/20 11 yy y dxdydxdy yy 1 1ln 2=1-0.3466=0.6534 2 3.54 2244222222() xyxyxy F xeyexyexye yx 0,0xy and (,)0fxy elsewhere 3.55 22 2 2 224 142 111 4 22() 1 xyuu xedxyedyedueee 3.56 2 FFxxyxy eee xxy 0,0xy = 0 elsewhere 3.57 2 33 232 22 3 () 2 Xyx edxedyeee 3.58 (,)(,)(,)(,) FbdFadFbcFac
Chapter3 31 Copyright © 2014 Pearson Education, Inc. 3.59 a = 1, b = 3, c = 1, d = 2 32123111 231121 2131 1213 (3,2)(1,2)(3,1)(1,1) (1)(1)(1)(1)(1)(1)(1)(1) (1)(1)(1)(1)(1)(1) (1)(1)(1)(1) ()()0 FFFF eeeeeeee eeeeee eeee eeee .074 3.60 44141411 441141 414114 14141 (2,2)(1,2)(2,1)(1,1) (1)(1)(1)(1)(1)(1)(1)(1) (1)(1)(1)(1)(1)(1) (1)()(1)() ()()( FFFF eeeeeeee eeeeee eeeeee eeeee 42 ) e 3.61 336 235225224 456232 (3,3)(2,3)(3,2)(2,2) (1) (1)(1(1) 2() QED FFFF eee eeeeeeeee eeeee 3.62 x = 1, 2 y = 1, 2, 3 z = 1, 2 (1224362448612)1 1 54 k k 3.63 (a) 11 (12) 5418 (b) 1147 (86) 545427 3.64 (a) 191 (1224) 54546 ; (b) 0; (c) 1 3.65 1 11 000 (1) yz z xyzdxdydz 11 2 00 1 (1)(1) 2 z yzyzdydz 1 11 000 (1)1 yz z kxyzdxdydz k = 144
32 MathematicalStatistics,8E Copyright © 2014 Pearson Education, Inc. 3.66 1 1/21/2 000 144 (1)0.15625 xy x xyzdzdydx 3.68 (a) 1/21/21/2 000 1 (23) 3 xyzdzdydx 1/21/2 2 00 1/21/2 00 1/21/2 2 00 1/2 1 (23) 0 32 131 328 1/2 1311131 0 348321616 1131161 316323233216 z xyzdydx xydydx xyyydxxdx 3.69 (a) 13 (1),(1)44gg (b) 511 (1),(0), (1) 848 hhh (c) 1/81 (11) 1/81/25 f ; 1/24 (11) 1/81/25 f 3.70 (a) 11117 (0) 124812015 g ; 1117 (1) 642015 g 111 (2) 244015 g (b) 1117 (0) 1262424 h ; 11121 (1) 444040 h 117 (2) 82040 h ; 1 (3) 120 h (c) 1/410 (01) 21/4021 f ; 10 (11) 21 f ; 1/401 (21) 21/2021 f (d) 1/125 (00) 56/12028 w ; 1/415 (10) 56/12028 w ; 1/815 (20) 56/12056 w 1/1201 (30) 56/12056 w
Chapter3 33 Copyright © 2014 Pearson Education, Inc. 3.71 (a) (,)(12) for 1,2,3 10836 xyxy mxyx ; 1,2,3 y (b) (,)(123) for 1,2,3 10818 xzxz nxzx ; 1,2 z (c) ()(123) for 1,2,3 366 xx gxx (d) /64 (1,2) 2/363 zz z φ for 1,2 z (e) /36 (,3) 1/218 yzyz yz ψ for 1,2,3 y ; 1,2 z 3.72 (a) 5 (0) 12 g , 1 (1) 2 g ; 1 (2) 12 g 0 5/12 () 11/12 1 Gx 0 01 12 2 x x x x (b) 2/94 (01) 7/187 1/63 (11) 7/187 f f 0 (1)4/7 1 Fx 0 01 1 x x x 3.73 (a) 1 () 2 fx for 1, 1 x ; 1 () 2 gy for 1, 1 y ; 111 224 , independent (b) 2 (0) 3 f , 1 (1) 3 f , 1 (0), 3 g 2 (1) 3 g 1212 (0,0) 3339 f not independent 3.74 (a) 2 2 0 2 1111 (2) 2(42)(21) 0 44242 y xydyxyxx for 01 x = 0 elsewhere (b) 11 11 42 (21) 13 46 22 y fyy for 02 y = 0 elsewhere
34 MathematicalStatistics,8E Copyright © 2014 Pearson Education, Inc. 3.75 (a) 1 2 0 1 111 (2) ()(1) 0 444xydxxxyy for 02 y = 0 elsewhere (b) 1 (21) 1 4 (1)(21) 1 2 (2) 4 x fxx for 01 x = 0 elsewhere 3.76 (a) 1 23 2 0 223 333 1 ()24()24 0 223 12(1)12(1)8(1) 12(1)8(1)4(1) x x yxyy fxyxyydy xxxx xxx 4(1)3 01 () 0 elsewhere xx fx (b) 1 222 0 1 ()24()24(1)(1)(1) 2 11 24(1)1(1)24(1) 222 y gyyxyydyyyyyyy y yyyyy 12(1)2 01 0 elsewhere yyy (,)()() fxyfxgy not independent 3.77 (a) 1 1ln01 1 ()lnln1ln 0elsewhere x xx gxdyyx x y (b) 0 1 01 11 ()(0) 0 elsewhere y x hydxy yy 1 1(ln) independent xnot y
Chapter3 35 Copyright © 2014 Pearson Education, Inc. 3.78 (a) 3 2 1212 213 1 2 () (,) 1 1 2 2 x x xxexx fxxx x xe 2 2 2 2 1 26 1 01 3 ,2 5 11 3 0 elsewhere 32 x x x fx (b) 3 3 223 12 231 2 1 01,0 () (,) 2 1 0 elsewhere 2 x x xexx xxe gxxx x 3.79()(,) gxfxydy 0 ()(,) (,) x GxfxydyFx 2 1 0 ()(,) 0 elsewhere x ex GxFx 3.80 13123213 (,)(,,) (,,)MxxfxxxdxFxx 1123231 ()(,,) (,,)GxfxxxdxdxFx (a) 3 3 13 231113 13 0 0 or 0 1 (,)(1)(1) 01,0 2 1 x1,0 x x xx Mxxxxexx ex (b) 1 1111 1 0 0 1 ()(1) 01 2 1 1 x Gxxxx x
36 MathematicalStatistics,8E Copyright © 2014 Pearson Education, Inc. 3.81 11 1 1 01 () 2 0 elsewhere xx gx 22 2 1 01 () 2 0 elsewhere xx hx 3 3 3 1 () 0elsewhere x ex x φ 1,23123 (,)()()() fxxxgxhxx φ not independent 1313 (,)()() mxxgxx φ independent 2323 (,)()() nxxhxx φ independent 3.82 (a) 1 02, 03 (,) 6 0elsewhere xy gxy (b) /4 11 624 ππ (a) 5 (0) 14 g , 5 (1) 28 g , 3 (2) 28 g (b) 3.283 (00) 10/2810 φ , 6/286 (10) 10/2810 φ , 1/281 (20) 10/2810 φ 3.83 Heads Tails Probability H-T 0 4 1/16 4 1 3 4/16 2 2 2 6/16 0 3 1 4/16 2 4 0 1/16 4 3.84 1 2 3 1 3 4 1 4 5 2 3 5 2 4 6 3 4 7 (a) x 3 4 5 6 7 ()fx 1/6 1/6 2/6 1/6 1/6 0 3 1/634 2/645 () 4/656 5/667 17 x x x Fx x x x
Chapter3 37 Copyright © 2014 Pearson Education, Inc. 3.85 2 () 3 PH (a) 1 (0) 27 P , 6 (1) 27 P , 12212 (2)3,,,33327 P , 8 (3) 27 P (b) 161219 27272727 3.86 0 1/27 () 7/27 19/27 1 Fx 0 01 12 23 3 x x x x x 720 1 2727 198 1 2727 (a) (b) 3.87 0 0.40 ()0.70 0.90 1 FV 0 01 12 23 3 V V V V V 3.88 (a) 0.200.100.30 (b) 10.700.30 3.89 Yes; ()0fx for 2,3,12 x and 12 2 ()1 x fx 3.90 S 2 3 4 5 6 7 8 9 10 11 12 1/36 3/36 6/36 10/36 15/36 21/36 26/36 30/36 33/36 35/36 1 3.91 (a) 1 (228.65227.5)0.23 5 ; (b) 1 (231.66229.34)0.464 5 ; (c) 1 (232.5229.85)0.53 5 3.92 3 2 111 ()(36)3628828832 x Fxxdxcx so that F( 6) = 0 and F(6) = 1. (a) 181120817 (2)(72)288322883227 F (b) 111110717571325 (6)(1)1(36)128832288328642854FF (c) (3)(1)(1089)3611199110719095 288288328828832883432 FF (d) 0
38 MathematicalStatistics,8E Copyright © 2014 Pearson Education, Inc. 3.93 /30 ()111/30/30/30 30301/30 x xxx e Fxedxcccee (a) 18/300.6 (18)1110.54880.4512 Fee (b) 27/3036/300.91.2 (36)(27)0.40660.30120.1054 FFeeee (c) 48/301.6 1(48)0.2019 Fee 3.94 322 20,00020,00010,000 ()11 (100)2(100)(100) Fxdxc xxx (a) 2 10,0001 1(200) 9 300 F (b) 10,0003 (100)1 40,0004 f 3.95 (a) 2 251 1(10)0.25 4 10 F (b) 2 2539 (8)1 64 8 F (c) 222 252525(2516)1 (15)(12) 16 12151516 FF 3.96 /3 /3/3 0 1111 () 991/93311 x x xx e Fxxedxcxccex c =1 (a) 22 (6)131313(0.1353)0.5491 Fee (b) 3 1(9)44(0.0498)0.1992 Fe 3.97 323 (0,0,2)3 002 3 (0,0) 28 f , 6 (0,1) 28 f , 1 (0,2) 28 f 323 (1,0,1)9 101 9 (1,0) 28 f , 3 (2,0) 28 f , 6 (1,1) 28 f 323 (0,1,1)6 011 323 (2,0,0)3 200 323 (1,1,0)6 110 323 (0,2,0)1 020
Chapter3 39 Copyright © 2014 Pearson Education, Inc. 3.98 (b) 3.99 1 (0,3) 8 f , 3 (1,2) 8 f , 3 (2,1) 8 f , 1 (3,0) 8 f 1 (0,3) 8 g , 3 (1,1) 8 g , 3 (2,1) 8 g , 1 (3,3) 8 g 3.100 (a) Probability = 1/8 (b) 111 44 π π 3.101 (a) 0.30.3 0.220.2 0.3 2 20.40.6 0.2 5 5 2 0.3 55 50.3038 0.2 22 psps p p pedsdpedp e edpee (b) 0.3010.300.30 0.2500.250.25 0.300.300.25 1 5 55(1) 0 5[]5(0.300.25]0.01202 pspsp p pedsdpedpedp peee 3.102 (a) 0.40.40.4 2 000 0.4 22 (23) (3) 0 55xydxdyxxydy 0.4 0 2 (0.161.2 5 21.2(0.16)(0.16)(0.4)0.064 52 ydy x 0 1 2 0 1 9 1 9 1 36 y 1 1 3 1 6 2 1 4
40 MathematicalStatistics,8E Copyright © 2014 Pearson Education, Inc. (b) 0.510.5 2 00.80 1 22 (23) (3) 0.8 55xydxdyxxydy 0.50.5 00 2 22 (13)(0.642.4) (0.60.36) 55 22 0.5 (0.30.36)(0.0750.18)0.102 0 55 yydyydy yy 3.103 (a) 5 (0) 14 g , 15 (1) 28 g and 3 (2) 28 g (b) 3 (00) 10 φ , 6 (10) 10 φ , and 1 (20) 10 φ 3.104 (a) 1111 2 0.300.30.3 2 1 222 (4) (2)(2) 0 555 1 2 2 0.3 52 210.092 522520.6(1.855)0.742 xydydxxyydxxdx x x (b) 1 0 22 ()(4) (2) 55 gxxydyx (2/5)(4) () (2/5)(2) xy gyx x , 40.2 (0.2) 2.2 y gy 0.5 0 110.6 (40.2) 2.22.22.2(0.50.1)0.273 ydy 3.105 (a) 4847188 (0,0) 5251221 f , 48416 (0,1) 5251221 f 44816 (1,0) 5251221 f , 48416 (1,1) 5251221 f , 431 (1,2) 5251221 f (b) 18816204 (0) 221221 g , 16117 (1) 221221 g (c) 16/22116 (01), 17/22117 φ 1/2211 (11) 17/22117 φ
Chapter3 41 Copyright © 2014 Pearson Education, Inc. 3.106 (,)5 ps fpspe 0.20.4 p 0 s (a) 0 50.20.4 5 55 0 0elsewhere ps psps p e pedspe p (b) for 0 (,)5 ()5 0elsewhere ps ps pes fpspe gs (c) 3 (1/4)/40.75 0 3 1 1 0 4 ss edsee 3.107 (a) /2 20 1020 120 50 25 0 elsewhere x x x x x dy x (b) 120 2 25 (), 20 50 x x yx x x φ 1/6612 (12) 0elsewhere y y φ (c) 112 (128)4 663 3.108 2 (,)(23) 5 fxyxy 2 1 2323 ()22 0 5252 43 01 55 0 elsewhere y gxxyx xx 2 1 2 ()(3) 0 5 (2/5)(13)01 0elsewhere hyxxy yy (,)()() fxygxhy
42 MathematicalStatistics,8E Copyright © 2014 Pearson Education, Inc. 3.109 (a) 3 123 333 123 223 (20,000) 0, 0, 0 (,,) (100)(100)(100) 0 elsewhere xxx fxxx xxx (b) 100100 333123 123 00200 20,00020,00020,000 (100)(100)(100) 3311 44916 dxdxdx xxx 3.110 (a) 5 9 4 5 7 9 9 8 6 1 3 5 0 2 1 7 0 8 4 5 2 0 2 1 3 1 (b) 5f 4 5s 9 5 7 9 9 8 6f 1 3 0 2 0 1 0 4 2 0 2 1 3 1 6s 5 7 8 5 (c) The double-stem display is more informative. 3.111 *=Station 105 o = Station 107 o o o o o o * * o o o * * o o * * * * * o * * * 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 3.112 *=Lathe A o = Lathe B * * o o o o * * * * * * * o o o o 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 3.115 Class Limits Frequency 40.0 44.9 5 45.0 49.9 7 50.0 54.9 15 55.0 59.9 23 60.0 64.9 29 65.0 69.9 12 70.0 74.9 8 75.0 79.9 1 100
Chapter3 43 Copyright © 2014 Pearson Education, Inc. 3.117 The class boundaries are: 39.95, 44.95, 49.95, 54.95, 59.95, 64.95, 69.95, 79.95; the class interval is 5; the class marks are: 42.45, 47.45, 52.45, 57.45, 62.45, 67.45, 72.45, 77.45. 3.118 The class boundaries are: 2.95, 4.95, 6.95, 8.95, 10.95, 12.95, 14.95; the class interval is 2; the class marks are: 3.95, 5.95, 7.95, 9.95, 9.95, 11.95, 13.95. 3.116 Class Limits Frequency 3.0 4.9 15 5.0 6.9 25 7.0 8.9 17 9.0 10.9 11 11.0 12.9 8 13.0 14.9 4 80 3.119 Class Limits Frequency Class Boundary Class Mark 0 1 12 0.5 1.5 0.5 2 3 7 1.5 3.5 2.5 4 5 4 3.5 5.5 4.5 6 7 5 5.5 7.5 6.5 8 9 1 7.5 9.5 8.5 10 11 0 9.5 11.5 10.5 12 13 1 11.5 13.5 12.5 30 3.120 Class Limits Frequency Percentage 3.0 4.9 15 18.75% 5.0 6.9 25 31.25 7.0 8.9 17 21.25 9.0 10.9 11 13.75 11.0 12.9 8 10.00 13.0 14.9 4 5.00 80 100.00 3.121 Class Limits Frequency Percentage 40.0 44.9 5 5.0% 45.0 49.9 7 7.0 50.0 54.9 15 15.0 55.0 59.9 23 23.0 60.0 64.9 29 29.0 65.0 69.9 12 12.0 70.0 74.9 8 8.0 75.0 79.9 1 1.0 100 100.0
44 MathematicalStatistics,8E Copyright © 2014 Pearson Education, Inc. 3.122 Percentage Class Limits Shipping Department Security Department 0 1 43.3% 45.0% 2 3 30.0 27.5 4 5 16.7 17.5 6 7 6.7 7.5 8 9 3.3 2.5 100.0 100.0 The patterns seem comparable for the two departments. 3.125 Cumulative Percentage Class Limits Shipping Department Security Department 1.5 43.3% 45.0% 3.5 73.3 72.5 5.5 90.0 90.0 7.5 96.7 97.5 9.5 100.0 100.0 3.123 Upper Class Boundary Frequency Cumulative Frequency 44.95 5 5 49.95 7 12 54.95 15 27 59.95 23 50 64.95 29 79 69.95 12 91 74.95 8 99 79.95 1 100 100 3.124 Upper Class Boundary Frequency Cumulative Frequency 4.95 15 15 6.95 25 40 8.95 17 57 10.95 11 68 12.95 8 76 14.95 4 80 100
others.
3.130 The class marks are found from the class boundaries by averaging them; thus, the first class mark is (2.95 + 4.95)/2 = 3.95, and so forth.
3.135 The MINITAB output is: 3.136 The MINITAB output is:
Chapter3 45 Copyright © 2014 Pearson Education, Inc. 3.126 (a) Class Limits Frequency 0 1 12 (b) No. The class interval of
last class
greater than that of the
2 3 7 4 5 4 6 7 5 8 13 2 30 3.127 (a) Class Limits Frequency Class Marks 0 99 4 49.5 (b) Yes, [see
(a).. 100 199 3 149.5 200 299 4 249.5 300 324 7 312.0 325 349 14 337.0 350 399 6 374.5 38
the
is
part
MIDDLE OF INTERVAL NUMBER OF OBSERVATIONS 6.0 2 ** 6.5 5 ***** 7.0 4 **** 7.5 5 ***** 8.0 5 ***** 8.5 3 *** 9.0 2 ** 9.5 2 ** 10.02 2 ** MIDDLE OF INTERVAL NUMBER OF OBSERVATIONS 40 1 * 45 7 ******* 50 11 *********** 55 21 ********************* 60 21 ********************* 65 23 *********************** 70 10 ********** 75 6 ****** John E Freunds Mathematical Statistics With Applications 8th Edition Miller Solutions Visit TestBankDeal.com to get complete for all chapters