Revista Aterrada Mediciones electricas

Page 1

Aterrada

Producida Daniel Rodriguez


Guía ¿Qué es un conductor? Entre los tipos de conductores tenemos Los conductores se clasifican según el nivel de tensión: Media Tensión Baja tensión La toma de tierra Métodos de aterramiento PRINCIPIOS Y METODOS DE PUESTA A TIERRA Nuevas tecnologías Entretenimiento


¿Qué es un conductor? Un conductor, material que posee una baja resistencia para el paso de la corriente. Los mejores materiales de estas características son algunos metales: cobre, aluminio, oro y hierro, también sus aleaciones. Se usan para conducir electrones a través de ellos, y se mueven gracias a la presión que añade la tensión.


Entre los tipos de conductores tenemos Conductor de Cobre

Conductor de Aluminio

El cobre es, después de la plata, el metal que tiene mayor conductividad eléctrica, las impurezas, incluso en pequeña cantidad, reducen notablemente dicha conductividad. También después de la plata el cobre es el metal que mejor conduce el calor. No es atacado por el aire seco; en presencia del aire húmedo, se forma una platina (Carbonato de Cobre), que es una capa estanca, que protege el cobre de posteriores ataques. El aluminio presenta buena conductividad eléctrica y es también buen conductor del calor. El aluminio puro se emplea, debido a su resistencia a la corrosión y a su baja densidad, para revestimientos de cables. Su buena deformabilidad lo hace apropiado para láminas de condensadores, su buena colabilidad para jaulas de rotores y su buena conductividad para líneas aéreas.


Los conductores se clasifican según el nivel de tensión:  Conductores de muy baja tensión (hasta 50 V).  Conductores de baja tensión (hasta 1000 V).  Conductores de media tensión (hasta 30 kV).  Conductores de alta tensión (hasta 66 kV).  Conductores de muy alta tensión (por encima de los 770 kV). Según el Número de conductores:  Unipolar: Un solo conductor.  Bipolar: 2 conductores.  Tripolar:3 conductores. Es unifase (marrón o negro), un neutro (azul) y tierra (verde y amarillo).  Tetrapolar: 4 conductores. Son dos fases (marrón y negro), un neutro (azul) y tierra (verde y amarillo).  Pentapolar: 5 conductores. Estos cables se componen de 3 fases (gris o celeste, marrón y negro), un neutro (azul) y tierra (verde y amarillo).


Media Tensión Es el término que se usa para referirse a instalaciones eléctricas de alta tensión, con tensiones entre 1.000 y 30.000 v (volts). En ocasiones, se extiende el uso del término a pequeñas instalaciones de 30 kV para distribución. Dichas instalaciones son frecuentes en líneas de distribución que finalizan en Centros de Transformación en dónde, normalmente, se reduce la tensión hasta los 400 voltios. En realidad no existe una definición clara en ningún reglamento de hasta dónde llega la media tensión, la denominación de media tensión es usada por las compañías eléctricas para referirse a sus tensiones de distribución. Su distribución depende de la zona geográfica así como de la empresa suministradora. Las tensiones de distribución más comunes son 13,2 kV, 15 kV, 20 kV y 30 kV.


Baja tensión Para Baja Tensión, las instalaciones eléctricas son aquellas cuya tensión nominal es igual o inferior a 1.000 V para corriente alterna y 1.500 V para corriente continua. Generalmente, se usan en el proceso de utilización. Van desde la salida de los transformadores de distribución hasta los equipos. Es la tensión que generalmente se consigue en la industria hasta 440 voltios y en los hogares desde 120 hasta 220 voltios


La toma de tierra

también denominado hilo de tierra, toma de conexión a tierra, puesta a tierra, pozo a tierra, polo a tierra, conexión a tierra, conexión de puesta a tierra, o simplemente tierra, se emplea en las instalaciones eléctricas para llevar a tierra cualquier derivación indebida de la corriente eléctrica a los elementos que puedan estar en contacto con los usuarios (carcasas, aislamientos, etc.) de aparatos de uso normal, por un fallo del aislamiento de los conductores activos, evitando el paso de corriente al posible usuario. La puesta a tierra es una unión de todos los elementos metálicos que mediante cables de sección suficiente entre las partes de una instalación y un conjunto de electrodos, permite la desviación de corrientes de falta o de las descargas de tipo atmosférico, y consigue que no se pueda dar una diferencia de potencial peligrosa en los edificios, instalaciones y superficie próxima al terreno.


Métodos de aterramiento La resistividad del terreno se mide fundamentalmente para encontrar la profundidad de la roca, así como para encontrar los puntos óptimos para localizar la red de tierras de una subestación, planta generadora o transmisora en radiofrecuencia. Asimismo puede ser empleada para indicar el grado de corrosión de tuberías subterráneas. En general, los lugares con resistividad baja tienden a incrementar la corrosión. En este punto es necesario aclarar que la medición de la resistividad del terreno, no es un requisito para obtener la resistencia de los electrodos a tierra. Las conexiones de puesta a tierra en general poseen impedancia compleja, teniendo componentes inductivas, capacitivas y resistivas, todas las cuales afectan las cualidades de conducción de la corriente. Las resistencias de la conexión son de particular interés en los sistemas de transmisión de energía (bajas frecuencias), debido a la conexión. Por el contrario, los valores de capacitancia e inductancia son de particular interés en altas frecuencias como en comunicaciones de radio y descargas atmosféricas. Además de lo anteriormente expuesto, las mediciones de puesta a tierra se hacen para: Proteger efectivamente los sistemas contra los efectos de las descargas atmosféricas. Proporcionar un medio para disipar la corriente eléctrica en la tierra bajo condicione normales o de corto circuito, sin exceder ningún limite operacional de los equipos o suspender la continuidad del servicio. Minimizar la interferencia de los circuitos eléctricos de transmisión y distribución con los sistemas de comunicación y control.


PRINCIPIOS Y METODOS DE PUESTA A TIERRA

Dentro de los propósitos principales para los cuales se determinan los valores de impedancia de puesta a tierra están: Determinar la impedancia actual de las conexiones de puesta a tierra. Como control y verificación los cálculos en el diseño de sistemas de distribución de puesta a tierra. La adecuación de una puesta a tierra para transmisión de radiofrecuencia. La adecuación de la puesta a tierra para protección contra descargas atmosféricas. Asegurar, mediante el diseño apropiado de la puesta a tierra, el buen funcionamiento de los equipos de protección. A la par de la resistencia de valor óhmico (activa), existe una componente reactiva que hay que tener en cuenta cuando el valor óhmico es menor a 0.5 W , pero es despreciable cuando el valor óhmico es mayor a 1 W . La resistencia de toma de tierra es, prácticamente, la resistencia del volumen del material del terreno que rodea el elemento de la toma hasta una distancia aproximada 5 m. Las mediciones de tierra deben realizarse, no solo durante la energización, sino periódicamente para determinar las posibles variaciones. La medición de resistencia a tierra de electrodos es una técnica que requiere conocer aparte del método de medición, algunos factores que afectan los resultados de las mediciones, y que son: El tipo de prueba. El tipo de aparato empleado. El lugar físico de las puntas de prueba


TIPO DE PRUEBA

Existen dos tipos de pruebas fundamentalmente. Las demás son variaciones de éstas. Aunque muy parecidas, los resultados de las mediciones no son exactamente los mismos. Los métodos son: a. Método de caída de potencial. Llamado también: Tres Puntos, 62%, etc. b. Método Directo. También conocido como: Dos Puntos. - No reconocido en la NOM-001SEMP-1994

TIPO DE APARATO.

No todos los aparatos de medición de resistencia a tierra trabajan de la misma manera. Existen diferencias muy marcadas en el tipo de corriente empleada. A manera de ilustrar estas diferencias, los aparatos más utilizados en nuestro medio son el Vibroground y el Megger de tierras. Ambos emplean corriente alterna para la medición pero el primero a una frecuencia de 25 Hz, el último a 133 Hz. Y los voltajes en circuito abierto son respectivamente de 120 y 22 Volts.

LUGAR FISICO

Las varillas electrodos de los instrumentos de medición pueden ser colocadas en todas direcciones como a una infinidad de distancias entre ellas. Aunque es el mismo punto de medida, las lecturas no son idénticas; a veces ni en terrenos vírgenes debido a la presencia de corrientes de agua o de capas de distinta resistividad. En los terrenos industriales es aún mayor la diferencia debido a la presencia de objetos metálicos enterrados como tuberías, varillas de construcción, rieles, canalizaciones eléctricas, etc.






Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.