Crystran Handbook 2023

Page 1

ThesaleofmaterialsdescribedinthisHandbookwillbecoveredbytheGeneral ConditionsofSaleofCrystranLtd.

Noresponsibilitycanbetakenforinaccuraciesindata.

A COMPREHENSIVE SOURCE ACROSS THE SPECTRUM

This handbook is published by Crystran Ltd as a service to optics professionals. It is designed to help you determine the best material for your application. The materials that we work with are mainly crystal or innovative glasses used for their particular transmission properties. We also have a great deal of experience within the company of the crystal growth techniques used in making the raw materials. If your requirement is for prototypes or for production quantities our technical team are happy to help.

For more information on our materials and services, please contact us:

Tel: +44 (0) 1202 307650

Fax: +44 (0) 1202 307651

Email: sales@crystran.co.uk

Crystran Ltd are primarily a custom manufacturer of optics to drawing or specification. For those who require a component fast we do hold an enormous range of stock. Access our shop from our website.

Website: www.crystran.co.uk

https://www.linkedin.com/company/crystran-limited/

Join our Company Linked in for news and updates
4 IntroductiontotheHandbook 6 IntroductiontoCrystranLtd 7 TestEquipment 8 PolishingSpecifications 9 LensTooling 9 HotForging 9 BubblesandFlaws 10 Stria 10 Flatness 10 Parallelism 10 LensCentration 10 CosmeticFinish 11 Stresses 12 Chamfers 13 OpticAxis(Birefringence) 13 ReflectionLoss 14 BrewsterAngle 14 CriticalAngle 14 Reststrahlen 15 MetrologicalWavelengths 16 HardnessScales 17 ElasticCoefficients 17 Definitions 18 BeamDeviation 18 SIUnitsPrefixes 19 ConversionTables 19 PressureConversions 20 AtmosphericPressure 21 SpecificHeat 21 ThermalConductivity 21 Formulae LensFormulae 22 Sphere,Circle 23 Hexagon,Torus 25 Ellipse,Parabola,Pyramid,Cone 26 PressureWindowCalculation 26 AsphericlensDesign 28 GuidetoCleaningOptics 29 LowAngleGrainBoundaries 30 ThermalShock 31 DataSheetLinks 32 ComparisonofData Transmission 33 RefractiveIndex 34 MeltingPoint 35 Density, 36 ExpansionCoefficient, 37 KnoopHardness 38 RuptureModulus 39 INDEX
5 MaterialData BariumFluoride(BaF₂) 40 CadmiumTelluride(CdTe) 42 Caesium(Cesium)Bromide(CsBr) 44 Caesium(Cesium)Iodide(CsI) 46 Calcite(CaCO₃) 48 CalciumFluoride(CaF₂) 50 Diamond(CubicCarbon) 52 GalliumArsenide(GaAs) 54 GaLaSglass 56 Germanium(Ge) 58 KRS5(TlBrI) 60 KRS6(TlBrCl) 62 LanthanumFluoride(LaF₃) 64 LeadFluoride(PbF₂) 66 LithiumFluoride(LiF) 68 MagnesiumFluoride(MgF₂) 70 MagnesiumOxide(MgO) 72 OpticalGlass(NBK7&B270) 74 PotassiumBromide(KBr) 76 PotassiumChloride(KCl) 78 PotassiumIodide(KI) 80 QuartzCrystal(SiO₂) 82 RubidiumBromide(RbBr) 84 RubidiumChloride(RbCl) 86 RubidiumIodide(RbI) 88 Rutile(TiO₂) 90 Sapphire(Al₂O₃) 92 SilicaGlass(SiO₂) 94 Silicon(Si) 96 SilverBromide(AgBr) 98 SilverChloride(AgCl) 100 SodiumChloride(NaCL) 102 SodiumFluoride(NaF) 104 Spinel(MgAl₂O4) 106 StrontiumFluoride(SrF₂) 108 ThalliumBromide(TlBr) 110 ThalliumChloride(TlCl) 112 YttriumAluminiumGarnet(YAG) 114 ZincSelenide(ZnSe) 116 ZincSulfideFLIR(ZnS) 118 ZincSulfideMultispectral(ZnS) 120 FundamentalConstants 122
INDEX

INTRODUCTION TO THE HANDBOOK

ThisHandbook,aswellasbeingacatalogueoftherangeofmaterialsandproduction capabilitiesavailabletoyouatCrystranLtd,ishopedtobeausefulreferencesource foroptical,physicalandchemicaldata.

ThedatainthisHandbookisprovidedingoodfaithandreviewshavebeenmadeto verifythesourcesofinformationwherepossible;howeverCrystranLtdcanacceptno responsibilityforaccuracy.Itisnotalwayspossibletoverifydatawherethereare conflictingfiguresindifferentpublications,revisionsareacontinuingprocessandwe haveappliedourbestjudgementwhereappropriate.Referencesarestatedwhere possible.TransmissionscansareoriginalCrystrancompanydata.

FormulaeandnotesincludedwithintheHandbookarenotintendedtobe comprehensive.Wehavefoundthemausefulreferenceandconsultthem continually.

ValuesquotedintheHandbookare,asstandard,SIunitsexceptwherealternative unitsareincommonusage–anAppendixisincludedcontainingunitconversion tables.

CrystranLtdwouldliketoacknowledgethehelpofourassociates.

©CrystranLtd2023

INTRODUCING THE CRYSTRAN APP.

SincethelastprinteditionwehavepublishedafreeAppforboth AndroidandAppleFormats.Thiscontainsmuchofthedatainthis Handbookaswellassomeroutinesformakingopticalandpressure calculations.Youarewelcometodownloadit.

6

INTRODUCTION TO CRYSTRAN LTD

CrystranLtdisamanufacturerandsupplierofhighqualityopticalcomponents.We manufacturewindows,lenses,prismsandspecialistopticsasbothstandardproducts andtothedesignsofourcustomers.Forover30yearswehavespecialisedincrystal materialsandexoticglassesandusedthemtomanufacturehighlypreciseoptical componentsfortheInfrared,UltravioletandVisibleregionsofthespectrum.

In2018welaunchedourwebshop.Weknowmanyofourcustomersprefertospeak tousortoemail,butwewereverypleasedwithitsimmediatepopularitybothwith existingcustomersandnewones.

Youcanseeafulllistofthematerialsweworkwithinthisbookandonourwebsite.

CrystranLtdnolongergrowcrystalin-house,howeverwestillretaintheexperience andunderstandingthatisinvaluablewhentalkingtosuppliersandcustomersalike. Crystranholdsextensivestocksofcrystalasingotstoofferacomprehensiverangeof crystalsandcrystalproductsforUV,IRandvisibleapplications.

Crystalmaterialscanbesuppliedinanumberofdifferentforms–rawboule,cutand shapedblanks,andpolishedoptics.Ourproductionfacilitiesincludecuttingand severalpolishingshopsfortheproductionofcomponentstocustomerspecifications. Ourdedicationtoinvestmentinbothstaffandequipmentenablesustoworkto increasinglyhigherstandards.Surfacequalitiesofuptoλ/20at633nmand parallelismofbetterthan2arcsecondscanbeachieved(dependentonmaterialand methodrequired).Doublesidedandconventionalpolishingtechniques,coupledwith computerisedinterferometryandothertestequipment,ensurethatspecifications canbemet.

7

REFERENCE SECTION

Ourextensiverangeoftestequipmentincludes

NAME INSTRUMENT MEASUREMENT

TriopticsPrismMaster

TriopticsOptiangle

12″verticalinterferometer Bespoke

InteropticsIntervue (Interferometer)

AutoCollimator Parallelismandangulartolerance <2arcsecs

AutoCollimator

Fizeau Interferometer

TwymanGreen Interferometer (LowCoherence)

Parallelismandangulartolerance <2arcsecs

Surfaceflatnessaccuracy<λ/20 (λ=632.8nm)

Surfaceflatnessaccuracy<λ/20 (λ=632.8nm)Enablestheabilityto measuresurfaceflatnessonparallel partswithoutrearsurface Interference

6″Railinterferometer

Fizeau Interferometer

Surfaceflatnessaccuracy<λ/20(λ= 632.8nm)

LensRoCbetween-900mm(concave)and+650mm(convex)

Perkin-ElmerFrontierFTIR Spectrophotometer

Perkin-ElmerLambda750 Spectrophotometer

Spectraltransmissionbetween 2 μmand22 μm

Spectraltransmissionbetween 190nmand2.0μm

LymanAlphaInstrument Spectrometer Transmissionat121.6nm

OptiluxSD/RedLux Scratch/Dig Evaluation System

TaylorHobsonCCI6000Talysurf

TaylorHobsonPGI840Talysurf

Bristolinstrument

Roughness Interferometer

FormTalysurf

OpticalThickness Gauge

MitutoyoCoordinateMeasuring Machine CMM

BatyVentureVisionSystem

OpticalCMM

Automatedassessmentofsurface imperfectionsaccordingto: MIL-PRF-13830B&ISO10110_7

Surfaceroughness(Ra/Rq)with resolution<0.1Å(0.01nm).

Asphericformerrortoanaccuracy <50nm(Pt)

Thicknessrangebetween0.1mmto 8mm(CaF2),accuracy< 2μm

Measurementenvelopeof400x 400x400mm,accuracy<3μm

Dimensionalaccuracy<2μm

TriopticsSpherocompact ContactRadius Instrument Convex/concaveRoC,accuracy <5μm(mainlyusedforin-process checks)

8

REFERENCE SECTION

PolishingSpecifications

Specifyingapolishingstandardmustbeapproachedwithcaution.Costscanescalate rapidlyformoreexactingspecifications,particularlyifcombinationsofrequirements areneeded.Forinstance,ultra-flatnesscanbeachievedattheexpenseofagood cosmeticfinishandviceversa.Goodflatnessandparallelisminthinwindowsis possiblewithadouble-sidedpolishingtechnique.

Typical Polishing Specifications used at Crystran

Itisnotpossibletogiveexamplesofatypicalspecificationasthatwilldependon severalfactorssuchasmaterial,sizeandmethodofmanufacture.Wedohavecertain specificationsthatwealwaysapplytowindowsasstandard(sometradedmaterials mayhavedifferentspecifications).

Diameter (up to 50mm) +0/-0.1mm

Length of sides (up to 50mm) +0/-0.1mm

Thickness +/-0.1mm

Surface quality (IR grade) 60/40orbetter

Surface quality (UV grade) 40/20

Edge chips Upto0.5mm

Clear aperture 80%ofdiameter

Ourtechnicalsalesteamwillbehappytodiscussandadviseonthesematters.

LensTooling

CrystranhaveanextensivelistoftoolingandNPLqualifiedtestplatesforthe manufactureoflenseswithclosetolerances.Pleasecontactusformoreinformation.

HotForging

Thisisaquickandcosteffectivemethodformanufactureofsilverchlorideandsilver bromideoptics.Thequalityachievedbythistechnique,althoughinferiorto conventionalpolishing,ismorethanadequateforawiderangeofinfra-red applications.

Thetechniqueisparticularlyappropriateforspectroscopicmini-cellwindowswhere thesurfacehasasmalldepressionforliquidfilms.

Inthecourseofourhot-forgingoperationswehaveacquiredastockoftoolingwhich itiseconomicaltodesignaround.Pleasecontactusaboutsizesavailable.

9

REFERENCE SECTION

Bubbles&Flaws(ISO/BS/MILSpecification1/)

Thesearenormallyassociatedwithglassesandrarelywithcrystal,howeverpresent insoftcrystalssuchasCsI,KRS5etc.

Example: 1/5 x 0.06 is 5 flaws less than 0.06mm (square root of the area)

Stria(ISO/BS/MILSpecification2/)

Striaarevitreousinclusionsmainlyinglassandrarelywithcrystal.Thereare6grades ofdecreasingseverity.

Example: 2/0 is the greatest amount of stria, 2/5 is the lowest amount

Inhomogeneity classes in optical materials as per ISO 10110 Part 4

Flatness(ISO/BS/MILSpecification3/)

Flatnessisspecifiedintermsofthewavelengthoflightwhichrepresentsthedegree ofpower,withtheadditionofformerrorwhichdefinestheallowedirregularityof thefringepattern.

Example: 3/2(0.5) is 2 fringes power/0.5 fringes irregularity

Parallelism

Theparallelismofawindowcanbespecifiedintermsofangle,usuallyasminutesof arc.Sometimesitisintermsofthicknessvariationor‘run-out’.Conventional polishingwilltypicallyproduce<3-10arcminutes.Double-sidedpolishingcan produce<5arcseconds.Topreventmultiplereflectionsbetweenfaces(anetalon effect)itmaybeprudenttohaveasmallwedgeanglespecified.

LensCentration(ISO/BS/MILSpecification4/)

Lensesinvolvevariationsonotherspecifications.‘Flatness’istheradiusofcurvature asmeasuredagainstareferencestandardtestplate,whilst‘parallel’ismore accuratelyspecifiedascentrationerror.

Example: 4/3’ is 3 minutes centration.

10
Max.variationoftherefractiveindexwithinapartof10-6 0 +/-50 1 +/-20 2 +/-5 3 +/-2 4 +/-1 5 +/-0.5

REFERENCE SECTION

CosmeticFinish(ISO/BS/MILSpecification5/)

Visualappearanceisoftenasubjectivematterandisstillcommonlyspecifiedby scratch/dig.Thisclassifiesthesurfaceintermsofthemaximumlengthofsmall scratchesafterpolishing.

Underthisclassification,S/D80/50wouldberegardedasquitepoorandappropriate forsimplespectroscopicwindowsandS/D20/10isanexactingstandardsuitablefor lowscatteringlaserapplications.S/D60/40isareasonablyroutinefinish.

*Thisparameterisameasureofthebrightnessofscatterratherthanthephysical widthofthescratch.

11
SCRATCH MIL-PRF-13830B* MIL-F-48616 MIL-C-48497A Width(μm) 5 A 5 10 B 10 20 C 20 40 D 40 60 E 60 80 F 80 120 G 120 DIG MIL-PRF-13830B MIL-F-48616 MIL-C-48497A Width(mm) 5 A 0.05 10 B 0.1 20 C 0.3 30 D 0.4 40 E 0.5 50 F 0.6 70 G 0.7 100 H 1

REFERENCE SECTION

WorkingEquivalentsAppliedatCrystran

Thesearenotabsolutemeasuresbutusedasaguidebaseduponourexperience.

Surfacefinishcanalsobespecifiedintermsofsurfaceroughness(Roughness Average,Ra)andcanbemeasuredbyinterferometricprofiling

Stresses(ISO/BS/MILSpecifications6/)

Stresses,knownasstrainbirefringence,arevariationsinrefractiveindexgenerally causedduringtheannealingoftheglassorcrystal.Itisdefinedastheopticalpath differencecausedbythestressedregionintermsofnmpathdifferencepercm referencepath.Generally,CaF2 andsimilarcrystaliscontrolledbetterthan5nm/cm.

Example: 6/10 defines strain birefringence of 10nm/cm.

12
S/D <30mmØoptics 30to40mmØoptics 80/50 5/3x0.25;K5x0.016 5/4x0.4;K5x0.016 80/40 5/2x0.25;K5x0.016 5/3x0.4;K5x0.016 60/40 5/2x0.25;K3x0.016 5/3x0.4;K3x0.016 60/30 5/3x0.16;K3x0.016 5/3x0.25;K3x0.016 40/20 5/2x0.16;K4x0.01 5/3x0.25;K4x0.01 40/10 5/3x0.063;K4x0.01 5/3x0.1;K4x0.01 20/10 5/3x0.063;K2x0.01 5/3x0.1;K2x0.01 15/5 5/4x0.025;K2x0.0063 5/4x0.04;K2x0.0063 10/5 5/4x0.025;K2x0.004 5/4x0.04;K2x0.004 S/D 40to50mmØoptics >50mmØoptics 80/50 5/8x0.4;K5x0.016 5/20x4x0.4;K5x0.016 80/40 5/6x0.4;K5x0.016 5/20x3x0.4;K5x0.016 60/40 5/2x0.4;K3x0.016 5/20x3x0.4;K3x0.016 60/30 5/8x0.25;K3x0.016 5/20x4x0.25;K3x0.016 40/20 5/6x0.25;K4x0.01 5/20x3x0.25;K4x0.01 40/10 5/6x0.1;K4x0.01 5/20x3x0.1;K4x0.01 20/10 5/6x0.1;K2x0.01 5/20x3x0.1;K2x0.01 15/5 5/8x0.04;K2x0.0063 5/20x4x0.04;K2x0.063 10/5 5/8x0.04;K2x0.004 5/20x4x0.04;K2x0.004

REFERENCE SECTION

Chamfers

Chamfersareusuallyrequiredbothtoprotecttheworkfromchippingduring polishingandalsoinuse.Protectivechamfersarereferredtoas‘breakedge’andmay beremovedbythepolishingprocess.ForoperationalreasonsCrystranmaychoose nottoapplychamferstosome,especiallysmallwindows.Somepolishingoperations mayrequireslightlylargerchamfers.

Chamfersareusually45°(nominally)andmeasureddowntheedgeoftheoptic unlessotherwisespecified.Thesizeofchamfersisconsidereduncriticalunless specificallyrequested.

OpticAxis(Birefringence)

Birefringenceisaphenomenonthatoccursinnon-cubiccrystals.Mostmaterialsare isotropicandthespeedoflightisthesameinalldirectionsasitpassesthrough. Birefringentmaterialsareanisotropicandthespeedoflightdependsontheplaneof polarisationanddirectionofpropagationofthelight.

Whenlightisincidentonabirefringentmaterial,itissplitinto2rays–theordinary(o ray)andtheextraordinary(eray).Asillustratedbelow,theraysbecomepolarisedin perpendiculardirections.Theseraystravelatdifferentspeedsandmaytravelin differentdirections.

Thereisonedirectioninabirefringentmaterialwherethe2raystravelaligned–this isknownastheopticaxis.Thelightwillbehaveasitwouldinanisotropicmaterial. Whenlightisincidentatanyangletotheopticaxis,theeandoraysaresplitandare separatedinspace.Theeraywillrotatearoundtheorayifthematerialisrotated.

13
ForwindowsinSapphire,Quartz,CalciteorMgF2 theopticaxisisusuallyspecifiedas perpendiculartothesurface,knownasz-cutorZerodegree.

REFERENCE SECTION

ReflectionLoss,BrewsterAngle&CriticalAngle

Whenlightisincidentonaboundarybetweentwomedia,someofthelightislostin reflection;thislossiscalculatedasapercentageoftheintensityoftheoriginalbeam andisdependentonthereflectiveindicesofthematerial,theangleofincidenceand stateofpolarisationofthelight.Thereflectionlossofunpolarisedlightnormally incidentonasurfacefromonesurfaceis:

Fortransparentmaterials,thesecondsurfacemustbeaccountedfor.Thus,the internaltransmittanceofaparallelplateis:

Unpolarisedlightreflectedfromaplanesurfaceboundaryoftwotransparentmedia ispartiallypolarised.Atthepolarisingangle(Brewster’sangle θb)thereflectedlightis completelypolarisedandperpendiculartotherefractedray.

Totalinternalreflectionoccurswhentheangleofincidenceofabeamoflight incidentuponaninterfaceisincreaseduntiltheangleofrefractionis90°.Thiscritical angle θc canbefoundintermsoftheindexofrefractionforthetwomediabysolving Snell’sLawwhen θr =90°.

Thisphenomenononlyoccurswhenthelightisemergingfromadensermedium,i.e. whenn1 isgreaterthann2.

14
Snell’sLaw:n=n1 sin θi =n2 sinθr
ReflectionLoss= (n-1)² (n+1)² Transmittance= 2n (n²+1) BrewstersAngle:tanθb = n1 n2 sinθc = n1 n2 sin90°

Reststrahlen

Formanyinorganicmaterialsusedinopticalapplications,therefractiveindex remainsconstantandtheabsorptioncoefficientiszeroorverysmalloverthe majorityofitstransmissionrange.WhenReststrahlenmaterialsareilluminatedat wavelengthsthatexcitetheatomic,orcrystallatticestructure,anumberof resonanceeffectsarenoticed.AstheReststrahlenmaximumfrequencyis approached,therefractiveindex(n)undergoesarapidchange,theextinction coefficient(k)risesrapidlyandtheFresnelreflectioncoefficient(R)maybecome high.Therefore,attheReststrahlenmaximumfrequencyforaparticularmaterial,the reflectanceofthatmaterialrisessharply:

TheReststrahleneffectoccursnotablyinthe6µmto300µmrange.Therearenot manysatisfactoryfiltersinthisregion;hencetheeffectisoftenusedforthe extractionofanarrowspectralregionfromaspectralcontinuum.

Inpracticalapplications,somepropertiesofReststrahlenmaterialsaresignificant; particularlythefactthatthemaximumreflectanceincreasesasthetemperatureis reduced.Whenusedasthinfilms(forcoatingsonmirrorsandlenses)theyexhibit interferencemaximaandminimaontheshortwavelengthsideofthereflectance peaks.

15
(n-1)²+k2 (n+1)²+k2 R= REFERENCE
SECTION

MetrologicalWavelengths

UV Bands

UV-A=400-320nm

UV-B=320-290nm

UV-C=290-100nm

Neutral Density Filters

Transmission%=100/10

WhereNDistheopticaldensity

16 10640.0 CO2laser 2325.42 IRmercury 1970.09 IRmercury 1529.582 IRmercury 1064.0 Nd:YAGlaser 1013.98 t IRmercury 852.11 s IRcaesium 706.5188 r Redhelium 656.2725 C Redhydrogen 643.8469 C’ Redcadmium 632.8 He:Nelaser 589.2938 D Yellowsodium 587.5618 d Yellowhelium 546.0740 e Greenmercury 486.1327 F Bluehydrogen 479.9914 F’ Bluecadmium 435.8343 g Bluemercury 404.6561 h Violetmercury 365.0146 i UVmercury 334.1478 UVmercury 312.5663 UVmercury 296.7278 UVmercury 280.4 UVmercury 248.3 UVmercury 121.567 Lymanα
λ(nm) Code SpectralLine λ(nm) Code SpectralLine
SECTION
IRTRAN™ Numbers IRTRAN-1=MgF2 IRTRAN-4=ZnSe IRTRAN-2=ZnS IRTRAN-5=MgO IRTRAN-3=CaF2 IRTRAN-6=CdTe
REFERENCE
Kodak™
ND

REFERENCE SECTION

HardnessScales

TheKnoopscale(HK)isthemostcommonlyused,theothersbeing;Moh,Vickers, RockwellandBrinell.

TheexperimentalprocedureforthederivationofavalueontheKnoopscaleistouse apyramidaldiamondpointwhichispressedintothematerialinquestionwitha knownforce.TheindentationmadebythepointisthenmeasuredandtheKnoop numbercalculatedfromthismeasurement.Thetesthasbeendesignedforuseona surfacethathasnotbeenwork-hardenedinthelatticedirectioninwhichthe hardnessvalueisbeingmeasured.ThehardnessisusuallystatedasaKnoopfigure buttheunitsareactuallykgfmm¯²

ThevaluesontheMohscalearearrivedatbymeasuringtherelativehardnessof materialsbyobservingwhichmaterialsareabletoscratchothermaterials.TheMoh scale,whichisnotlinear,islimitedbythesoftestmaterialTalc(Moh=1)andthe hardestmaterialDiamond(Moh=10).

ElasticCoefficients

Elasticcoefficients,otherwiseknownasElasticStiffnessConstantsaretheconstants ofproportionalitybetweenthecomponentsofstressandstrain.Theyaretherefore relatedtotheelasticmoduli.

17
1.Talc 2.Gypsum 3.Calcite 4.Fluorite 5.Apatite 6.Feldspar 7.Quartz 8.Topaz 9.Sapphire 10.Diamond
Forcubiccrystalsthecoefficientsarethree: C₁₁,C₁₂,C₄₄ Fortetragonalcrystals,five: C₁₁,C₁₂,C₁₃,C₃₃,C₄₄ Forhexagonalcrystals,six: C₁₁,C₁₂,C₁₃,C₁₄,C₃₃,C₄₄ Foracubiccrystalhethreemodulirelatetothesecoefficientsasfollows: Youngsmodulus =E=(C₁₁ +2C₁₂)(C₁₁ -C₁₂)/(C₁₁ +C₁₂) Bulkmodulus =K=(C₁₁ +2C₁₂)/3 Shearmodulus =G=C₄₄ =(C₁₁ -C₁₂)/2 Notethatthesubscriptsarecompressionsofnotation.C1111 → C₁₁ C2323 → C44 Ingeneral11→1 22→2 33→3 23=32→4 Thethreemoduliiarealsorelated: E=9KG/(3K+G) K=EG/(3(3G-E)) G=3KE/(9K-E)

REFERENCE SECTION

SomeUsefulDefinitions

Transmittance= IE Io

Intensityofexitbeam

IntensityofIncidentbeam

Transmittance is usually expressed as a percentage.

Transmissivity=InternalTransmittanceperunitthickness

Absorptance= Io -IE Io

Intensityofabsorbedbeam

IntensityofIncidentbeam

The complement of transmittance

Absorbance=log10 Io Ie ( ) log10 100 20 ( )

Example: 20% transmittance is = 0.7 absorbance.

WaveNumber= 1 wavelength (cm)= 10000 wavelength (µm)

Focallength(mm)= 1000 dioptre

Example: 20 dioptre = 50mm F.L.

BeamDeviationthroughWedge Angle(α)toprovideagivendeviation.

α =atan sind

n-cosd ( )

TransmissionAbsorptionCoefficient

Ti =exp(-µ.L)

µ=-(lnT)/L

µ=AbsorptionCoefficient(cm⁻¹)

L=PathLength(cm)

Ti =InternalTransmission(%/100)

Te =Ti +Reflectionlosses

n=RefractiveIndex

Example: n = 1.5492 ; Path length 10cm

External Transmission = 76.8% = 0.768

Reflection loss is 0.0887 (page 14)

Ti = 0.768 + 0.0887 = 0.8567

µ = - (ln 0.8567) / 10 = 0.0155 cm⁻¹

18

REFERENCE SECTION

S.I.Prefixes

Degrees°C= 5.(°F-32)/9

32+(9x°C)/5

19 Y Yotta 10²⁴ d deci 10¯¹ Z Zetta 10²¹ c centi 10¯² E Exa 10¹⁸ m milli 10¯³ P Peta 10¹⁵ µ micro 10¯⁶ T Tera 10¹² n nano 10¯⁹ G Giga 10⁹ p pico 10¯¹² M Mega 10⁶ f femto 10¯¹⁵ K Kilo 10³ a atto 10¯¹⁸ h hecto 10² z zepto 10¯²¹ da deka 10 y yocto 10¯²⁴
1Å =10¯⁴μm =10¯⁷mm =10¯⁸cm =10¯¹⁰m λ(μm) 1.234/ev 1 μm 10³nm 10⁻³mm 10⁻⁴cm 10⁻⁶m 1mm 0.04”(40thou) 1microinch 254Å 25.4nm 0.0254 μm 10⁻⁶inch 1thou 0.001” 25.4 μm 1inch 25.5mm 2.54cm 1radian 57.30° 1mile 1.609344km 1° 17.45x10⁻³rad πrad 180°
Degrees°F=
1lb 0.4535kg 1kg 2.205lb 1impgallon 4.5454litre 1litre 0.22impgallon 1.76imppint FrequencyMHz
FrequencyTHz
UnitsConversions
300/λmetres FrequencyGHz 300/λmm
300/λμm
20 GPa N mm -2 Kgf cm -2 Kgf mm -2 Mbar lbf in -2 Dyne cm -2 Torr Gpa 1 1x10 3 1.02x10 4 1.02x10 2 0.01 1.45x10 5 1x10 10 7.5x10 6 N mm -2 1x10 -3 1 10.2 0.102 1x10 -5 145.0 1x10 7 7.5x10 3 Kgf cm -2 9.81x10 -5 9.81x10 -2 1 0.01 9.81x10 -7 14.223 9.81x10 5 735.6 Kgf mm -2 9.81x10 -3 9.81 100 1 9.81x10 -5 1.42x10 3 9.81x10 7 7.36x10 4 Mbar 100 1x10 5 1.02x10 6 1.02x10 4 1 1.45x10 7 1x10 12 7.5x10 8 Ibf in -2 6.89x10 -6 6.89x10 -3 7.03x10 -2 7.03x10 -4 6.89x10 -8 1 6.89x10 4 51.71 Dyne cm -2 1x10 -10 1x10 -7 1.02x10 -6 1.02x10 -8 1x10 -12 1.45x10 -5 1 7.5x10 -4 Torr 1.33x10 -7 1.33x10 -4 1.36x10 -3 1.36x10 -5 1.33x10 -9 0.019 1333.2 1 Pressure REFERENCE
SECTION

REFERENCE SECTION

Normal Atmospheric Pressure (1 atm)

(1) pounds/sqinch 14.7psi

(2) inchesofmercury 29.9213"

(3) mmofmercury(torr) 760mm(760torr)

(4) millibar 1013.240mBar

(5) Pascals 101.324kPa

(2) and (3) are measures of a column of mercury supported by 1 atmosphere.

(4) and (5) are actual measures of force/area and take account of the density of mercury (13.595 gm/cc at 0°C) and the acc of gravity (980.665 cm/sec²) when converting from a mercury barometer reference.

Mediumvacuum20to10¯²torr

Highvacuum10¯²to10-6 torr

Veryhighvacuum10-6 to10-9 torr Ultrahighvacuum>10-9 torr

LowEarthOrbit=10-10 torr

Specific Heat

Thermal Conductivity

InterplanetarySpace=10-16 torr

21
Jg-1 K-1 JKg-1 K-1 calg-1 K-1 1Jg-1 K-1 = 1 1000 0.2388 1JKg-1 K-1 = 0.001 1 238.8x10-6 1calg-1 K-1 = 4.1868 4186.8 1
W.cm-1.K-1 W.m-1.K-1 cal.cm-1.s.K-1 Btuft-1.hr.F-1 1W.cm-1.K-1 = 1 100 0.2388 694 1W.m-1.K-1 = 0.01 1 2.388x10-3 6.94 1cal.cm-1.s.K-1 = 4.1868 418.68 1 2903 1Btuft-1.hr.F-1 = 1.44x10-3 0.144 34.5x10-4 1

ThinLensEquation:

LensMakersEquation: Forathinlens,itreducesto:

Foraplano-vexorplano-cavelenstheequationreducesto:

Thus:

Sagisthedistancefromthelensvertextothelensedge

Sign convention of +ve and -ve radii and linear measurements must be applied consistently.

so = Object distance

F1 = Front focal point

V1 = Front vertex

H1 = First principal point

r1 = Front radius of curvature

f = Effective focal length

FFL = Front focal length

n = Lens Refractive Index in air

si = Image distance

F2 = Back focal point

V2 = Back vertex

H2 = Second principal point

r2 = Back radius of curvature

D = Diameter of lens

BFL = Back focal length

P = Power in dioptre

22
1 so 1 si + = 1 f 1 r1 1 r2 = 1 f (n 1) ( ) 1 r1 1 r2 = 1 f (n 1) ( ) + (n 1) tc n r1 r2
LensFormulae
(n 1) = 1 f r h1 = f (n-1) tc n r2 h2 = f (n-1) tc n r1
BFL= f - h2
Principalpointdistancesaregiven:
o si = f ( f - so)
Magnificationofalens= s
Conventionallytakenas≡0.25P
f f BFL FFL Fo Fi h1 h2 H2 H1 te Object Image r1 r2 → → tc V1 V2 • • • • si so
ct =et +sag1 +sag2 sag1 = r1 ± r1 2D2 4 �
FORMULAE

FORMULAE

Spheres

Areaofsurface=4πR2

Volume=

SegmentofaSphere(Lens)

Thesegmentisavolumecutofffromaspherebyachordplane.

SphericalArea =2πRT

TotalArea =

Volume =

SectorofaSphere

Thecircularsectorisathreedimensional portionofasphereenclosedbythecurved surfaceandtheconetothecentre.

Totalarea =

Totalvolume =

23
R t D R
4πR3 3 π(D2 +8Rt) 4 π t(3D2 +4t2) 24 π R(2t+ ) D 2 π R2 t 2 3

SegmentofaCircle

Thesegmentisaportionofacircleinformally definedasaareacutofffromtherestofthecircle byachord.

Thecircularsectorisawedgeofacircleenclosed bythecurvededgeandtheangletothecentre.

24
Area
= SectorofaCircle
=
Area = = Hexagon Area =3R2 cos30˚ =2.6R2 =F2 cos30˚ =0.866F2 AreaExternalCircle =πR2 =1.05F2 AreaInternalCircle =π =2.35R2 Torus AreaofSurface=4π2 .R.r Volume=2π2 .R.r2 R D L t α° R F R r FORMULAE (RD-Dt) 2 (π R2 α°) 360° (RL-RD-Dt) 2 (RL) 2 (π R2 α°) 360° F2 4

Ellipse

Area =π AB

Parabola

Area=

FrustumofaPyramid

Volume= A1 =areaofbase A2 =areaoftop

H =height

Forapyramid A2 =0

Foraprism A1 =A2

FrustumofaCone

Volume= R=radiusofbase r=radiusoftop

H =height

Foracone r=0

Foracylinder R=r

25 A B H
S
h A1 A2 h r
SH 3 A1 +A2 +h�(A1 A2) 3 π h(R2 +r2 +Rr) 3
R FORMULAE

GUIDES - Design of Pressure Windows

Calculationofthicknessofopticalwindowsusedinvacuumorpressureapplication

DEFINITIONS

ThemaximumstressSmax onauniformlyloadedwindowisgivenby:

Smax =(K.D2 .P)/(4.T2) and also Smax =Fa /SF (See Safety Factor Box)

Andthensolvingforthickness,T

T =D. � (SF.K/4). � (P/Fa)

T

26
(CIRCULAR
WINDOWS)
(1+R
(RECTANGULAR WINDOWS) CLAMPED CircularWindow(SafetyFactorof4&Kc =0.75) T=0.866D � (P/Fa) RectangularWindow(SafetyFactorof4&Kc =0.75) T=1.23L � (P/(Fa (1+R2))) UNCLAMPED CircularWindow(SafetyFactorof4&Ku =1.125) T=1.06D � (P/Fa) RectangularWindow(SafetyFactorof4&Ku =1.125) T=1.50L � (P/(Fa (1+R2))) Clamped,Smax atedge
=L. � (SFK/2). � (P/(Fa
2)))
S max =MaximumStress R =L/W SF =SafetyFactor T =Thickness
a =ApparentElasticLimit P =LoadperUnitArea
=EmpiricalConstant L,W =LengthandWidth
=UnsupportedDiameterforanunsupportedwindow Unclamped,Smax atcentre
F
K
D

GUIDES - Design of Pressure Windows

CONSTANTK

Thevalueof K dependsonthemethodofsupport,upontheforceintroducedin clampinganduponthebrittle/ductilecharacterofthewindowmaterialinvolved. Empirically,a K valueof0.75isfoundsuitableformostopticalcrystalswhenthe perimeterisclamped,andavalue50%greaterwhenunclamped.

Kc =0.75 Ku =1.125

SAFETYFACTOR

Toavoidplasticdeformation,themaximumstress(Smax)shouldbelessthanthe ApparentElasticLimit(Fa)byanappropriateSafetyFactor(SF)

Smax = Fa /SF

Amodestsafetyfactorof4(i.e.,maximumstressequalsonequarteroftheelastic limit)seemstosufficeformanylaboratoryapplicationswheretheoperatingconditionsarereasonablyundercontrol.Severeconditionssuchasthermalshockrequire specialconsiderationandmayevenresultinadecisiontousea reduced thickness. ThepublishedApparentElasticLimitofsomematerialsmaynotbecompletely reliable.Crystalsvaryandcleavagemayoccuraccordingtograinboundariesorthe particularcutoftheingot.Ultimately,thefinaldesignthicknessmustbeacarefully considereddecisionandmayneedtobeempiricallytested.CrystranLtdcanaccept noresponsibilityfortheadoptionofthesecalculationsandrecommendations.

NOTES:

� Acarefullydesignedwindowmaystillbreakbeforeanysignificantloadingifthe mountingintroducesanylocalisedstress.

� Mismatchofexpansioncoefficientsgenerallydictatestheuseofresilientmaterialbetweenwindowandmounting.

� ThermaloutgassingusedinUHVsystemsshouldbeundertakenwithcautionwith crystalwindowsasthermalshockmayinitialcleavageinsomecrystals

� Theconstantforclampedmountingallowsfornoflexureatthewall.Theuseof softgasketsmayallowflexuresotheformulaforthe"unclamped"condition shouldbeused.

27

GUIDES - Aspheric Lens Design

Thestandardasphericformulais:

BeawarethatforsomereasonmanydesignersshowcastheRadius(R)andforgetto showthereciprocal.Thisofcourserenderstheequationobviouslyunworkableinmost casesbutitcancatchyouout.TheRadius(R)doesnotrepresenttheclosestspherical surface,butthesphericalsurfacefromwhichtheaspherictermscausethecurveto divergefromit,eithershallowerordeeperthanthesphericalcurve.Theclosestor“best fit”sphericalsurfaceistheRadiuswhichmatchestheasphericsagatthelargestuseful diameter.

Takingcaretoobeythesignconventions,thesagfiguremustbeaddedtothelens centrethicknesstoderivetheactuallensthicknessatanypoint.Donotsimplypresent sagdatatothemachinist,theyarelikelytogeneratetothatfigureandproducealens withzeroedgethickness.

Mostopticaldesignersuseonlytheeven-ordertermsfromA2 toA20, butshouldtheybe requiredtheodd-ordertermsareavailable,fortheprofileonly,fromA1 toA19

TheconicconstantKhastraditionallybeenusedtodesignthefirstaspheres;simple parabolasandhyperbolas.ItisnowlargelyredundantintheaboveequationastheAx termscandefineanysurface.Asphericalsurfaceisdefinedbytheaboveequationwhen K=0andallAx termsarezero.

28
Aₓ=Higherorderterms x . . . 6 6 4 4 2 2 2 ) 1 1 1 r A r A r c K cr Z�� � � � � + A8 r 8+ A10 r 10 (
Where: Z=Depthor“Sag”ofthecurve r=Distancefromthecentre C=Curvature(=1/Radius) K=ConicConstant

GUIDES - Cleaning Optics

Crystalopticsaredelicateandshouldbetreatedcarefullyiftheyaretobecleaned. Describedisamethod,butthetechniquecomeswithpractice.Handleopticsbythe edgeusinglint-freenylonglovesorplasticprotectivegloveswhencleaningwith solvent,checkingthatthesolventdoesnotattacktheglove.Handleopticsaslittleas possible.Cleaningmaycreatefinescratcheswhichyoucannotseeeasilybutwhich maycontributetoscattering,particularlyintheUV.Iftheopticismounted,trynever toletsolventcreepintothemountingring.Useanairjetonlyforremovalofdust.

VeryDelicateMaterials:CsI,KRS5,Germanium,ZincSelenide,ZincSulfide.

Softmaterialsareinclinedtotakemarks(sleeks)orshowupmarkseasily.Washina solventsuchasmethanolorpropanolforlightmarking.Useanenvironmentfriendly solventsuchasNuSolRapide(areplacementfortrichloroethylenewhichisavailable intheUK)orotherwiseacetone,forgreasyorwaxycontaminants.Soaktheopticand wipewhilstwetwithcottonwool(absorbentcottonintheUSA)dippedinthesolvent andlettheopticdrybyevaporationorassistitwithairflowasitiswiped.

DelicateMaterials:Fluorides,Silicon.

Theseshouldbetreatedasabovewherepractical,butitisoftenpreferabletoclean themcarefullywithadamptissue.WeuseKimtechScience100professionalwipes. Donotrubtheoptic,butwipegentlyandallowthethinnestfilmofsolventtodryby evaporation.

HarderMaterials:Glasses,Sapphire.

Wetreatthesematerialsinthesamemannerasdelicatematerials.

CoatedMaterials: Coatingsshouldbetreatedasdelicateeventhoughtheycanbe moreruggedthanthecrystalbasematerial.DLCongermaniumisanexampleofa verytoughcoating.

AqueousCleaning:CalciumFluoride,MagnesiumFluoride,LithiumFluoride

Wehavebecomeawarethatverysmallabsorptions(<1%)canoccurduetoclosely bondedorganicsurfacecontamination.Notably,thisisfoundat3.4μmandprobably duetowaxesusedinthepolishingprocess.Aqueouscleaningusingdemineralized waterwithasurfactantdetergentsuchasAlconoxcanbeeffective.Useabathofthe freshwarmsolutioninplaceof,oradditionallyto,thesolventmethods.Soakthe opticfor10minutesandwipewhilewetwithcottonwooldippedinthesolvent.

Rinseincleanwarmdemineralizedwaterdrybyevaporationorassistitwithairflow.

29

GUIDES - Low Angle Grain Boundaries

Large cubic crystals of fluorides are not seeded on any particular crystal orientation. This is not a difficulty in normal use. The bulk crystals often contain one or two grain boundaries and so it is sometimes difficult to select larger pieces strictly as single crystal. The supplied blank may include a low-angle grain boundary. This is not a weak point and will become invisible on polishing not even detectable in the interferogram of the finished optic. It will not cleave. Crystran will guarantee its integrity during normal working.

The definition of ‘low angle’ boundaries is not simply a matter of angle, but more about the dislocation of the lattice at the boundary. Typically though there is a maximum value of about 4° tilting between adjacent crystal grains where the two grains share common lattice points before lattice strain dominates. The grain boundary can be thought of as a row of dislocations. Consider also that a perfect single crystal is an impossibility, even within a ‘single’ grain, there will be a huge number of dislocations and lattice defects.

At higher angles, the lattice cannot compensate and deformation rather than dislocation makes for a weaker join; a high angle grain boundary. It is then more common that the crystal cracks along this line or the boundary opens up because of higher built-in strain.

CaF2, BaF2 and SrF2 are cubic crystals and with some skill can be cleaved on the {111}. The CaF2 here has been cleaved to show two of the planes which form part of a tetrahedron. Note that they are randomly aligned with the grown crystal diameter. If it is an absolute requirement, these planes can be used as reference to supply oriented single crystal pieces. This is only important where lattice effects are inherent to the final product.

LiF which cleaves more easily on the {100} is more often required as oriented single crystal.

MgF2 is not cubic and exhibits bifrefringence. It does not cleave on any recognised planes and must be seeded in growth and thus is always aligned optically. It is always supplied without grain boundaries and with reference to the optical axis.

30
Typical appearance of a Low Angle Grain Boundary on a lapped surface CaF2 crystalshowingtworeference{111} facesbycleavage. Low Angle Grain Boundary Structure. Note the shared atoms along the division line.
Diagrams are illustrative only and not intended to show any actual situation.
‘High’ Angle Grain Boundary Structure. Note the distorted lattice at the division.

GUIDES - Thermal Shock

Crystal optical materials vary widely in how they may be treated thermally and particularly in regard to rates of heating and cooling to avoid thermal shock. There are no definite answers. Apart from the material, the size and shape of the component has a large factor in the assessment. These suggestions are based on moderate circular windows up to approximately 50mm diameter and 6mm thick. Always err on the safe side. If the component is to be of a high specification, try to arrange to test an unpolished blank before proceeding.

For very large pieces >1kg of CaF2 (Grade 2) we would use a rate of 10ºC/hour

Smaller pieces may be heated and cooled at higher rates.

We cannot find any firm correlation between Thermal Expansion and Conductivity and our practical knowledge of how different materials behave in actual handling.

Maximum working temperatures are Crystran recommendations only and not related to melting points.

Grade 1. Natural cooling rate on removal from oven, ~ 5ºC/min No particular precautions.

Grade 2. Slightly Sensitive to thermal shock. ~ 2ºC/min (Cool over 1 to 2 hours from 150ºC)

Grade 3. Sensitive to thermal shock. ~ 0.75ºC/min (Cool over 3 to 4 hours from 150ºC)

Grade 4. Very sensitive to thermal shock. ~ 0.3ºC/min (Cool overnight. 7 to 8 hours from 150ºC)

31
MATERIAL Symbol Thermal Thermal Max Crystran Cond. ExpansionTemp Shock Wm-1 K-1 x10-6 K-1 ºC Grade Bariumfluoride BaF2 11.7 18 300 IV Calciumfluoride CaF2 9.71 19 500 III Lithiumfluoride LiF 11.3 37 400 IV Magnesiumfluoride MgF2 21/33 13.7/8.9 500 II Strontiumfluoride SrF2 8.3 18 500 III Sodiumchloride NaCl 6.49 44 400 II Sodiumfluoride NaF 3.75 36 400 III Potassiumbromide KBr 4.82 43 300 III Potassiumchloride KCl 6.53 36 400 II Cesiumbromide CsBr 0.94 48 400 I Cesiumiodide CsI 1.1 48 200 I Silverbromide AgBr 1.21 30 200 I Silverchloride AgCl 1.15 31 200 I Thalliumbromo-iodideKRS-5 0.54 58 200 I Magnesiumoxide MgO 42 10.8 2000 I Sapphire Al2O3 27 5.6 1700 I Crystalquartz SiO2 10.7/6.2 7.1/13.2 1000 I Zincsulfide(MS) ZnS 27.2 6.5 250 I Zincselenide ZnSe 18 7.1 250 I Diamond C 2600 1 700 I Silicon Si 163 2.6 150 I Germanium Ge 58 6.1 80 I Galliumarsenide GaAs 48 5.7 200 II

GUIDES - Materials

Crystranpublishanumberofguideswithpracticaldetailsrelatingtothegradesand usesofthematerialsthatwesupply.Becausetheseguidesarereviewedonaregular basisasoldgradesandtradedesignationsdisappearornewonesbecomeavailable, wereferencetheguidesherewithalinktoourwebsiterepositorywherethelatest versionswillbeavailable.

Pleasegotoourwebsiteatwww.crystran.co.uk/documents

GuidetoCalciumFluorideGrades

GuidetoRamanQualityMaterial

GuidetoSilicaGlass

GuidetoQuartzCrystal

GuidetoSapphire

GuidetoLanthanumFluoride

GuidetoCrystalQuality

AllSafetyDataSheets(SDS)

32

COMPARISON OF DATA - Transmission

33 0.1 0.2 0.3 0.5 0.7 1 10 100 2 3 5 7 20 30 50 70 Al2O3 AgCl AgBr BaF2 CaF2 CsBr CsI Ge KBr KCl KRS5 LiF MgF2 NaCl NaF Si SrF2 SiO2 ZnS ZnSe Wavelengthµm
Spinel

Sodium Fluoride

Magnesium Fluoride

Lithium Fluoride

Calcium Fluoride

Strontium Fluoride

Barium Fluoride

Potassium Chloride

Silica Glass (SiO2)

Rubidium Chloride

Sodium Chloride

Crown Glass

Rubidium Bromide

Potassium Bromide

Quartz Crystal (SiO2)

Lanthanum Fluoride

Rubidium Iodide

Potassium Iodide

Caesium Bromide

Magnesium Oxide Calcite

Lead Fluoride

Caesium Iodide

Sapphire (Al2O3)

Yttrium Aluminium Garnet (YAG)

Silver Chloride

Thallium Bromo-Chloride (KRS6)

Thallium Chloride

Zinc Sulphide

Silver Bromide

Thallium Bromide

Gallium Lanthanum Sulphide

Thallium Bromo-Iodide (KRS5)

Zinc Selenide

Rutile (TiO2)

Gallium Arsenide

Germanium Silicon

34 COMPARISON OF DATA
Refractive Index 4 3.42 3.27 2.56 2.4 2.37 2.37 2.34 2.31 2.2 2.19 2.18 1.98 1.81 1.76 1.74 1.71 1.67 1.66 1.66 1.62 1.61 1.6 1.55 1.53 1.52 1.52 1.49 1.48 1.46 1.45 1.45 1.44 1.4 1.39 1.38 1.24 1 1.5 2 2.5 3 3.5 4
-
35 COMPARISON OF DATA - Melting Point °C
36 COMPARISON OF
Density g/cc
DATA -

COMPARISON OF DATA - Expansion Coefficient x 10¯⁶

Silica Glass (SiO2)

Sapphire (Al2O3) Silicon

Gallium Arsenide

Germanium

Zinc Sulphide

Zinc Selenide

Yttrium Aluminium Garnet (YAG)

Crown Glass

Rutile (TiO2)

Gallium Lanthanum Sulphide

Magnesium Oxide

Stainless Steel

Quartz Crystal (SiO2)

Magnesium Fluoride

Monel Metal

Lanthanum Fluoride

Barium Fluoride

Strontium Fluoride

Calcium Fluoride

Calcite Aluminium

Lead Fluoride

Silver Chloride

Silver Bromide

Sodium Fluoride

Rubidium Chloride

Potassium Chloride

Rubidium Bromide

Lithium Fluoride

Rubidium Iodide

Potassium Iodide

Potassium Bromide

Sodium Chloride

Caesium Bromide

Thallium Bromo-Chloride (KRS6)

Thallium Bromide

Metals

Birefringent Materials

= lowest value perp or para added = highest value

37 58 53 51 50 50 47.9 44 43 43 39 37 36.98 36 36 36 30 30 29 5.8 23 18.85 18.4 18.1 11 14 8.9 7.1 13 10.8 10 7.1 8.3 7.8 7.1 6.6 6.1 5.7 5 2.6 0.55 19.2 6 4.8 6.1 2.1 0.6 0 10 20 30 40 50 60
Thallium Bromo-Iodide (KRS5) Thallium Chloride
Caesium Iodide

COMPARISON OF DATA - Knoop

Potassium Bromide

Silver Bromide

Potassium Chloride

Silver Chloride

Thallium Bromide

Thallium Chloride

Sodium Chloride

Caesium Bromide

Caesium Iodide

Thallium Bromo-Chloride (KRS6)

Thallium Bromo-Iodide (KRS5)

Sodium Fluoride

Barium Fluoride

Lithium Fluoride

Zinc Selenide

Strontium Fluoride

Calcium Fluoride Calcite

Gallium Lanthanum Sulphide Lead Fluoride

Zinc Sulphide (FLIR)

Magnesium Fluoride

Silica Glass (SiO2)

Crown Glass

Magnesium Oxide

Quartz Crystal (SiO2)

Gallium Arsenide

Rutile (TiO2) Germanium

Yttrium Aluminium Garnet (YAG)

Sapphire (Al2O3)

38
Hardness Kgf/mm 2000 1215 1150 879 780 750 741 692 610 500 415 240 206 200 158 155 154 120 102 82 60 40.2 29.9 20 19.5 18.2 12.8 11.9 9.5 7.2 7 5.9 1 10 100 1000 10000
Silicon

Sodium Fluoride

Potassium Bromide

Sodium Chloride

Potassium Chloride

Calcite Rutile (TiO2)

Caesium Iodide

Caesium Bromide

Lithium Fluoride

Thallium Chloride

Thallium Bromo-Chloride (KRS6)

Thallium Bromide

Thallium Bromo-Iodide (KRS5)

Silver Chloride

Silver Bromide

Barium Fluoride

Strontium Fluoride

Calcium Fluoride

Quartz Crystal (SiO2)

Magnesium Fluoride

Silica Glass (SiO2)

Zinc Selenide

Crown Glass

Gallium Arsenide

Germanium

Zinc Sulphide

Silicon

Magnesium Oxide

Yttrium Aluminium Garnet (YAG)

Sapphire (Al2O3)

39
Rupture Modulus MPa 300 280 138 124 103 89.6 71.9 63.5 55.1 55 49.6 41 36.54 36.5 26.9 26.2 26.2 26.2 20.7 20.7 20.7 11.2 8.4 5.6 4.83 4.8 4.4 3.9 3.3 3.2 1 10 100 1000
COMPARISON OF DATA -

MATERIALS DATA

BariumFluorideisgrownbyvacuumStockbargertechnique.UnlikeCaF2,BaF2isnot foundinthenativestateandallmaterialmustbesynthesisedchemicallymaking BaF2relativelyexpensivetoproduce.BariumFluoridecleaveseasilyandishighly susceptibletothermalshock.Itpolisheswellandcanbeetched(5).Thehighest purityVUVmaterialcanbequalifiedasfastscintillatorgrade.

APPLICATIONS: BariumFluorideisusedinspectroscopiccomponents.Itisoften suitableforapplicationsinthepassiveIRband(8to14µm)andisoftenusedasa view-portwindowforthermography.Foranequivalentthicknessthetransmission extendsapproximately1µmfurtherintotheIRthanCaF2.ThehighestqualityBaF2 alsohasapplicationasthefastestknownscintillatormaterialandisusedinHigh EnergyPhysicsExperiments.

Cleaveson(111)

(1) Handbook Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

(2) I.H.Malitson; J.Opt.Soc.Am. Vol52, p1377, 1962

(3) D.Girlich; Elastic Constants of BaF2; Phys.Rev. Vol135, p1826, 1964

(4) S.Ballard et al; J.Opt.Soc.Am. Vol42, p684, 1952

(5) US patent. Chemical polish. 4,040,896 1977

(6) M.Laval et al; Nu. Insts.Meth, V206 p169, 1983

40
TransmissionRange 0.15to12µm RefractiveIndex 1.45at5µm(1) ReflectionLoss 6.5%at5µm(2surfaces) AbsorptionCoefficient 3.2x10⁻⁴ cm⁻¹ @6µm ReststrahlenPeak 47µm dn/dT -15.2x10⁻⁶/°C(2) dn/dµ=0 1.95µm Density 4.89g/cc MeltingPoint 1386°C ThermalConductivity 11.72Wm⁻¹ K⁻¹ @286K ThermalExpansion 18.1x10⁻⁶K⁻¹ @273K Hardness Knoop82with500gindenter(4) SpecificHeatCapacity 410JKg⁻¹ K⁻¹ (3) DielectricConstant 7.33at1MHz YoungsModulus(E) 53.07GPa(3) ShearModulus(G) 25.4GPa(3) BulkModulus(K) 56.4GPa ElasticCoefficients C11 =89.2C12 =40.0C44 =25.4(2) ApparentElasticLimit 26.9MPa(3900psi)(4) PoissonRatio 0.343 Solubility 0.17g/100gwaterat23°C MolecularWeight 175.36 Class/Structure
CubicFm3m(#225)Fluoritestructure
Barium Fluoride (BaF2)
-
MATERIALS DATA 41 0.14081.815 0.14521.7820 0.14771.7670 0.15001.6780 0.20001.557 0.26521.5122 0.28031.5066 0.28931.5039 0.29671.5019 0.30211.500 0.31301.4978 0.32541.4952 0.34031.4925 0.34661.4915 0.36101.4894 0.36631.4887 0.40461.4844 0.54611.4759 0.58931.4744 0.64381.4730 0.65631.4727 0.70651.4718 0.85211.4699 0.89441.4694 1.01401.4685 1.12871.4678 1.36731.4667 1.52951.4661 1.68101.4656 1.70121.4655 1.97011.4647 2.32541.4636 2.67381.4623 3.24341.4602 3.42201.4594 5.13801.4501 5.54901.4473 6.23801.4422 6.63311.4390 7.04421.4353 7.26801.4331 9.72401.4051 10.3461.3936
Fluoride
µm No µm No µm No µm No µm No Barium Fluoride -
2 %T Wavelength nm Data supplied by 120 140 160 180 200 220 20 40 60 80 5mm Wavelength µm Barium Fluoride - BaF2 %T 9mm 0.5mm 1mm 2mm 4mm 2 4 6 8 10 12 14
Barium
(BaF2)
BaF

Cadmium Telluride (CdTe)

MATERIALS DATA

CAUTION: Cadmium salts are considered TOXIC and should be handled with care.

CdTeisrarelyusedbecauseofitstoxicity.Thefinishedopticsarenotparticularly hazardousbutshouldbehandledwithcare.However,difficultieswithprocessing cadmiumcompoundsmeansthatveryfewopticalcompanieswillcutandpolishthe material.CrystranLtddoesnotsupplyCdTe.Thisdataisprovidedforreferenceonly.

AformofCdTewasoriginallyutilisedastheobsoleteKodakdesignationofIRTRAN-6

APPLICATIONS: CadmiumTelluridecanbeusedforspectroscopyandwheredeepIR transmissionisrequired.Itisrelativelyworkableandofferstransmissionto>20µm. CdTehassomeapplicationforsolarcells.

Crystran does not hold stock of this material. This is for information only purposes

(1) Handbook Optical Constants, ed. Palik, V1, ISBN 0-12-544420-6

(2) Capper; Properties of Narrow Gap Cadmium-Based Compounds, IET, ISBN 978-0-85296-880-2

(3) Hawkins, Sherwood, Djotni; Mid IR Filters for astronomical and remote sensing instrumentation, invited paper SPIE Conference, Glasgow (2008)

(4) David R Lide; CRC Handbook of Chemistry and Physics, 78th ed (1997)

42
TransmissionRange 0.85to28µm(1)(3) RefractiveIndex 2.653@10µm(1) ReflectionLoss 32%@10µm AbsorptionCoefficient n/a ReststrahlenPeak n/a dn/dT 50x10⁻⁶ K⁻¹ dn/dµ=0 n/a Density 6.2gcm⁻³ (2) MeltingPoint 1092°C(4) ThermalConductivity 6.2Wm⁻¹ K⁻¹ at293K ThermalExpansion 5.9x10⁻⁶ K⁻¹ at293K Hardness Knoop54(3) SpecificHeatCapacity 210JKg⁻¹ K⁻¹ at293K DielectricConstant 11@1MHz YoungsModulus(E) 36.52GPa ShearModulus(G) n/a BulkModulus(K) 25GPa ElasticCoefficients C11=53.51;C12=36.81;C44=19.94 ApparentElasticLimit 5.9MPa(3) PoissonRatio 0.41 Solubility Insolubleinwater MolecularWeight 240.02 Class/Structure CubicZnS(110)cleavage
MATERIALS
43 Cadmium Telluride (CdTe) 0.8 2.876 1.0 2.840 2.0 2.713 2.5 2.702 3.0 2.695 3.5 2.691 4.0 2.6807 5.0 2.684 6.0 2.681 7.0 2.679 8.0 2.677 10.0 2.653 12.5 2.646 15.5 2.6407 20.0 2.614 22.2 2.601 24.8 2.5801 26.32 2.570 27.03 2.564 µm No µm No µm No µm No µm No 50K 50K 300K 2mm samples
Infrared Multilayer laboratory → → → Cadmium Telluride - CdTe 16 18 20 22 24 26 28 30 Wavelength µm 32 34 36 38 %T 40 50 60 70 80 10 20 30
DATA
Data from University of Reading

Caesium Bromide (Cesium Bromide) (CsBr)

MATERIALS DATA

CsBrisgrownbysealedampouleStockbargertechnique.Itisasoftpliablematerial.

APPLICATIONS: CesiumBromidehaslimitedapplicationinthedeepIR.Itisslightly moreamenabletoopticalworkingthanCsIandissometimesusedasabeamsplitter componentinwide-bandspectrophotometers

(1) Handbook Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

(2) Mitsuishi et al., J Opt Soc. Am. V52, p14, 1962

(3) Kelly, Bureau of Mines Bulletin, No371, p51, 1934

(4) S.Ballard et al; J.Opt.Soc.Am. Vol42, p684, 1952

(5) H.H.Li; J.Phys. Chem. Ref. Data. Vol 5, No 2. 1976

(6) K Matthews. Crystran Ltd. Test Data 2021

44
TransmissionRange 0.25to40µm(1) RefractiveIndex 1.6612at11µm(1) ReflectionLoss 11.6%at11µm(2surfaces) AbsorptionCoefficient n/a ReststrahlenPeak 121.2µm(2) dn/dT -84x10⁻⁶/°Cat0.6µm(5) dn/dµ=0 5.3µm Density 4.44g/cc MeltingPoint 636°C ThermalConductivity 0.94Wm⁻¹ K⁻¹ at273K ThermalExpansion 47.9x10⁻⁶ K⁻¹ at273K Hardness Knoop19.5with200gindenter SpecificHeatCapacity 263.8JKg⁻¹ K⁻¹ (3) DielectricConstant 6.51at2MHz YoungsModulus(E) 15.85GPa(4) ShearModulus(G) 7.5GPa BulkModulus(K) 13.01GPa ElasticCoefficients C11=30.97;C12=4.03;C44=7.5 ApparentElasticLimit 8.4MPa(1220psi)(4) PoissonRatio 0.279 Solubility 90g/100gwaterat25°C(6) MolecularWeight 212.83 Class/Structure CubicCsCl,Pm3m,nocleavageplanes

Cesium Bromide - CsBr

MATERIALS DATA 45
Bromide (Cesium Bromide) (CsBr) 0.5 1.70896 1.0 1.67793 2.0 1.67061 3.0 1.66901 4.0 1.66813 5.0 1.66737 6.0 1.66659 7.0 1.66573 8.0 1.6477 9.0 1.6637 10.0 1.66251 11.0 1.6612 12.0 1.65976 13.0 1.6582 14.0 1.6561 15.0 1.65468 16.0 1.65272 17.0 1.65062 18.0 1.64838 19.0 1.646 20.0 1.64348 21.0 1.6408 22.0 1.63798 23.0 1.635 25.0 1.62856 26.0 1.62509 27.0 1.62146 28.0 1.61764 29.0 1.61365 30.0 1.60947 31.0 1.6051 32.0 1.60053 33.0 1.59576 34.0 1.59078 35.0 1.58558 36.0 1.58016 37.0 1.5745 38.0 1.5686 39.0 1.56245 µm No µm No µm No µm No %T
Wavenumber
Caesium
Wavelength µm
Data Supplied by Wavelength nm %T Cesium Bromide - CsBr

Iodide (Cesium Iodide) (CsI)

CesiumIodideisgrownbysealedampouleStockbargertechniqueswithingotsof approximately70mmdiameter.CsIisverysoftandpliable.

APPLICATIONS: CesiumIodideisthematerialwiththedeepestknownIR transmission,andissometimesusedforcomponentsinthewidestrange spectrophotometers.Anextremelysoftmaterial,CesiumIodideisextremelydifficult topolish,andsoperformanceiscompromisedforrange.DopedwithThallium,CsI(Tl) isausefulscintillatorwhichemitsatawavelengththatisagoodmatchforSilicon photodiodes.ArraysofCesiumIodide(Tl)areusedinsecurityimagingsystems.

(1) Handbook Optical Constants, ed Palik, V2, ISBN 0-12-544422-2

(2) Rodney, J.Opt.Soc.Am. V45, p987, 1955

(3) Combes et al, J.Opt.Soc.Am. V41, p215, 1951

(4) Kelly, Bureau of Mines Bulletin, No371, p51, 1934

46
MATERIALS DATA
TransmissionRange 0.25to55µm(1) RefractiveIndex 1.73916at10µm(1)(2) ReflectionLoss 13.6%at10µm AbsorptionCoefficient n/a ReststrahlenPeak 145.8µm dn/dT -99.3x10⁻⁶ /°C(2) dn/dµ=0 6µm Density 4.51g/cc MeltingPoint 621°C ThermalConductivity 1.1Wm⁻¹ K⁻¹ at298K(3) ThermalExpansion 48.3x10⁻⁶ K⁻¹ at293K(3) Hardness Knoop20with200gindenter SpecificHeatCapacity 201JKg⁻¹ K⁻¹ (4) DielectricConstant 5.65at1MHz YoungsModulus(E) 5.3GPa ShearModulus(G) 6.24GPa BulkModulus(K) 12.67GPa ElasticCoefficients C11=24.6C12=6.7C44=6.24 ApparentElasticLimit 5.6MPa(810psi) PoissonRatio 0.214 Solubility 44g/100gwaterat0°C MolecularWeight 259.83 Class/Structure CubicCsCl,Pm3m,nocleavage,deforms
Caesium
MATERIALS DATA 47 Caesium Iodide (Cesium Iodide) (CsI) 0.5 1.8064 1.0 1.7572 2.0 1.7466 3.0 1.7440 4.0 1.7431 5.0 1.7424 6.0 1.7418 7.0 1.7412 8.0 1.7406 9.0 1.7399 10.0 1.7392 11.0 1.7384 12.0 1.7375 13.0 1.7365 14.0 1.7355 15.0 1.7344 16.0 1.7332 17.0 1.7319 18.0 1.7306 19.0 1.7291 20.0 1.7276 21.0 1.7260 22.0 1.7244 23.0 1.7226 24.0 1.7207 25.0 1.7188 26.0 1.7168 27.0 1.7147 28.0 1.7125 29.0 1.7101 30.0 1.7077 31.0 1.7052 32.0 1.7027 33.0 1.7000 34.0 1.6972 35.0 1.6943 36.0 1.6913 37.0 1.6882 38.0 1.6849 39.0 1.6816 40.0 1.6781 41.0 1.6746 42.0 1.6709 43.0 1.6671 44.0 1.6631 45.0 1.6591 46.0 1.6549 47.0 1.6505 48.0 1.6460 49.0 1.6414 50.0 1.6366 µm No µm No µm No µm No %T Wavelength µm Wavenumber Cesium Iodide - CsI Data Supplied by Wavelength nm %T Cesium Iodide - CsI 4mm

Calcite (CaCO3)

MATERIALS DATA

Calciteisminednaturally,notmanufacturedsynthetically.CrystranLtdhasastockof smallcalcite"rhombs"ofgoodclearopticalquality.Calcitecutsandpolisheswell.

APPLICATIONS: Calcite,orIcelandSpar,isastronglybirefringentmaterialandisused forpolarisersandretardationplates.

CLEAVAGE PLANE : There can be confusion in the definition of the cleavage plane in calcite. Conventionally this has always been referred to as {1011} but recent papers on AFM studies use {1014}. Calcite cleaves between the bonds of the CO3 groups (in the CO3 layer). The CO3 group are offset relative to each other and inclined to the c-axis giving 3 cleavage directions defining a rhomb. Following the {1011} nomenclature the unit cell requires ¼ the length of the c axis as measured from XRD (on a dimension 4 times longer). The correct Miller indices are {1014} but the conventional {1011} is often used in order not to confuse and for easier comparison.

(1) Private Communication. J.A.Elliott. Material Science, University of Cambridge. 2011

(2) Practical Crystal Measurement. A.E.H.Tutton, Vol2, page 1329.

(3) Mineral Society of America “Linear Thermal Expansion of Calcite” See Crystran Website

48
TransmissionRange 0.3to2.3µm RefractiveIndex No1.6654at0.51µm ReflectionLoss 11.7%at0.51µm(2surfaces) AbsorptionCoefficient n/a ReststrahlenPeak n/a dn/dT 3(para)13(perp)x10⁻⁶ K⁻¹ at0.5µm dn/dµ=0 n/a Density 2.71g/cc MeltingPoint 825°C(Decomposes) ThermalConductivity 5.526(para)4.646(perp)Wm⁻¹ K⁻¹ at273K ThermalExpansion 25.6(para)-5.8(perp)x10⁻⁶ K⁻¹ at273K(2)(3) Hardness Knoop155Moh3 SpecificHeatCapacity 852JKg⁻¹ K⁻¹ DielectricConstant 8(para)8.5(perp)at10kHzat293K YoungsModulus(E) 72.35(perp)88.19(para)GPa ShearModulus(G) 35GPa BulkModulus(K) 129.53GPa ElasticCoefficients C11=137;C12=45;C13=45;C14=21;C33=79 ApparentElasticLimit 4.83MPa(700psi) PoissonRatio n/a Solubility 0.0014g/100gwaterat25°C MolecularWeight 100.09 Class/Structure Trigonal(hex),R3c,(1014)cleavage(1)
MATERIALS DATA 49 Calcite (CaCO3) 0.20 1.9028 1.5765 0.30 1.7196 1.5137 0.41 1.6801 1.4954 0.51 1.6653 1.4896 0.64 1.6550 1.4849 0.71 1.6521 1.4835 0.80 1.6487 1.4822 0.91 1.6458 1.4810 1.04 1.6428 1.4799 1.50 1.6346 1.4774 1.91 1.627 1.4757 2.10 1.622 1.4749 µm No Ne µm No Ne µm No Ne
- CaCO3 %T Wavelength µm 4mm
- CaCO3 %T Wavelength nm
Calcite
Calcite

Calcium Fluoride (CaF2)

MATERIALS DATA

CalciumfluorideisgrownbyvacuumStockbargertechniqueindiametersofupto about250mm.MaterialforIRuseisgrownusingnaturallyminedfluorite,inlarge quantitiesatarelativelylowcost.ForUVapplicationschemicallypreparedraw materialisgenerallyused.ForExcimerapplications,weuseonlythehighestgradeof speciallyselectedmaterialandcrystal.

APPLICATIONS: CalciumFluoridehaswidespreadIRapplicationasspectroscopic windows,prismsandlenses.EspeciallypuregradesofCalciumFluoridefinduseful applicationintheUVandasUVExcimerlaserwindows.Speciallyselectedmaterialis usedforRamanworkasithasnointerferingfluorescencepeaks. Usethelinkson page32formoredataonRamanGradeandCrystalQuality.

(1) Handbook Optical Constants, ed Palik, V2, ISBN 0-12-544422-2

(2) Dressler et al., Cryst.Res.Technol. V27, p413, 1992

(3) I.H.Malitson; J.Opt.Soc.Am. Vol52, p1377, 1962

(4) Ballard et al; Rev. Sci. Instr., V21, p905, 1950

(5) Batchelder & Simmons, J.Chem. Phys. V41, p2324 N8 1964

(6) Schumann & Neumann, Crys. Res. Tech V19, 1984

(7) Dickinson, IR laser windows, AFCRL-TR-0318, Air Force, Cambridge 1975

(8) Manufacturers Published Data.

50
TransmissionRange 0.13to10µm RefractiveIndex 1.39908at5µm(1)(2) ReflectionLoss 5.4%at5µm AbsorptionCoefficient 0.00002cm⁻¹ @1.06µm 0.000078cm⁻¹ @2.7µm 0.0002cm⁻¹ @3.8µm 0.0005cm⁻¹ @5.25µm 0.0035cm⁻¹ @6.25 0.11cm⁻¹ @7.69µm 0.48cm⁻¹ @8.69µm 0.65cm⁻¹ @9.09µm 3.5cm⁻¹ @10.6µm(8) ReststrahlenPeak 35µm dn/dT -10.6x10⁻⁶K⁻¹ (3) dn/dµ=0 1.7µm Density 3.18g/cc MeltingPoint 1360°C ThermalConductivity 9.71Wm⁻¹ K⁻¹ (4) ThermalExpansion 18.85x10⁻⁶K⁻¹ (5)(6) Hardness Knoop158.3(100)with500gindenter SpecificHeatCapacity 854JKg⁻¹ K⁻¹ DielectricConstant 6.76at1MHz(7) YoungsModulus(E) 75.8GPa(7) ShearModulus(G) 33.77GPa(7) BulkModulus(K) 82.71GPa(7) ElasticCoefficients C11 =164C12 =53C44 =33.7(7) ApparentElasticLimit 36.54MPa PoissonRatio 0.26 Solubility 0.0017g/100gwaterat20°C MolecularWeight 78.08 Class/Structure CubicFm3m(#225)Fluorite.Cleaveson(111)
-
MATERIALS DATA 51 0.149 1.5800 0.161 1.5490 0.195 1.5000 0.200 1.4950 0.222 1.4800 0.248 1.4680 0.266 1.4621 0.280 1.4584 0.300 1.454 0.337 1.4481 0.400 1.4419 0.486 1.4370 0.588 1.4339 0.656 1.4325 0.687 1.4320 0.728 1.4314 0.884 1.4298 1.014 1.4288 1.100 1.4283 1.250 1.4275 1.650 1.4256 1.900 1.4244 2.058 1.4236 2.450 1.4214 2.700 1.4199 2.800 1.4192 3.050 1.4175 3.400 1.4149 4.000 1.4096 4.400 1.4057 4.800 1.4014 5.000 1.3991 5.304 1.3952 5.893 1.3871 6.483 1.3782 7.072 1.3681 7.661 1.357 8.251 1.3444 8.840 1.3308 9.429 1.3161 Calcium Fluoride (CaF2) µm No µm No µm No µm No µm No 10mm %T Calcium Fluoride - CaF2 Wavelength µm 0.5mm 1mm 2mm 5mm 0 10 20 30 40 50 60 70 80 90 100 120 130 140 150 160 170 180 190 200 210 220 230 240 5mm Calcium Fluoride - CaF2 Typical VUV trace from specially qualified material %T Wavelength nm Data supplied by

Diamond ( C ) - Cubic Carbon

MATERIALS DATA

Diamondisavailableassinglecrystal(TypeIIa)naturalorsyntheticorasCVDfilm. Singlecrystalisavailableeconomicallyuptoabout4mmdiameter.CVDdiamondof 75mmdiameterisavailable.TheIRtransmissionhasarangeofabsorptionsinthe mid-IRbetween2.5and7µmduetoinherentlatticeresonance.TheUVtransmission maybelimitedto350nminpoorerqualitysamples.Singlecrystaldiamondisselected intofourforms: Ia~98%ofnaturalyield(>100ppmNitrogen-yellow)

Ib~0.1%ofnaturalyield(~100ppmNitrogen)

IIa~2%ofnaturalyield(1ppmNitrogen)

IIb-Syntheticonly(100ppmboronforelectronicapplications)

OnlyTypeIIaisusedforopticalapplications.CVDdiamondtransmissionand characteristicsareverysimilartoTypeIIa.

APPLICATIONS: Diamondisusedfortransmissionwindowsanddomes.

Note:Being a form of carbon, diamond oxidises in air over 700°C. In the absence of oxygen such as in a flow of argon gas, diamond can be heated to 1700°C. The surface blackens but can be recovered by polishing.

(1) Handbook Optical Constants, ed Palik, V1, ISBN 0-12-544420-6

(2) Properties of Polycrystalline Diamond, Sussmann et. al. Diamond & Rel. Mat. 3(1994) 303-312

(3) Fontenella et. al. App. Optics 16, 2949 (1977)

(4) Slack & Bartram J.Appl. Phys. 46, 89 (1975)

52
TransmissionRange 300nmto2.5µmand7µmto>100µm(1) RefractiveIndex 2.4175@0.589µm(1) ReflectionLoss 30%@0.589µm AbsorptionCoefficient ~0.09cm⁻¹ @10.6µm ReststrahlenPeak n/a dn/dT 30x10⁻⁶ K⁻¹ @300K(3) dn/dµ=0 n/a Density 3.51 MeltingPoint 3497°C(Oxidisesinairat700°C-seenote) ThermalConductivity 2600Wm⁻¹ K⁻¹ @273K(2) ThermalExpansion 1x10⁻⁶ K⁻¹ at293K Hardness Knoop5700to10400 SpecificHeatCapacity 502JKg⁻¹ K⁻¹ @300K(4) DielectricConstant 5.68@1.68Mhzat300K(2) YoungsModulus(E) 1050GPa ShearModulus(G) n/a BulkModulus(K) 442GPa ElasticCoefficients C11=1076;C12=125;C44=577 ApparentElasticLimit 276MPa PoissonRatio 0.16to0.29 Solubility Insolubleinwater MolecularWeight 12.01 Class/Structure CubicDiamond,Fd3m
MATERIALS DATA 53 Diamond ( C ) - Cubic Carbon 0.232 2.6917 0.298 2.5429 0.405 2.4626 0.589 2.4175 0.656 2.4104 1.00 2.3905 2.0 2.3813 3.0 2.3795 4.0 2.3787 5.0 2.3783 6.0 2.3779 10.0 2.3765 20.0 2.3741 µm No µm No µm No µm No µm No %T CVD Diamond - C Wavelength µm ↑ ↑ 0.5mm samples Type IIa
Diamond - C Typical Transmission Wavelength µm %T
Single Crystal Diamond & CVD single crystal
CVD
polycrystalline diamond due to scatter at the grain boundary

Gallium Arsenide (GaAs)

MATERIALS DATA

GalliumArsenideisproducedbyCzochralskiorhorizontalBridgemancrystalgrowth techniques.Asitisarsenicbearing,precautionsinhandlingandworkingshouldbe observed.

APPLICATIONS: GalliumArsenidehasspecialistapplicationsinfarIRopticsandlens systems.

(1) Handbook Optical Constants, ed Palik, V1, ISBN 0-12-544420-6

(2) Deutch, J.Electron. Mater. V4 p679

(3) Sze, Physics of Semiconductor Devices, Wiley 1981

(4) M.Cardona, Proc. Int. Conf. Semicond. Phys., Prague 1960 p.388.

54
TransmissionRange 0.9to16µm(1) RefractiveIndex 3.2727@10.33µm(1) ReflectionLoss 44%@10.33µm AbsorptionCoefficient 0.01cm⁻¹ ReststrahlenPeak n/a dn/dT 147x10⁻⁶K⁻¹ @10µm(4) dn/dµ=0 6.3µm Density 5.315g/cc MeltingPoint 1511°C ThermalConductivity 48Wm⁻¹ K⁻¹ @273K(2) ThermalExpansion 5.7x10⁻⁶ /°Cat300K(3) Hardness Knoop750 SpecificHeatCapacity 360JKg⁻¹ K⁻¹ DielectricConstant 12.91atlowfrequencies YoungsModulus(E) 84.8GPa ShearModulus(G) n/a BulkModulus(K) 75.5GPa ElasticCoefficients n/a ApparentElasticLimit 71.9MPa PoissonRatio 0.31 Solubility Insolubleinwater MolecularWeight 144.64 Class/Structure CubicZnS,F43m,(100)cleavage
MATERIALS DATA 55 Gallium Arsenide (GaAs) 1.033 3.492 1.550 3.3737 2.066 3.338 2.480 3.324 3.100 3.3125 4.133 3.3027 4.959 3.2978 6.199 3.2921 7.293 3.2874 8.266 3.2831 9.537 3.2769 10.33 3.2727 11.27 3.2671 12.40 3.2597 13.78 3.2493 15.50 3.2336 17.71 3.2081 19.07 3.1866 µm No µm No µm No µm No µm No 0 10 20 30 40 50 60 70 80 90 100 2 4 6 8 10 12 14 16 18 20 22 24
Arsenide
%T Wavelength µm 2mm 1.5mm 0 10 20 30 40 50 60 70 80 90 100 400 600 800 1000 1200 1400 1600 1800 2000 Gallium Arsenide GaAs %T Wavelength nm 0.5mm 1.5mm
Gallium
- GaAs

Gallium Lanthanum Sulphide (GLS)

MATERIALS DATA

GalliumLanthanumSulphide(GLS)glassisproducedbyproprietaryprocessesunder conditionsofthehighestpurity.Particulareffortismadeinremovingtransitionmetal impuritiestoalevelofbetterthan1ppmtotalmetallicimpuritieswithSH¯andOH¯ lessthan1ppm.GLSisroutinelyprocessedfromingotsof500grams.Otherglass compositionsareavailableincludingrareearthdoped(Ce,Pr,Nd,Tb,Dy,Ho,Er,Tm, Yb),halide(F,Cl),andAgdopedsamples.

APPLICATIONS: GalliumLanthanumSulphideisachalcogenideglass,analternativeto toxicarsenic-basedglasses.DevelopedatSouthamptonUniversity,GLShasfounduse inawiderangeofoptoelectronicapplicationsandisavailableaspolishedoptical components,thinandthickfilmsandinopticalfibreform.

56
TransmissionRange 0.5to10µm RefractiveIndex 2.398at1.014µm ReflectionLoss 29%at1.014µm AbsorptionCoefficient <0.005cm⁻¹ ReststrahlenPeak n/a dn/dT +75x10⁻⁶ /°C dn/dµ=0 4µm Density 4.04g/cc MeltingPoint 830°C ThermalConductivity 0.43Wm⁻¹ K⁻¹ at273K ThermalExpansion 10x10⁻⁶ K⁻¹ at273K Hardness Knoop206with200gindenter SpecificHeatCapacity 0.54Jg⁻¹ K⁻¹ DielectricConstant 8.1at1KHz YoungsModulus(E) 59GPa ShearModulus(G) 23GPa BulkModulus(K) 24.5GPa ElasticCoefficients n/a ApparentElasticLimit n/a PoissonRatio 0.24 Solubility Negligibleinwater MolecularWeight 276.9 Class/Structure Amorphousglass Damage Threshold >200MW cm⁻² at 1550nm Acousto-optic Figure of Merit: M2 = 6 x 10¯¹⁵ Verdet Constant = 0.205 min/Oe/cm Petrovich, Hewak et al Journal of Non-Crystalline Solids 326&327 (2003) 93–97
MATERIALS DATA 57 Gallium Lanthanum Sulphide (GLS) 0.5461 2.522 0.5790 2.500 0.6439 2.467 0.6678 2.458 0.7065 2.466 1.0140 2.398 1.3673 2.379 1.7101 2.371 µm No µm No µm No µm No 11
Lanthanum Sulphide
%T Wavelength µm 1 2 3 4 5 6 7 8 9 10 10 20 30 40 50 60 70 80
Gallium
Glass - GLS
1mm 2mm 10mm 6mm
Data supplied courtesy of the Optics Research Centre, Southampton University, UK

Germanium (Ge)

MATERIALS DATA

GermaniumisgrownusingtheCzochralskitechniquebyasmallnumberof manufacturersinBelgium,USA,ChinaandRussia.TherefractiveindexofGermanium changesrapidlywithtemperatureandthematerialbecomesopaqueatall wavelengthsalittleabove350°Kasthebandgapfloodswiththermalelectrons.

APPLICATIONS: Germaniumisahighindexmaterialthatisusedtomanufacture AttenuatedTotalReflection(ATR)prismsforspectroscopy.Itsrefractiveindexissuch thatGermaniummakesaneffectivenatural50%beamsplitterwithouttheneedfor coatings.Germaniumisalsousedextensivelyasasubstrateforproductionofoptical filters.Germaniumcoversthewholeofthe8-14µmthermalbandandisusedinlens systemsforthermalimaging.GermaniumcanbeARcoatedwithDiamondproducing anextremelytoughfrontoptic.

Class/Structure

(1) Handbook Optical Constants, ed Palik, V1, ISBN 0-12-544420-6

(2) Li, Refractive Index of Germanium etc, J.Phys Chem, V9, p561, 1980

(3) Pearson & Brattain, Proc. Inst. Radio Eng. V43, p1794, 1955

(4) Fine, J.App.Phys, V24, p338, 1953

(5) Wortman & Evans, V36, (1), P153 (1965)

(6) Hawkins, Sherwood, Djotni: Mid IR Filters for astronomical and remote sensing instrumentation. Invited Paper SPIE Conference Glasgow 2008

(7) Manufacturers Published Data

58
TransmissionRange 1.8to23µm(1) RefractiveIndex 4.0026at11µm(1)(2) ReflectionLoss 53%at11µm(Twosurfaces) AbsorptionCoefficient <0.027cm⁻¹ @10.6µm(typical)(7) 0.006cm⁻¹ @5.6µm(typical)(7) <0.005cm⁻¹ @2.7µm(7) ReststrahlenPeak n/a dn/dT 396x10-6 K⁻¹ (2)(6) dn/dµ=0 Almostconstant Density 5.33g/cc MeltingPoint 936°C(3) ThermalConductivity 58.61Wm⁻¹ K⁻¹ at293K(6) ThermalExpansion 6.1x10⁻⁶K⁻¹ at298K(3)(4)(6) Hardness Knoop780 SpecificHeatCapacity 310JKg⁻¹ K⁻¹ (3) DielectricConstant 16.6at9.37GHzat300K YoungsModulus(E) 102.7GPa(4)(5) ShearModulus(G) 67GPa(4)(5) BulkModulus(K) 77.2GPa(4) ElasticCoefficients C11=129;C12=48.3;C44=67.1(5) ApparentElasticLimit 89.6MPa(13000psi) PoissonRatio 0.28(4)(5) Solubility Insolubleinwater MolecularWeight 72.59
FCCCubic,Fm3m(#225)Diamondstructure
59
%T
Wavelength µm 2mm 2.058 4.102 2.153 4.0919 2.313 4.0786 2.437 4.0708 2.577 4.0609 2.714 4.0562 2.998 4.0452 3.303 4.0369 4.258 4.0216 4.866 4.017 6.238 4.0094 8.660 4.0043 9.720 4.0034 11.04 4.0026 12.00 4.0023 13.02 4.0021 µm No µm No µm No µm No
MATERIALS DATA
Germanium (Ge)
Germanium - Ge

KRS5 Thallium Bromo-Iodide (TlBr-TlI)

MATERIALS DATA

CAUTION: Thallium salts are considered TOXIC and should be handled with care.

KRS5crystallisesbythesealed-ampouleStockbargertechnique.Startingmaterialsof thehighestpurityareselectedtoensurethattherearenoanionicabsorptionbands between2µmand16µmandallcrystalsarecheckedforqualitybyusingapathlength of120mm.

APPLICATIONS: KRS5isadeepIRmaterialwithahighrefractiveindex,KRS5isused extensivelyinspectroscopyforATRprisms,windowsandlenses.Inconjunctionwith Germanium,KRS5canalsobeusedinthermallycompensatedIRimagingsystems.

(1) Rodney and Malitson J.Opt Soc.Am. V46, p 956, 1953

(2) Combes, Ballard, McCarthy: J.Opt Soc.Am. V41, p 215, 1951

(3) Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

60
TransmissionRange 0.6to40µm RefractiveIndex 2.371at10µm(1)(3) ReflectionLoss 28.4%at10µm(2surfaces) AbsorptionCoefficient n/a ReststrahlenPeak n/a dn/dT -235x10¯⁶ K⁻¹ dn/dµ=0 7µm Density 7.371g/cc(3) MeltingPoint 414.5°C(3) ThermalConductivity 0.544Wm¯¹K¯¹at293K ThermalExpansion 58x10¯⁶ K⁻¹ (2) Hardness Knoop40.2(2) SpecificHeatCapacity 200JKg¯¹K¯¹at273K DielectricConstant 32.5 YoungsModulus(E) 15.85GPa(2) ShearModulus(G) 5.79GPa(2) BulkModulus(K) 19.78GPa(2) ElasticCoefficients C11=331;C12=13.2;C44=5.79 ApparentElasticLimit 26.2MPa(2) PoissonRatio 0.369 Solubility 0.05g/100gwaterat293K MolecularWeight 42mole%TlBr;58mole%TlI Class/Structure Cubic,CsClstructure,Pm3m,Nocleavage(3)
MATERIALS
61
0.54 2.68059 1.00 2.44620 1.50 2.40774 2.00 2.39498 3.00 2.38574 4.00 2.38204 5.00 2.37979 6.00 2.37797 7.0 2.37627 8.0 2.37452 9.0 2.37267 10.0 2.37069 11.0 2.36854 12.0 2.36622 13.0 2.36371 14.0 2.36101 15.0 2.3581 16.0 2.35502 17.0 2.35173 18.0 2.34822 19.0 2.34451 20.0 2.34058 21.0 2.33643 22.0 2.33206 23.0 2.32746 24.0 2.32264 25.0 2.31758 26.0 2.31229 27.0 2.30676 28.0 2.30098 29.0 2.29495 30.0 2.28867 31.0 2.28212 32.0 2.27531 33.0 2.26823 34.0 2.26087 35.0 2.25322 36.0 2.24528 37.0 2.23705 38.0 2.22850 39.0 2.21965 40.0 2.21047 µm No µm No µm No µm No KRS5 - TlBr42 I58 %T Wavelength µm 2mm 5mm %T Wavelength µm KRS5 - TlBr42 I58
DATA
KRS5 Thallium Bromo-Iodide (TlBr-TlI)

KRS6 Thallium Bromo-Chloride (TlBr-TlCl)

MATERIALS DATA

CAUTION: Thallium salts are considered TOXIC and should be handled with care.

KRS6crystalsaregrownbythesealed-ampouleStockbargertechnique.Starting materialsofthehighestpurityareselectedtoensurethattherearenoanionic absorptionbandsbetween2and16µmsandallcrystalsarecheckedforqualityby usingapathlengthof120mm.Thalliumsaltsaretoxic,andKRS6hasenoughsolubility torequireextremecaution.Carefulhandlingwithplasticglovescoveredwithsoft cottonglovesasappropriatetodelicateopticsisrequired.

APPLICATIONS: KRS6hasonlyafewapplications.Occasionally,itisrequiredfor research.

(1) Hettner and Leisegang; Optik, V3, p305, 1948

(2) Combes, Ballard, McCarthy: J.Opt Soc.Am. V41, p 215, 1951

(3) Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

62
TransmissionRange 0.4to25µm RefractiveIndex 2.1723at11µm(1) ReflectionLoss 24.0%at11µm(2surfaces) AbsorptionCoefficient n/a ReststrahlenPeak 91.5µm dn/dT n/a dn/dµ=0 5µm Density 7.18g/cc(3) MeltingPoint 423°C(3) ThermalConductivity 0.7Wm⁻¹ K⁻¹ at329°K ThermalExpansion 50x10⁻⁶ K⁻¹ (2) Hardness Knoop29.9with500gindenter(2) SpecificHeatCapacity 188JKg⁻¹ K⁻¹ DielectricConstant 32at1MHz YoungsModulus(E) 20.68GPa(2) ShearModulus(G) 8.48GPa(2) BulkModulus(K) 22.81GPa(2) ElasticCoefficients C11=38.5;C12=14.9;C44=7.37 ApparentElasticLimit 20.7MPa(3000psi) PoissonRatio 0.219 Solubility 0.3g/100gwaterat20°C MolecularWeight 40mole%TlBr;60mole%TlCl Class/Structure Cubic,CsClstructure,Pm3m,nocleavageplanes
MATERIALS DATA 63
0.6 2.3294 0.7 2.2982 0.8 2.2660 0.9 2.251 1.0 2.2404 1.5 2.2148 2.0 2.2059 3.0 2.199 4.0 2.1956 5.0 2.1928 6.0 2.190 7.0 2.187 8.0 2.1839 9.0 2.1805 10.0 2.1767 11.0 2.1723 12.0 2.1674 13.0 2.162 14.0 2.1563 15.0 2.1504 16.0 2.1442 17.0 2.1377 18.0 2.1309 19.0 2.1236 20.0 2.1154 21.0 2.1067 22.0 2.0976 23.0 2.0869 24.0 2.0752 µm No µm No µm No µm No Wavelength µm 2mm KRS6 - TlBr40 Cl60 %T Wavelength nm %T 3mm KRS6 - TlBr40 Cl60
KRS6 Thallium Bromo-Chloride (TlBr-TlCl)

Lanthanum Fluoride (LaF3)

MATERIALS DATA

LanthanumFluorideisgrownassmallingotsofabout10mmdiameterasitisdifficult toanneal.DopedwithEuropium,itisapaleyellowcolour.

APPLICATIONS: LanthanumFluorideisnotoftenusedasanopticalmaterial.

LanthanumFluorideisusuallydopedwithEuropiumatanominallevelof0.3%mole. Inthisform,theusualapplicationisastheactiveelementinanion-selective electrodeforthedetectionandmeasurementofFluorideionsinsolution.UsetheQR linkonpage30forapplicationnotesonion-selectiveelectrodes.

1) Jones and Shand, J.Crys.Growth. 2 (1968) p361

(2) Sher, Solomon, Lee, and Meuller. Phys.Rev. 144, p593 (1966)

(3) Electronic Processes in Ionic Crystals (OU Press, NY, 1940) p.41.

64
TransmissionRange 0.2to11µm RefractiveIndex No1.506at0.55µm ReflectionLoss 10.3%at0.55µm AbsorptionCoefficient n/a ReststrahlenPeak n/a dn/dT n/a dn/dµ=0 n/a Density 5.94g/cc MeltingPoint 1493°C (1) ThermalConductivity 5.1Wm⁻¹ K⁻¹ at300K ThermalExpansion 11.0x10⁻⁶ (para)15.8x10⁻⁶ /K(perp)at298K (2) Hardness Moh4.5 SpecificHeatCapacity 506JKg⁻¹ K⁻¹ DielectricConstant 14(3) YoungsModulus(E) n/a ShearModulus(G) n/a BulkModulus(K) n/a ElasticCoefficients n/a ApparentElasticLimit n/a PoissonRatio n/a Solubility Insolubleinwater MolecularWeight 195.9 Class/Structure Trigonal(hex),P63/mcm(2),nocleavage
MATERIALS DATA 65 Lanthanum Fluoride (LaF3) 0.254 1.656 1.649 0.405 1.618 1.612 0.436 1.617 1.609 0.547 1.606 1.602 µm No Ne µm No Ne µm No Ne Wavelength µm 1mm Eu doped 1mm undoped Lanthanum Fluoride - LaF3 %T Lanthanum Fluoride - LaF3 %T Wavelength nm 1mm Eu doped 1mm undoped

Lead Fluoride (PbF2)

MATERIALS DATA

CAUTION: Lead salts are considered TOXIC and should be handled with care.

LeadfluoridehasbeengrownbyvacuumStockbarger,butisnotknowntobein regularproduction.

APPLICATIONS: LeadFluoridehaslittleopticalapplication.LeadFluoridehasbeen usedasascintillatormaterialasithasexcellentstoppingpowerforgammarays.

Crystran does not hold stock of this material. This is for information only purposes

66
TransmissionRange 250nmto11µm RefractiveIndex 1.7808@5µm ReflectionLoss 12.8%@5µm(2surfaces) AbsorptionCoefficient 0.018cm⁻¹ @4µm ReststrahlenPeak n/a dn/dT n/a dn/dµ=0 3.3µm Density 7.77gcm⁻³ (1) MeltingPoint 855°C ThermalConductivity n/a ThermalExpansion 29x10⁻⁶ K⁻¹ @283K Hardness Knoop200 SpecificHeatCapacity 301JKg⁻¹ K⁻¹ DielectricConstant 13@1MHz YoungsModulus(E) n/a ShearModulus(G) n/a BulkModulus(K) n/a ElasticCoefficients C11=91,C12=46,C44=23 ApparentElasticLimit n/a PoissonRatio n/a Solubility 0.064g/100gwaterat20°C MolecularWeight 245.21 Class/Structure Cubic,CaF2,Fm3m,(111)cleavage
(1) Crystran Data
67
Fluoride (PbF
) 10mm Wavelength µm %T Lead Fluoride - PbF2 %T Wavelength nm
Fluoride - PbF2 10mm 0.3 1.93665 0.4 1.81804 0.5 1.78220 0.6 1.76489 0.7 1.75502 0.8 1.74879 0.9 1.74455 1.0 1.74150 3.0 1.72363 5.0 1.70805 7.0 1.68544 9.0 1.65504 µm No µm No µm No µm No
MATERIALS DATA
Lead
2
Lead

Lithium Fluoride (LiF)

MATERIALS DATA

LithiumFluorideisgrownbyvacuumStockbargertechniqueiningotsapproximately 100mmdiameter.LithiumFluoridecleaveseasilyandmustbeworkedwithextreme care.Polishing,particularlysteepradii,oftencausessurface"rip-out".

APPLICATIONS: LithiumfluorideisthematerialwiththemostextremeUV transmissionofallandisusedforspecialUVoptics.Lithiumfluoridetransmitswell intotheVUVregionatthehydrogenLyman-alphaline(121nm)andbeyond.Lithium fluorideisalsousedforX-raymonochromatorplateswhereitslatticespacingmakes itthemostusefulanalysiscrystal.

(1) Laporte et. al. J.Opt. Soc. Am. V73, No 8, p1062

(2) Combes et. al. J.Opt. Soc. Am. V41, p215. 1951

(3) Huntingdon, Phys Review. V72, p321, 1947

(4) Ballard et. al. J.Opt. Soc. Am. V42, p684. 1952

(5) H.H.Li, Absorption Coefficients, Int.J.Therm, V1, No. I, 1980

(6) T.B.Douglas & J.L.Dever, J. Am. Chem.Soc, 1954,76 (19), p4826

68
TransmissionRange 0.12to6µm RefractiveIndex 1.392at0.6µm(1) ReflectionLoss 5.2%at0.6µm(2Surfaces) AbsorptionCoefficient 5.9x10⁻³ cm⁻¹at4.3µm@300K(5) ReststrahlenPeak 25µm dn/dT -16x10⁻⁶ at1.15µm dn/dµ=0 1.3µm Density 2.639g/cc MeltingPoint 848°C(6) ThermalConductivity 11.3Wm⁻¹ K⁻¹ at314K(2) ThermalExpansion 37x10⁻⁶ K⁻¹ at283K(2) Hardness Knoop102with600gindenter(2) SpecificHeatCapacity 1562JKg⁻¹ K⁻¹ DielectricConstant 0.1 YoungsModulus(E) 64.97GPa(2) ShearModulus(G) 55.14GPa(2) BulkModulus(K) 62.03GPa(2) ElasticCoefficients C11=112;C12=46;C44=63.5(3) ApparentElasticLimit 11.2MPa(1620psi)(4) PoissonRatio 0.326(calculated) Solubility 0.27g/100gwaterat20°C MolecularWeight 25.94 Class/Structure CubicFCC,Fm3m(#221),NaClStructure (100)cleavage

Routine transmission achieved at 121nm is usually a minimum of 40% through a 2mm sample. This curve represents the maximum transmission that can be achieved under ideal conditions.

MATERIALS DATA 69 Lithium Fluoride (LiF) 0.106 1.9130 0.108 1.8330 0.11 1.7770 0.121 1.6240 0.13 1.5690 0.14 1.5300 0.15 1.5030 0.16 1.4840 0.17 1.4690 0.18 1.4850 0.19 1.4455 0.2 1.4391 0.22 1.4291 0.25 1.4189 0.26 1.4164 0.27 1.4141 0.28 1.4121 0.29 1.4103 0.3 1.4087 0.31 1.4073 0.32 1.4060 0.33 1.4048 0.34 1.4037 0.35 1.4028 0.36 1.4019 0.4 1.3989 0.5 1.3943 0.6 1.3918 0.7 1.3902 0.8 1.3890 0.9 1.3880 1.0 1.3871 1.5 1.3832 2.0 1.3788 2.5 1.3732 3.0 1.3666 3.5 1.3587 4.0 1.3494 4.5 1.3388 5.0 1.3266 5.1 1.3240 5.2 1.3213 5.3 1.3186 5.4 1.3158 5.5 1.3129 5.6 1.3099 5.7 1.3069 5.8 1.3038 5.9 1.3007 6.0 1.2975 µm No µm No µm No µm No µm No 1mm 2mm 5mm %T Wavelength µm 15mm Lithium Fluoride - LiF 0 10 20 30 40 50 60 70 80 90 100 115 135 155 175 195 215nm %T
Data Supplied by Lithium Fluoride - LiF Wavelength nm 48mm

Magnesium Fluoride (MgF2)

MATERIALS DATA

MagnesiumFluorideisgrownbyvacuumStockbargertechniqueiningotsofvarious diameters.MagnesiumFluorideisatoughmaterialandpolisheswell.Therefore,it canbeworkedtothehigheststandards.MgF2isslightlybirefringentandusually suppliedwiththeopticaxiscutperpendiculartothewindowfaces.

APPLICATIONS: MagnesiumFluoridetransmitswellintotheVUVregiontothe hydrogenLyman-alphaline(121nm)andbeyond.MagnesiumFluorideisusedmostly forUVopticsandisexcellentforExcimerlaserapplications.

(1) Duncanson et.al. Proc.Phys.Soc. V72, p1001, 1958

(2) Kandil et.al. J.App.Phys. V52, p749, 1981

(3) Kashnow & MCarthy, J.Phys.Chem. V30, p813, 1969

(4) Laporte et. al. J.Opt. Soc. Am. V73, No 8, p1062

(5) Corning Inc published data

70
TransmissionRange 0.12to7µm(1) RefractiveIndex No1.413at0.22µm(4) ReflectionLoss 5.7%at0.22µm(2surfaces) AbsorptionCoefficient 5.5x10⁻³ cm⁻¹ at2.8µm(5) ReststrahlenPeak 20µm(1) dn/dT 2.3(para)1.7(perp)at0.4µm(1) dn/dµ=0 1.4µms Density 3.1766g/ccat25°C MeltingPoint 1255°C ThermalConductivity 21(para)33.6(perp)Wm⁻¹ K⁻¹ at300K(3) ThermalExpansion 13.7(para)8.9(perp)x10⁻⁶ /K(1) Hardness Knoop415 SpecificHeatCapacity 1003JKgm⁻¹ K⁻¹ DielectricConstant 4.87(para)5.45(perp)at1MHz(1) YoungsModulus(E) 138GPa(2) ShearModulus(G) 54.66GPa(2) BulkModulus(K) 101.32GPa(2) ElasticCoefficients C11=140C12=89C44=57C13=63C66=96(2) ApparentElasticLimit 49.6MPa(7200psi) PoissonRatio 0.276(2) Solubility 0.0002g/100gwater MolecularWeight 62.32 Class/Structure TetragonalP42/mnm(#136)RutileStructure. Cancleaveonc-axisbutnoteasily.
MATERIALS DATA 71
Fluoride (MgF2) 0.11461.7530 1.7295 0.11491.7420 1.7215 0.11561.7235 1.7080 0.11681.7000 1.6905 0.11791.6800 1.675 0.11981.6510 1.652 0.12151.628 1.632 0.130 1.566 1.568 0.140 1.5095 1.523 0.150 1.480 1.494 0.160 1.461 1.475 0.170 1.448 1.462 0.180 1.439 1.453 0.190 1.431 1.444 0.2 1.423 1.437 0.220 1.413 1.426 0.248 1.403 1.416 0.257 1.401 1.414 0.266 1.399 1.412 0.280 1.396 1.409 0.3 1.393 1.405 0.330 1.389 1.402 0.337 1.389 1.401 0.350 1.387 1.400 0.355 1.386 1.399 0.4 1.384 1.396 0.546 1.379 1.390 0.7 1.376 1.388 1.087 1.373 1.385 1.512 1.370 1.382 2.0 1.368 1.379 2.5 1.364 1.375 3.030 1.360 1.370 3.571 1.354 1.364 4.0 1.349 1.359 4.546 1.341 1.350 5.0 1.334 1.343 5.556 1.324 1.332 6.060 1.314 1.321 µm No Ne µm No Ne µm No Ne 0 10 20 30 40 50 60 70 80 90 100 120 140 160 180 200 220 240 5mm Data supplied by Wavelength nm Routine transmission at 121nm is usually a minimum of 40% through a 2mm sample. This curve represents the maximum transmission that we can achieve under ideal conditions of material and polish at high cost. %T
Fluoride - MgF2 1mm 2mm 5.5mm 10mm
Fluoride
MgF2 Wavelength µm %T
Magnesium
Magnesium
Magnesium
-

Magnesium Oxide (MgO)

MATERIALS DATA

MagnesiumOxideisgrowninrelativelysmallsizes,mainlyinJapanandChina.

APPLICATIONS: MagnesiumOxidecanbeusedforhightemperaturewindowsand substrates.HTSCsubstrates.

72
TransmissionRange 0.3to6µm RefractiveIndex 1.7085at2µm(1) ReflectionLoss 12.8%at2µm(2surfaces) AbsorptionCoefficient 0.05cm⁻¹ at5.5µm ReststrahlenPeak n/a dn/dT +19x10⁻⁶ K⁻¹ dn/dµ=0 n/a Density 3.58g/cc MeltingPoint 2800°C ThermalConductivity 42Wm⁻¹ K⁻¹ at273K ThermalExpansion 10.8x10⁻⁶ K⁻¹ at273K Hardness Knoop692with600gindenter SpecificHeatCapacity 877JKg⁻¹ K⁻¹ DielectricConstant 9.65at1MHz YoungsModulus(E) 249GPa ShearModulus(G) 155GPa BulkModulus(K) 155GPa ElasticCoefficients C11=294;C12=93;C44=155 ApparentElasticLimit 138MPa(20,000psi) PoissonRatio 0.18 Solubility 0.00062g/100gwater MolecularWeight 40.32 Class/Structure CubicFCC,NaCl,Fm3m,(100)cleavage
(1) Handbook of Optical constants of Solids II ISBN 0-12-544422-2
73 Magnesium Oxide (MgO) 0.171 2.319 0.180 2.138 0.191 2.039 0.200 1.986 0.230 1.892 0.276 1.824 0.310 1.795 0.382 1.7668 0.436 1.7547 0.50 1.754 0.644 1.734 1.00 1.7229 2.00 1.7085 3.00 1.6915 4.00 1.6679 5.00 1.6373 6.02 1.5957 7.04 1.543 8.07 1.475 9.09 1.389 10.64 1.209 µm No µm No µm No µm No µm No Magnesium Oxide - MgO %T Wavelength µm 10 mm 2 mm Wavelength nm %T Magnesium Oxide - MgO 2mm 10mm
MATERIALS DATA

Optical Glass (N-BK7 types)

MATERIALS DATA

APPLICATIONS: N-BK7isaSchott™designationforthemostcommonBorosilicate Crownglassusedforawidevarietyofvisibleapplications.Thebasicdatahereis givenforN-BK7.WerecommendthatfullopticaldesigndataonN-BK7andother glassesbefoundbyreferringtotherelevantglassmanufacturer.

74
TransmissionRange 350nmto2.5µm RefractiveIndex 1.51680@587.5618nm(YellowHeliumLine) ReflectionLoss 8.1%at587.5618nm(2surfaces) AbsorptionCoefficient n/a ReststrahlenPeak n/a dn/dT n/a dn/dµ=0 n/a Density 2.51g/cc MeltingPoint 557°C(TransformationTemperature) ThermalConductivity 1.114Wm⁻¹ K⁻¹ ThermalExpansion 7.1x10⁻⁶ K⁻¹ Hardness Knoop610 SpecificHeatCapacity 858JKg⁻¹ K⁻¹ DielectricConstant n/a YoungsModulus(E) 82GPa ShearModulus(G) n/a BulkModulus(K) 34GPa ElasticCoefficients n/a ApparentElasticLimit 63.5MPa(9206psi) PoissonRatio 0.206 Solubility Insolubleinwater MolecularWeight n/a Class/Structure Amorphousglass

Optical Glass (N-BK7 types)

MATERIALS DATA 75
Wavelength µm 1.6 5.0 2.0 10 20 4.0 3.0 30 40 50 60 70 80 90 100
N-BK7 3mm N-B270 3mm %T
N-BK7 & N-B270 Glass
%T Wavelength nm 200 300 400 500 600 700 800 900 1000 1100 N-BK7 3mm N-B270 3mm
N-BK7 & N-B270 Glass

Potassium Bromide (KBr)

MATERIALS DATA

PotassiumBromideisproducedinlargeingotsbytheKyropoulosgrowthmethod. PotassiumBromidecleaveseasily.WithcarePotassiumBromidecanbepolishedtoa highstandardunderhumiditycontrolledconditions.Polymercoatingcanbeapplied.

APPLICATIONS: PotassiumBromideisoneofthemostusefulmaterialsforgeneral purposespectroscopicwindowsandapplicationswheresensitivitytomoistureis unimportant.PotassiumBromideisthemostcommonlyusedbeamsplittermaterial forIRspectrophotometers.Itcanbesuppliedwithaconformalpolymercoatingto givesomeprotectionagainstatmospherichumidity.

(1) Stephens et. al.; J.Opt. Soc. Am. V43, p111, 1953

(2) Kohler; Z. Physik. Volk 78, p375. 1932

(3) Ballard, McCarthy & Davis; Rev. Sci. Insts, V21, p905, 1970

(4) Combes, et.al.; J.Opt. Soc. Am. V41, p215, 1951.

(5) Huntingdon; Phys.Rev. V72, p321, 1947

(6) Hipple; Dielectric Materials & Applications. Wiley

(7) H.H.Li, Absorption Coefficients, Int.J.Therm, V1, No. I, 1980

76
TransmissionRange 0.23to25µm RefractiveIndex 1.527at10µm(1) ReflectionLoss 8.3%at10µm AbsorptionCoefficient 3x10⁻⁶ @1064nm:14x10⁻⁶ cm⁻¹ @10.6(7) ReststrahlenPeak 77.6µm dn/dT -40.83x10⁻⁶K⁻¹ (1) dn/dµ=0 4.2µm Density 2.753g/cc(2) MeltingPoint 730°C ThermalConductivity 4.816Wm⁻¹ K⁻¹ @319K(3) ThermalExpansion 43x10⁻⁶ K⁻¹ @300K(4) Hardness Knoop7in<100>with200gindenter(4) SpecificHeatCapacity 435JKg⁻¹ K⁻¹ DielectricConstant 4.9@1MHz(6) YoungsModulus(E) 26.8GPa(4) ShearModulus(G) 5.08GPa(4) BulkModulus(K) 15.03GPa(4) ElasticCoefficients C11=34.5C12=5.4C44=5.08(5) RuptureModulus 3.3MPa(475psi)(4) PoissonRatio 0.203 Solubility 53.48g/100gwaterat273K MolecularWeight 119.01 Class/Structure CubicFCC,NaCl,Fm3m,(100)cleavage
MATERIALS DATA 77 Potassium Bromide (KBr) 0.405 1.5898 0.436 1.5815 0.486 1.5718 0.508 1.5684 0.546 1.5639 0.587 1.5600 0.643 1.5559 0.707 1.5524 1.014 1.5441 2.440 1.5373 3.419 1.5361 4.258 1.5352 6.238 1.5329 8.662 1.5290 9.724 1.5270 11.04 1.5240 14.29 1.5150 17.40 1.5039 19.91 1.4929 23.86 1.4714 25.14 1.4632 28.00 1.4423 30.00 1.4253 µm No µm No µm No µm No µm No %T Wavelength µm Wavenumber Potassium Bromide - KBr Data Supplied by 8 100 90 80 70 60 50 2 4 6 8 10 12 24 14 16 18 20 22 Wavelength µm %T Potassium Bromide with conformal coating Wavelength nm Potassium Bromide - KBr %T 2mm

Potassium Chloride (KCl)

MATERIALS DATA

PotassiumChlorideisproducedinlargeingotsbytheKyropoulosgrowthmethod. PotassiumChloridecleaveseasily.WithcarePotassiumChloridecanbepolishedtoa highstandardunderhumiditycontrolledconditions.

APPLICATIONS: PotassiumChlorideismainlyusedforCO2laserprotectionwindows asaninexpensivedisposablematerialwithalowrefractiveindex.

(1) Mentzel; Z. Physik. V 88, p178. 1934

(2) H.H.Li; RI of Alkali Halides. J. Phys and Chem Reference Data V5(2), p421, 1976

(3) Ballard, McCarthy & Davis; Rev. Sci. Insts, V21, p905, 1970

(4) Combes, et.al.; J.Opt. Soc. Am. V41, p215, 1951.

(5) Galt; Phys.Rev. V36, p1460, 1948

(6) H.H.Li, Absorption Coefficients, Int.J.Therm, V1, No. I, 1980

78
TransmissionRange 0.21to20µm RefractiveIndex 1.45644at10µm(2) ReflectionLoss 6.7%at10µm AbsorptionCoefficient 6.5x10⁻³ cm⁻³ at10.6µm@300K(6) ReststrahlenPeak 63.1µm dn/dT -33.2x10⁻⁶ K⁻¹ (1) dn/dµ=0 n/a Density 1.99g/cc MeltingPoint 776°C ThermalConductivity 6.53Wm⁻¹ K⁻¹ at322K(3) ThermalExpansion 36X10⁻⁶ K⁻¹ at300k Hardness Knoop7.2<110>,9.3<100>with200g(4) SpecificHeatCapacity 690JKg⁻¹ K⁻¹ DielectricConstant 4.64at1MHzat300K YoungsModulus(E) 29.67GPa(4) ShearModulus(G) 6.24GPa(4) BulkModulus(K) 17.36GPa(4) ElasticCoefficients C11=39.8;C12=6.2;C44=6.25(5) RuptureModulus 4.4MPa(635psi)(4) PoissonRatio 0.216 Solubility 34.7g/100gwater MolecularWeight 74.55 Class/Structure CubicFCC,NaCl,Fm3m,(100)cleavage
MATERIALS
79 Potassium Chloride (KCl) 0.185 1.8271 0.20 1.7187 0.251 1.5897 0.308 1.54136 0.410 1.50907 0.509 1.4962 0.671 1.48669 0.883 1.48142 0.982 1.4800 1.179 1.47831 2.357 1.47475 2.947 1.47383 3.536 1.47305 4.715 1.47112 5.0 1.47048 6.0 1.46842 7.0 1.466 8.0 1.4629 9.0 1.46002 10.0 1.45644 11.0 1.45244 12.0 1.44801 13.0 1.44313 14.0 1.43779 15.0 1.43197 16.0 1.42563 17.0 1.41877 18.0 1.41134 19.0 1.40333 20.0 1.39469 21.0 1.38538 22.0 1.37537 23.0 1.36461 24.0 1.35303 25.0 1.34059 26.0 1.32721 27.0 1.31281 28.0 1.29731 µm No µm No µm No µm No µm No Wavelength µm Potassium Chloride - KCl %T 5mm Potassium Chloride - KCl %T Wavelength nm 5mm
DATA

Potassium Iodide (KI)

MATERIALS DATA

PotassiumIodideisproducedinlargeingotsbytheKyropoulosgrowthmethod. PotassiumIodidecleaveseasily.PotassiumIodideisonlyusefulincontrolled laboratoryconditionsasitisverysoftandverywatersoluble.

APPLICATIONS: PotassiumIodidehasfewspecificapplicationsbuthassomeusesin theverydeepInfraRed.

(1) K.Korth, Z.Physik. Vol 84, p677-685 (1933)

80
TransmissionRange 0.38to35µm RefractiveIndex 1.6201at10µm(1) ReflectionLoss 10.6%at10µm(2surfaces) AbsorptionCoefficient 4.5x10⁻³ @20µm(2) ReststrahlenPeak 82to100µm dn/dT -50x10⁻⁶ K⁻¹ dn/dµ=0 2.1µm Density 3.12g/cc MeltingPoint 682°C ThermalConductivity 2.1Wm⁻¹ K⁻¹ at298K ThermalExpansion 43x10⁻⁶ K⁻¹ at298K Hardness Moh5 SpecificHeatCapacity 313JKg⁻¹ K⁻¹ DielectricConstant 4.94at2MHz YoungsModulus(E) 31.49GPa ShearModulus(G) 6.2GPa BulkModulus(K) 12GPa ElasticCoefficients C11=27.4;C12=4.3;C44=3.7 ApparentElasticLimit n/a PoissonRatio n/a Solubility 127.5g/100gwaterat273K MolecularWeight 166.02 Class/Structure CubicFCC,NaCl,Fm3m,(100)cleavage
(2) H.H.Li, Absorption Coefficients, Int.J.Therm, V1, No. I, 1980
81 Potassium Iodide (KI) 0.302 1.82769 0.405 1.71843 0.546 1.67310 0.768 1.6494 1.014 1.6396 2.360 1.6295 3.540 1.6275 4.130 1.6268 5.890 1.6252 7.660 1.6235 8.840 1.6218 10.02 1.6201 11.79 1.6172 12.97 1.615 14.14 1.6127 15.91 1.6085 18.10 1.603 19.0 1.5997 20.0 1.5964 21.0 1.593 22.0 1.5895 23.0 1.5858 24.0 1.5819 25.0 1.5775 26.0 1.5729 27.0 1.5681 28.0 1.5629 29.0 1.5571 µm No µm No µm No µm No µm No %T Wavelength µm Wavenumber Potassium Iodide - KI Data Supplied by
MATERIALS DATA

Quartz Crystal (SiO2)

MATERIALS DATA

Quartzisminednaturally,butmorecommonlyproducedsyntheticallyinlarge,longfacetedcrystals.Quartzispositivebirefringent.Becarefulnottoconfuseterminology inthismaterial,as"FusedQuartz"isoftenusedtodenotetheglassynon-crystalline formbetterknownasSilica.NormalQuartzisAlphaQuartzandnormallyRHrotating. LHrotatingisavailableonspecialorder.Attemperatures>490°C,CrystalQuartz startstoreverttoglassystate,aprocesswhichiscompleteby530°C.

APPLICATIONS: Optically,CrystallineQuartzisusedextensivelyasawaveretardation medium.ThebirefringentpropertiesofQuartzareofuseinquarter-waveplatesand inpolarisers.Quartzshouldnotbeprocessedorusedattemperaturesgreaterthan 490°C.UsetheQRlinkonpage30fornotesonquartz.

(1)J.V.Atansoff and P.J.Hart, Phys. Rev. Vol.59, pp 85-96 1941

(2)A.W.Lawson, Phys. Rev. Vol 59, pp.838-839, 1941

(3) F.J.Micheli, Ann.Physik 4:7 (1902)

(4) Toyoda & Yabe J. Phys. D: Appl. Phys.,1 6 (1983)

82
TransmissionRange 0.18to3.5µmand40µmto100µm RefractiveIndex No1.54421;Ne1.55333at0.6µm ReflectionLoss 8.8%at0.6µm(2surfaces) AbsorptionCoefficient n/a ReststrahlenPeak n/a dn/dT(3)(4) -5.5x10⁻⁶ (para)&-6.5x10⁻⁶ K⁻¹ (perp)@633nm dn/dµ=0 1.3µm Density 2.649g/cc MeltingPoint 1710°C ThermalConductivity 10.7(para)6.2(perp)Wm⁻¹ K⁻¹ at323K ThermalExpansion 7.1(para)13.2(perp)x10⁻⁶ K Hardness Knoop741with500gindenter SpecificHeatCapacity 710JKg⁻¹ K⁻¹ DielectricConstant 4.34(para)4.27(perp)at30MHz YoungsModulus(E) 97.2(para)76.5(perp)GPa ShearModulus(G) 31.14GPa BulkModulus(K) 36.4GPa ElasticCoefficients(1)(2) C11=87C12=7C44=58C13=13C14=(-)18C33=106 ApparentElasticLimit 41MPa(5950psi) PoissonRatio n/a Solubility Insolubleinwater MolecularWeight 60.06 Class/Structure Trigonal(hex)P3(2)21(RH)andP3(1)21(LH)
MATERIALS DATA 83 Quartz Crystal (SiO2) 0.193 1.661 1.675 0.213 1.632 1.645 0.222 1.622 1.634 0.226 1.619 1.630 0.248 1.602 1.613 0.257 1.596 1.607 0.28 1.585 1.596 0.308 1.576 1.586 0.325 1.571 1.581 0.351 1.565 1.575 0.4 1.558 1.567 0.458 1.552 1.561 0.488 1.550 1.559 0.515 1.548 1.557 0.532 1.547 1.556 0.59 1.544 1.553 0.633 1.543 1.552 0.67 1.541 1.551 0.694 1.541 1.550 0.755 1.539 1.548 0.78 1.539 1.548 0.8 1.538 1.547 0.82 1.538 1.547 0.86 1.537 1.547 0.98 1.535 1.546 1.064 1.534 1.543 1.32 1.531 1.539 1.55 1.528 1.536 2.01 1.521 1.529 µm No Ne µm No Ne µm No Ne %T Quartz & IR grade fused silica Wavelength µm Crystal Quartz 2mm IR grade fused silica 2mm Quartz Crystal - SO2 Wavelength nm %T

Rubidium Bromide (RbBr)

MATERIALS DATA

RubidiumBromideisproducedbythesealed-ampouleStockbargertechnique.

APPLICATIONS: RubidiumBromidehasonlyspecialistapplications.

84
TransmissionRange 0.22to40µm RefractiveIndex 1.525at10µm(1) ReflectionLoss 8.2%at10µm(2surfaces) AbsorptionCoefficient 1.6x10⁻³ cm⁻¹ at10.6µm ReststrahlenPeak n/a dn/dT -45x10-6 K⁻¹ dn/dµ=0 n/a Density 3.35g/cc MeltingPoint 682°C ThermalConductivity 12.2Wm⁻¹ K⁻¹ at378K ThermalExpansion 36.98x10⁻⁶ K⁻¹ at273K Hardness n/a SpecificHeatCapacity 311JKg⁻¹ K⁻¹ DielectricConstant 55 YoungsModulus(E) n/a ShearModulus(G) n/a BulkModulus(K) 13.7GPa ElasticCoefficients C11=31.5;C12=4.8;C44=3.82 ApparentElasticLimit n/a PoissonRatio n/a Solubility 98g/100gwater MolecularWeight 165.38 Class/Structure CubicFCC,NaCl,Fm3m,(100)cleavage
(1) Handbook Optical Constants, ed Palik, V3, ISBN 0-12-544423-0
MATERIALS DATA 85 Rubidium Bromide (RbBr) 0.24 1.754 0.35 1.603 0.4 1.583 0.5 1.563 0.6 1.552 0.7 1.546 0.8 1.543 0.9 1.540 1.0 1.538 2.0 1.533 5.0 1.530 10.0 1.525 15.0 1.517 20.0 1.505 25.0 1.489 30.0 1.469 35.0 1.444 40.0 1.412 µm No µm No µm No µm No µm No
Bromide
%T Wavelength nm %T Rubidium Bromide - RbBr 2mm Wavelength µm
Rubidium
- RbBr

Rubidium Chloride (RbCl)

MATERIALS DATA

RubidiumChlorideisproducedbythesealed-ampouleStockbargertechnique.

APPLICATIONS: RubidiumChloridehasonlyspecialistapplications.

86
TransmissionRange 0.2to25µm RefractiveIndex 1.46at10.6µm ReflectionLoss 6.8%at10.6µm(2surfaces) AbsorptionCoefficient 1x10⁻³ cm⁻¹ at10.6µm ReststrahlenPeak n/a dn/dT -39x10⁻⁶ K⁻¹ dn/dµ=0 n/a Density 2.8g/cc MeltingPoint 715°C ThermalConductivity 7.6Wm⁻¹ K⁻¹ ThermalExpansion 36x10⁻⁶ K⁻¹ at300K Hardness n/a SpecificHeatCapacity 418JKg⁻¹ K⁻¹ at283K DielectricConstant 55 YoungsModulus(E) n/a ShearModulus(G) n/a BulkModulus(K) 16.3GPa ElasticCoefficients C11=36.4;C12=6.3;C44=4.7 ApparentElasticLimit n/a PoissonRatio n/a Solubility 77g/100gwater MolecularWeight 120.92 Class/Structure CubicFCC,NaCl,Fm3m,(100)cleavage
MATERIALS DATA 87 Rubidium Chloride (RbCl) 0.248 1.60 0.351 1.53 0.488 1.50 0.59 1.49 0.633 1.49 1.06 1.48 1.55 1.48 2.8 1.48 10.60 1.46 µm No µm No µm No µm No µm No
%T Wavelength nm 4mm %T
Chloride
Wavelength µm
Rubidium Chloride - RbCl
Rubidium
- RbCl

Rubidium Iodide (RbI)

RubidiumIodideisproducedbythesealed-ampouleStockbargertechnique.Itisthe mostdeliquescentoftherubidiumsalts.

APPLICATIONS: RubidiumIodidehasonlyspecialistapplications.

88
MATERIALS DATA
TransmissionRange 0.3to50µm RefractiveIndex 1.609at10µm(1) ReflectionLoss 10.4%at10µm(2surfaces) AbsorptionCoefficient n/a ReststrahlenPeak n/a dn/dT -56x10⁻⁶K⁻¹ dn/dµ=0 n/a Density 3.55g/cc MeltingPoint 642°C ThermalConductivity 9.9Wm⁻¹ K⁻¹ ThermalExpansion 39x10⁻⁶ K⁻¹ at283K Hardness n/a SpecificHeatCapacity 242JKg⁻¹ K⁻¹ at283K DielectricConstant n/a YoungsModulus(E) n/a ShearModulus(G) n/a BulkModulus(K) 11GPa ElasticCoefficients C11=27.6;C12=3.7;C44=2.79 ApparentElasticLimit n/a PoissonRatio n/a Solubility 152g/100gwater MolecularWeight 212.37 Class/Structure CubicFCC,NaCl,Fm3m,(100)cleavage
(1) Handbook Optical Constants, ed Palik, V3, ISBN 0-12-544423-0
MATERIALS DATA 89 Rubidium Iodide (RbI) 0.25 2.059 0.35 1.736 0.50 1.663 0.80 1.631 1.0 1.624 2.0 1.615 5.0 1.612 10.0 1.609 20.0 1.596 30.0 1.573 40.0 1.537 45.0 1.514 50.0 1.486 55.0 1.452 60.0 1.411 µm No µm No µm No µm No µm No %T 5mm Wavelength µm
Rubidium Iodide - RbI
%T
Rubidium Iodide - RbI

Rutile (TiO2)

MATERIALS DATA

RutileisgrownbytheCzochralskimethodtypicallyupto25mmdiameterandupto 80mmlong.

APPLICATIONS: Rutileisahighindexmaterialusedmainlyforopticalcouplingprisms andalsoassubstratesforepitaxialgrowth.

90
TransmissionRange 0.43to5.0µm RefractiveIndex No2.555at0.69µm(1)(2) ReflectionLoss 30%at2µm(2surfaces) AbsorptionCoefficient n/a ReststrahlenPeak n/a dn/dT n/a dn/dµ=0 2.81µm Density 4.252g/cc MeltingPoint 1840°C ThermalConductivity 12.5(para)8.7(perp)Wm⁻¹ K⁻¹ ThermalExpansion 9.2(para)7.1(perp)x10⁻⁶ /°C Hardness Knoop879with500gindenter SpecificHeatCapacity 711Jkg-1 K-1 DielectricConstant 160at1MHz YoungsModulus(E) n/a ShearModulus(G) n/a BulkModulus(K) n/a ElasticCoefficients C11=269;C12=177;C13=146;C33=480;C44=124 ApparentElasticLimit 4.8MPa(700psi) PoissonRatio 0.28 Solubility Insolubleinwater MolecularWeight 79.9 Class/Structure Tetragonal,P42/mnm,(#136)RutileStructure.
(2)
(1) Handbook Optical Constants, ed Palik, V1, ISBN 0-12-544423-6
Shenoy; 1EE Poceedings-J, Vol. 139, No. 2, Apr 1992
MATERIALS
91 Rutile (TiO2) 0.436 2.853 3.216 0.492 2.725 3.051 0.496 2.718 3.042 0.546 2.652 2.958 0.577 2.623 2.921 0.579 2.621 2.919 0.589 2.616 2.903 0.691 2.555 2.836 0.708 2.548 2.826 1.01 2.484 2.747 1.530 2.454 2.710 2.42 2.40 2.59 3.38 2.41 2.58 3.79 2.39 2.57 4.28 2.34 2.51 4.89 2.32 2.49 5.73 2.24 2.43 µm No Ne µm No Ne µm No Ne %T Rutile - TiO2
DATA
Wavelength nm
2mm Rutile - TiO2 Wavelength µm %T
Data supplied by Shinoshka Co. Ltd. & Enju Inc., Japan

Sapphire (Al2O3)

MATERIALS DATA

Sapphireisgrownbyavarietyofmethods.VerneuilandCzochralskimethodsare usualforstandardgradeSapphirematerial.HigherqualitySapphire,particularlyfor electronicsubstratesismanufacturedbyKyropulosgrowthandthiscanbeverypure withexcellentUVtransmission.LargethinsheetsofSapphirecanbemadebyribbon growth.Sapphireisslightlybirefringent,generalpurposeIRwindowsareusuallycut inarandomwayfromcrystalbutforspecificapplicationswherethebirefringenceis anissue,anorientationisselected.Usuallythisiswiththeopticaxisat90degreesto thesurfaceplaneandisknownas"zerodegree"material.Syntheticopticalsapphire hasnocolouration.

APPLICATIONS: Sapphireisusedforitsextremetoughnessandstrength.Sapphireisa veryusefulopticalwindowmaterialforuseintheUV,visible,andnearinfra-red.Use theQRinkonpage30forourguidetosapphire.

* Note that manufacturers appear to disagree at times on figures for thermal expansion.

(1) Handbook Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

(2) Harrington et al, Appl.Opt. V15, 1953-1959 (1976)

(3) Malitson, J.Opt.Soc.Am., V52, 1377- 1379 (1962)

(4) Ditmars, et. al., J. Res. Nat. Bur. Stand., 87, (2), 159-163 (1982).

92
TransmissionRange 0.17to5.5µm RefractiveIndex No1.75449;Ne1.74663at1.06µm(1) ReflectionLoss 14%at1.06µm AbsorptionCoefficient 0.3x10⁻³ cm⁻¹ at2.4µm(2) ReststrahlenPeak 13.5µm dn/dT 13.1x10⁻⁶ at0.546µm(3) dn/dµ=0 1.5µm Density 3.97g/cc MeltingPoint 2040°C ThermalConductivity 27.21Wm⁻¹ K⁻¹ at300K ThermalExpansion 5.6(para)&5.0(perp)x10⁻⁶K⁻¹ * Hardness Knoop1800(para)2200(perp) SpecificHeatCapacity 763JKg⁻¹ K⁻¹ at293K(4) DielectricConstant 11.5(para)9.4(perp)at1MHz YoungsModulus(E) 335GPa ShearModulus(G) 148.1GPa BulkModulus(K) 240GPa ElasticCoefficients C11=496C12=164C13=115C33=498C44=148 ApparentElasticLimit 300MPa(45,000psi) PoissonRatio 0.25 Solubility 98x10⁻⁶ g/100gwater MolecularWeight 101.96 Class/Structure Trigonal(hex),R3c
MATERIALS DATA 93 0.193 1.9288 1.9174 0.213 1.8890 1.8784 0.222 1.8754 1.8650 0.226 1.8702 1.8599 0.244 1.8506 1.8407 0.248 1.8470 1.8372 0.257 1.8393 1.8297 0.266 1.8330 1.8236 0.280 1.8244 1.8151 0.308 1.8110 1.8020 0.325 1.8047 1.7958 0.337 1.8001 1.7921 0.351 1.7969 1.7882 0.355 1.7960 1.7883 0.442 1.7804 1.7721 0.458 1.7784 1.7702 0.488 1.7753 1.7671 0.515 1.7730 1.7649 0.532 1.7717 1.7636 0.590 1.7680 1.7600 0.633 1.7659 1.7579 0.670 1.7643 1.7563 0.694 1.7634 1.7554 0.755 1.7614 1.7535 0.780 1.7607 1.7527 0.800 1.7601 1.7522 0.820 1.7596 1.7517 0.980 1.7561 1.7482 1.064 1.7545 1.7466 1.320 1.7501 1.7423 1.550 1.7462 1.7384 2.010 1.7375 1.7297 2.249 1.7323 1.7243 2.703 1.719 1.711 2.941 1.712 1.704 3.333 1.701 1.693 3.704 1.687 1.679 4.000 1.674 1.666 4.348 1.658 1.65 4.762 1.636 1.628 5.000 1.623 1.615 5.263 1.607 1.599 Sapphire (Al2O3) µm No Ne µm No Ne µm No Ne Transmission data table for these curves can be downloaded from the Crystran website 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 Sapphire - Al2O3 %T Wavelength µm 0.53mm 1.02mm 2.07mm 3.95mm 10.0mm Wavelength nm %T 200 300 400 500 600 20 40 60 80 Sapphire - Al2O3 Standard UV grade 2mm Selected UV grade 2mm 100 0

Silica Glass (SiO2)

MATERIALS DATA

FusedSilicaistheglassyformofQuartzandisthusisotropic.FusedSilicaistoughand hardandhasaverylowexpansion.NormalvarietiesofFusedSilicacontainwater whichgivesstrongabsorptionintheInfra-red.Water-freevarietiesofFusedSilicaare available.

APPLICATIONS: FusedSilicaisahard,hightemperaturepureglass.FusedSilicais usedforUVandvisiblecomponents.Infra-redgradesofFusedSilicaareavailablefor NIRuse.UsetheQRlinkonpage30forourguidetosilicaglass.

* The normal maximum working temperature is 1050°C

94
TransmissionRange 0.18to2.2µm(3µmforIRgrades) RefractiveIndex 1.47012at4µm(1) ReflectionLoss 7.0%at0.4µm(2surfaces) AbsorptionCoefficient 10x10⁻⁶ cm⁻¹ at1µm ReststrahlenPeak n/a dn/dT +12.9x10-6 K⁻¹ (2) dn/dµ=0 1.3µm Density 2.203g/cc MeltingPoint 1600°C(softening)* ThermalConductivity 1.38Wm⁻¹ K⁻¹ ThermalExpansion 0.55x10⁻⁶ K⁻¹ at300K Hardness Knoop500with200gindenter SpecificHeatCapacity 703JKg⁻¹ K⁻¹ DielectricConstant 3.78at25GHz YoungsModulus(E) 73.1GPa ShearModulus(G) 31.2GPa BulkModulus(K) 36.7GPa ElasticCoefficients n/a ApparentElasticLimit 55MPa(7980psi) PoissonRatio 0.17 Solubility InsolubleinWater MolecularWeight 28.09 Class/Structure Amorphousglass
(1) Handbook Optical Constants, ed Palik, V1, ISBN 0-12-544420-6 (2) Toyoda & Yabe J. Phys. D: Appl. Phys.,1 6 (1983)
MATERIALS DATA 95 Silica Glass (SiO2) 0.20 1.55051 0.25 1.50745 0.30 1.48779 0.36 1.47529 0.40 1.47012 0.45 1.46557 0.50 1.46233 0.55 1.46008 0.60 1.45804 0.65 1.45653 0.70 1.45529 0.75 1.45424 0.8 1.45332 0.85 1.4525 0.90 1.45175 1.0 1.45042 1.1 1.4492 1.2 1.44805 1.3 1.44692 1.5 1.44462 1.6 1.44342 1.7 1.44217 1.8 1.44087 1.9 1.43951 2.0 1.43809 2.2 1.43501 2.4 1.43163 2.6 1.42789 2.8 1.42377 3.0 1.41925 3.2 1.41427 3.37 1.41099 µm No µm No µm No µm No µm No 6mm IR (water-free) grades → UV - Visible grades → Silica Glass - SiO2 6mm %T Wavelength µm UV grades typical (Synthetic fused silica) Visible grades typical (Fused quartz) Silica Glass - SiO2 Wavelength nm %T

Silicon (Si)

MATERIALS DATA

SiliconisgrownbyCzochralskipullingtechniques(CZ)andcontainssomeoxygen whichcausesanabsorptionbandat9µm.Toavoidthis,Siliconcanbepreparedbya Float-Zone(FZ)process.OpticalSiliconisgenerallylightlydoped(15to40ohmcm) forbesttransmissionabove10µm.Siliconhasafurtherpassband30to100µmwhich iseffectiveonlyinveryhighresistivityuncompensatedmaterial.Dopingisusually Boron(p-type)andPhosphorus(n-type).

APPLICATIONS: Siliconisusedasanopticalwindowprimarilyinthe3to5micron bandandasasubstrateforproductionofopticalfilters.LargeblocksofSiliconwith polishedfacesarealsoemployedasneutrontargetsinPhysicsexperiments

(1) Handbook Optical Constants, ed Palik, V1, ISBN 0-12-544420-6

(2) Li, Refractive Index of Germanium etc, J.Phys Chem, V9, p561, 1980

(3) Icenogle et al, Appl. Opt. V15, 2348 (1976)

(4) Wortman & Evans, V36, (1), P153 (1965)

96
TransmissionRange 1.2to15µmand30to>100µm(1) RefractiveIndex 3.4223@5µm(1)(2) ReflectionLoss 46.2%at5µm(2surfaces) AbsorptionCoefficient 0.01cm⁻¹ at3µm ReststrahlenPeak n/a dn/dT 160x10⁻⁶ /°C(3) dn/dµ=0 10.4µm Density 2.33g/cc MeltingPoint 1420°C ThermalConductivity 163.3Wm⁻¹ K⁻¹ at273K ThermalExpansion 2.6x10⁻⁶ K⁻¹ at20°C Hardness Knoop1150 SpecificHeatCapacity 703JKg⁻¹ K⁻¹ DielectricConstant 13at10GHz YoungsModulus(E) 131GPa(4) ShearModulus(G) 79.9GPa(4) BulkModulus(K) 102GPa ElasticCoefficients C11=167;C12=65;C44=80(4) ApparentElasticLimit 124.1MPa(18000psi) PoissonRatio 0.266(4) Solubility InsolubleinWater MolecularWeight 28.09 Class/Structure Cubicdiamond,Fd3m

Optical Grade Silicon - Si

MATERIALS DATA 97 Silicon (Si) 1.357 3.4975 1.367 3.4962 1.395 3.4929 1.52953.4795 1.66 3.4696 1.709 3.4664 1.813 3.4608 1.97 3.4537 2.153 3.4476 2.325 3.4430 2.714 3.4358 3.0 3.4320 3.303 3.430 3.5 3.4284 4.0 3.4257 4.258 3.4245 4.5 3.4236 5.0 3.4223 5.5 3.4213 6.0 3.4202 6.5 3.4195 7.0 3.4189 7.5 3.4186 8.0 3.4184 8.5 3.4182 10.0 3.4179 10.5 3.4178 11.04 3.4176 µm No µm No µm No µm No µm No FZ 5mm CZ 5mm FZ 30mm CZ 20mm → → → →
%T Wavelength µm Czochralski Grown (CZ) Has typical absorption band at 9 µm Small absorption at 5.8 µm Float Zone (FZ) Reduces but does not eliminate these absorptions

Silver Bromide (AgBr)

MATERIALS DATA

SilverBromideisgrowninsmallingotsbysealedampouleStockbargertechniques. SilverBromideismalleableanddeepyellow,itdarkensinsunlight,butlessreadily thanSilverChloride.

APPLICATIONS: SilverBromideisusefulmaterialforverydeepInfraRedapplications wheresensitivitytomoistureisaproblem.SilverBromidecrystalgrowthwas developedrelativelyrecentlybythestandardsofmanyIRmaterials.Theparameters ofSilverBromidehavenotbeenresearchedasthoroughlyasthoseofSilverChloride. Thissoftcrystaldeformsunderheatandpressureandcanbeforgedinpolisheddies tocreateInfraRedwindowsandlenses.

98
TransmissionRange 0.45to35µm(1) RefractiveIndex 2.167at10µm(1)(2) ReflectionLoss 23.9%at10µm(2surfaces) AbsorptionCoefficient Notknown ReststrahlenPeak 112.7µm dn/dT Notknown dn/dµ=0 Notknown Density 6.473g/cc MeltingPoint 432°C ThermalConductivity 1.21Wm⁻¹ K⁻¹ at273K ThermalExpansion 30x10⁻⁶K⁻¹ at273K Hardness Knoop7 SpecificHeatCapacity 292JKg⁻¹ K⁻¹ DielectricConstant 13.1at1MHz(2) YoungsModulus(E) 31.97GPa ShearModulus(G) NotKnown BulkModulus(K) 44.03GPa ElasticCoefficients C11=56.3C12=32.3C44=7.25 ApparentElasticLimit 30.3Mpa(4400psi) PoissonRatio NotKnown Solubility 12x10⁻⁶g/100gwaterat20°C MolecularWeight 187.78 Class/Structure CubicFCC,NaCl,Fm3m,Nocleavage,coldflows
(1) Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0 (2) White; Optical Properties of Silver Bromide. J.Opt. Soc. Am. V62, N2, (1973)
MATERIALS DATA 99 µm No µm No µm No µm No µm No
0.391 2.416 0.477 2.33 0.496 2.313 0.55 2.27 0.6 2.25 0.65 2.24 0.781 2.205 9.926 2.167 12.66 2.162 4mm 2mm
Silver Bromide (AgBr) %T Silver Bromide - AgBr Wavelength µm

Silver Chloride (AgCl)

MATERIALS DATA

SilverChlorideisgrownintosmallingotsbythesealed-ampouleStockbarger techniques.Silverchlorideismalleableandmilky-whiteitdarkensinsunlight,but milddarkeningdoesnotaffecttheIRperformance.

APPLICATIONS: SilverChlorideisausefulmaterialfordeepIRapplicationswhere sensitivitytomoistureisaproblem.Thissoftcrystaldeformsunderheatand pressureandcanbeforgedinpolisheddiestocreateIRwindowsandlenses.Amajor useforSilverChlorideisinthemanufactureofsmalldisposablecellwindowsfor spectroscopy,knownasmini-cells.Thesewindowshaveadepressionofcontrolled thicknesspressedintothesurface.TheinherentcostofSilverChloridematerialis offsetagainsteaseofmanufacture.

100
TransmissionRange 0.4to25µm(1) RefractiveIndex 1.98at10µm(1) ReflectionLoss 19.5%at10µm(2surfaces) AbsorptionCoefficient n/a ReststrahlenPeak 81.5µm dn/dT -61x10⁻⁶ K⁻¹ dn/dµ=0 4.5µm Density 5.59g/cc MeltingPoint 457°C ThermalConductivity 1.15Wm⁻¹ K⁻¹ at278K ThermalExpansion 31x10⁻⁶ K⁻¹ at302K Hardness Knoop9.5with200gindenter SpecificHeatCapacity 355JKg⁻¹ K⁻¹ DielectricConstant 12.3at1MHz YoungsModulus(E) 19.98GPa ShearModulus(G) 7.099GPa BulkModulus(K) 44.04GPa ElasticCoefficients C11=60.1C12 =36.2C44=6.25 ApparentElasticLimit 26.2MPa(3800psi) PoissonRatio 0.4 Solubility 52x10-6 g/100gwaterat50°C MolecularWeight 143.34 Class/Structure CubicFCC,NaCl,Fm3m,Nocleavage,coldflows
(1) Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

Silver Chloride - AgCl

MATERIALS DATA 101
Chloride
0.5 2.09658 1.0 2.02239 1.5 2.01047 2.0 2.00615 2.5 2.00386 3.0 2.0023 3.5 2.00102 4.0 1.99983 4.50 1.99866 5.0 1.99745 5.5 1.99618 6.0 1.99483 6.5 1.99339 7.0 1.99185 7.5 1.99021 8.0 1.98847 8.5 1.98661 9.0 1.98464 9.5 1.98255 10.0 1.98034 10.5 1.97801 11.0 1.97556 11.5 1.97297 12.0 1.97026 12.5 1.96742 13.0 1.96444 13.5 1.96133 14.0 1.95807 14.5 1.95467 15.0 1.95113 15.5 1.94743 16.0 1.94358 16.5 1.93958 17.0 1.9354 17.5 1.93109 18.0 1.9266 18.5 1.92194 19.0 1.91710 19.5 1.91208 20.0 1.90688 20.5 1.90149 µm No µm No µm No µm No µm No 6mm
Silver
(AgCl)
%T Wavelength µm

Sodium Chloride (NaCl)

MATERIALS DATA

SodiumChlorideisproducedinlargeingotsbytheKyropoulosgrowthmethod.

SodiumChloridecleaveseasily.WithcareSodiumChloridecanbepolishedtoahigh standardunderhumiditycontrolledconditions

APPLICATIONS: SodiumChloride,commonrocksalt,isoneofthemostuseful materialsforgeneralpurposespectroscopicwindowsandapplicationswhere sensitivitytomoistureisunimportant.

102
TransmissionRange 0.2to15µm RefractiveIndex 1.49065at10.6µm ReflectionLoss 7.5%at10.6µm(2surfaces) AbsorptionCoefficient 7x10⁻⁶ cm⁻¹ at1.06µm(1) ReststrahlenPeak 50.1µm dn/dT -40.83x10⁻⁶K⁻¹ dn/dµ=0 n/a Density 2.17g/cc MeltingPoint 801°C ThermalConductivity 6.5Wm⁻¹ K⁻¹ at273K ThermalExpansion 44x10⁻⁶K⁻¹ Hardness Knoop18.2in<100>with200gindenter SpecificHeatCapacity 854JKg⁻¹ K⁻¹ DielectricConstant 5.9at1MHz YoungsModulus(E) 39.98GPa ShearModulus(G) 12.61GPa BulkModulus(K) 24.42GPa ElasticCoefficients C11=48.5;C12=12.3;C44=12.61 RuptureModulus 3.9MPa(560psi)(2) PoissonRatio 0.252 Solubility 35.7g/100gwaterat273K MolecularWeight 58.45 Class/Structure CubicFCC,NaCl,Fm3m(#221),(100)cleavage (1) H.H.Li, Absorption Coefficients, Int.J.Therm, V1, No. I, 1980 (2) Combes, et.al.; J.Opt. Soc. Am. V41, p215, 1951.
MATERIALS
103 Sodium Chloride (NaCl) 0.589 1.54427 0.64 1.54141 0.76 1.53682 0.884 1.53395 0.972 1.53253 1.054 1.53153 1.555 1.53815 2.074 1.52736 9.0 1.501 9.50 1.4998 10.6 1.49065 11.4 1.48476 12.5 1.47568 13.5 1.4666 14.6 1.45572 16.0 1.4399 17.8 1.41649 19.8 1.38559 20.57 1.3735 22.3 1.3403 µm No µm No µm No µm No µm No %T Wavelength µm Wavenumber Sodium Chloride - NaCl Data Supplied by %T Wavelength nm
Chloride - NaCl
DATA
Sodium

Sodium Fluoride (NaF)

MATERIALS DATA

SodiumFluorideisproducedbyvacuumStockbargertechniques.TheSodiumFluorideisverydifficulttoannealandcleavesreadilylimitingtheusefulsizeofpiecesto about80mm.SodiumFluoridepolisheswellbutmustbekeptindryairtomaintain thequalityofthesurfacesandretainthedeepUVtransmissionneededforCerenkov radiationfromthismaterial.

APPLICATIONS: SodiumFluoridehasthelowestrefractiveindexofallcommonopticalmaterialswhichmakesitofinterestasaCerenkovradiatorinParticlePhysicsresearch.CrystranLtd.hassuppliedSodiumFluoridematerialwhichhasbeenmade intolargearraysatCERN.ItisusedinRingImagingCerenkovCounters(RICH)

104
TransmissionRange 0.14to11µm RefractiveIndex 1.3255at0.6µm ReflectionLoss 3.9%at0.6µm AbsorptionCoefficient 1x10⁻³ cm⁻¹ at7µm@300K(1) ReststrahlenPeak 35.8µm dn/dT -13x10⁻⁶ K⁻¹ at293K dn/dµ=0 1.7µm Density 2.79g/cc@20°C MeltingPoint 980°C ThermalConductivity 3.746Wm⁻¹ K⁻¹ at273K ThermalExpansion 36x10⁻⁶ /Kat300K Hardness Knoop60in<100> SpecificHeatCapacity 1088JKg⁻¹ K⁻¹ DielectricConstant 6at1MHz YoungsModulus(E) 79.01GPa ShearModulus(G) 12.70GPa BulkModulus(K) 47.9GPa ElasticCoefficients C11=79.01;C12=12.7;C44=47.9 ApparentElasticLimit 3.2MPa(Estimated) PoissonRatio 0.326 Solubility 4.22g/100gwaterat18°C MolecularWeight 42.0 Class/Structure CubicFCC,NaCl,Fm3m,(100)cleavage
(1) H.H.Li, Absorption Coefficients, Int.J.Therm, V1, No. I, 1980
MATERIALS DATA 105 Sodium Fluoride (NaF) 0.14 1.55 0.145 1.499 0.161 1.438 0.175 1.410 0.186 1.393 0.199 1.3805 0.203 1.3772 0.302 1.34232 0.405 1.33194 0.486 1.32818 0.546 1.3264 0.589 1.32549 0.707 1.32372 0.811 1.32272 0.912 1.32198 1.014 1.3215 2.0 1.3170 3.1 1.313 4.1 1.308 5.1 1.301 6.1 1.292 7.1 1.281 8.1 1.269 9.1 1.252 10.3 1.233 11.3 1.209 12.5 1.18 13.8 1.142 15.1 1.093 16.7 1.029 µm No µm No µm No µm No µm No 4mm 2mm Sodium Fluoride - NaF %T Wavelength µm 100 120 140 160 180 200 220 80 40 5mm %T Wavelength nm Sodium Fluoride - NaF Data supplied by 60 20

Spinel (MgAl2O4)

Spinelisanaturallyoccurringmaterialoftenusedasagemstone.Opticalspinelisa fusedcompactedceramicmaterialformedfromspinelpowder.Itispolycrystalline withagrainsizeintherangeof25µmto150µm.

APPLICATIONS: Spinelisbecomingfavouredforuseforinharsherenvironments requiringextremestrength.Asasinteredceramicmaterialitexhibitsmorestrength thansinglecrystalmaterial.

(1) https://www.mindat.org/min-3729.html (2)

106
MATERIALS DATA
TransmissionRange 0.3to5µm RefractiveIndex 1.71at0.6µm ReflectionLoss 13%at0.6µm AbsorptionCoefficient 0.02cm⁻¹ at0.6µm ReststrahlenPeak NA dn/dT 12x10⁻⁶ K⁻¹ dn/dµ=0 NA Density 3.58g/cc MeltingPoint 2135°C ThermalConductivity 14.6Wm⁻¹ K⁻¹(varieswithporosity) ThermalExpansion 6.5x10⁻⁶ /K Hardness Knoop1140with1000gindenter(8Moh) SpecificHeatCapacity 1086JKg⁻¹ K⁻¹ DielectricConstant 8 YoungsModulus(E) 195GPa ShearModulus(G) 157Gpa BulkModulus(K) 200Gpa ElasticCoefficients C11=298;C12=154;C44=157(2) ApparentElasticLimit 170MPa(24,600psi) PoissonRatio 0.26 Solubility Insoluble MolecularWeight 142.27 Class/Structure Cubic.Fd3m(#227)Irregularcleavage(111) Polycrystallineinopticalusage.
Schreiber, Elastc Moduli of Single
Spinel, J.App.Phys 38,
Crystal
2508 (1967) -
MATERIALS
107 Spinel (MgAl2O4) 0 10 20 30 40 50 60 70 80 90 100 2 3 4 5 6 7 8 9 10 %T Spinel - MgAl2O4 Wavelength µm 1mm 0 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000 Spinel - MgAl2O4 Wavelength nm %T 1mm 0.36 1.7461 0.40 1.7368 0.50 1.7229 0.60 1.7156 0.70 1.7111 1.042 1.702 1.25 1.698 1.4711.695 2.0 1.686 2.5 1.677 3.125 1.662 3.704 1.645 4.0 1.635 5.0 1.594 5.556 1.565 6.25 1.522 6.667 1.491 6.897 1.473 µm No µm No µm No µm No µm No
DATA

Strontium Fluoride (SrF2)

MATERIALS DATA

StrontiumfluorideisproducedbythevacuumStockbargergrowthtechnique.

APPLICATIONS: StrontiumFluoridehasonlyspecialistapplications.Optically, StrontiumFluoridehaspropertiesintermediatetoCalciumandBariumFluoride.

(1) Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0

(2) A figure of 1.42 W/(mK) is in wide circulation but is plainly incorrect based on observation of UKRI STFC (2019). Logically the Tc should be intermediate between BaF2 and CaF2. OSTI.GOV gives (p44) 0.016 cal cm-1 s C-1 for 25°C which converts to 6.7 W m-1 K-1. OSA PUBLISHING confirms (p95) the Tc for CaF2 as 9.71W m-1K-1 and offers for SrF2 as 8.3 W m-1 K-1 which we use here.

108
TransmissionRange 0.15to11µm RefractiveIndex 1.439at0.55µm(1) ReflectionLoss 6.3%at0.55µm(2surfaces) AbsorptionCoefficient <1x10⁻³ cm⁻¹ at5µm ReststrahlenPeak 46µm dn/dT -12x10⁻⁶ K⁻¹ dn/dµ=0 n/a Density 4.24g/cc MeltingPoint 1450°C ThermalConductivity 8.3Wm⁻¹ K⁻¹ at293K(2) ThermalExpansion 18.4x10⁻⁶ K⁻¹ at293K Hardness Knoop154(100)&140(110) SpecificHeatCapacity 543JKg⁻¹ K⁻¹ DielectricConstant 7.69at2MHz YoungsModulus(E) 89.91GPa ShearModulus(G) 34.6GPa BulkModulus(K) 24.65GPa ElasticCoefficients C11=124;C12=45;C44=31.7 ApparentElasticLimit 36.5MPa(5300psi) PoissonRatio 0.25 Solubility 0.012g/100gwaterat27°C MolecularWeight 125.62 Class/Structure CubicFm3m(#225)Fluoritestructure Cleaveson(111)
-
MATERIALS DATA 109 Strontium Fluoride (SrF2) 0.15 1.594 0.20 1.504 0.31 1.45725 0.41 1.44556 0.51 1.44029 0.61 1.43740 0.71 1.43560 0.81 1.43435 0.91 1.43343 1.01 1.43269 1.51 1.43003 2.01 1.42761 3.01 1.42159 4.01 1.41337 5.01 1.40269 6.01 1.38934 7.01 1.37308 8.01 1.35362 8.1 1.3517 8.6 1.3405 9.1 1.3283 9.6 1.3151 10.6 1.2854 11.1 1.2686 µm No µm No µm No µm No µm No 1mm 2mm 5mm 10mm %T Strontium Fluoride - SrF2 Wavelength µm 120 130 140 150 160 170 180 190 200 210 220 230 0 20 40 60 80 100 Wavelength nm %T 2mm Strontium Fluoride - SrF2 Typical VUV transmissions

Thallium Bromide (TlBr)

MATERIALS DATA

CAUTION:ThalliumsaltsareconsideredTOXICandshouldbehandledwithcare.

ThalliumBromidecrystalsaregrownbysealed-ampouleStockbargertechnique.

Thalliumsaltsaretoxic,andThalliumBromidehasenoughsolubilitytorequire extremecaution.Carefulhandlingwithplasticglovescoveredwithsoftcottongloves asappropriatetodelicateopticsisrequired.

APPLICATIONS: ThalliumBromidehaslittlepracticalapplication.

110
TransmissionRange 0.5to40µm RefractiveIndex 2.338at10µm(1) ReflectionLoss 27.7%at10µm AbsorptionCoefficient n/a ReststrahlenPeak 172µm dn/dT n/a dn/dµ=0 8.5µm Density 7.453g/cc(1) MeltingPoint 460.5°C(1) ThermalConductivity 0.586Wm⁻¹ K⁻¹ at343K ThermalExpansion 51x10⁻⁶ K⁻¹ at300K Hardness Knoop11.9with500gindenter SpecificHeatCapacity 188JKg⁻¹ K⁻¹ (3) DielectricConstant 30.3at1MHz YoungsModulus(E) 29.5GPa(2) ShearModulus(G) 7.58GPa(2) BulkModulus(K) 22.47Gpa(2) ElasticCoefficients C11=37.8;C12=14.8;C44=7.56(2) ApparentElasticLimit 20.7MPa(3000psi) PoissonRatio 0.281 Solubility 0.05g/100gwaterar25°C MolecularWeight 248.31 Class/Structure CubicCsCl,Pm3m,nocleavage(1)
(1) Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0 (2) Arenberg, Measurements made at Naval Research Labs, USA 1948-49 (3) Kelly, Bureau of Mines Bulletin, No 371, p51. 1934
MATERIALS DATA 111
Bromide
0.438 2.652 0.546 2.452 0.578 2.424 0.650 2.384 0.750 2.350 10.00 2.338 µm No µm No µm No µm No µm No Wavelength µm %T Thallium Bromide - TlBr 1mm
Bromide - TlBr
%T 1mm
Thallium
(TlBr)
Thallium
Wavelength nm

Thallium Chloride

(TlCl)

MATERIALS DATA

CAUTION: Thallium salts are considered TOXIC and should be handled with care.

ThalliumChloridecrystalsaregrownbysealed-ampouleStockbargertechnique.

Thalliumsaltsaretoxic,andThalliumChloridehasenoughsolubilitytorequire extremecaution.Carefulhandlingwithplasticglovescoveredwithsoftcottongloves asappropriatetodelicateopticsisrequired

APPLICATIONS: ThalliumChloridehaslittlepracticalapplication.

112
TransmissionRange 0.5to30µm RefractiveIndex 2.193at10µm(1) ReflectionLoss 24.5%at10µm(2surfaces) AbsorptionCoefficient n/a ReststrahlenPeak 131µm dn/dT n/a dn/dµ=0 3.5µm Density 7.018g/cc(1) MeltingPoint 430.2°C(1) ThermalConductivity 0.75Wm⁻¹ K⁻¹ at311K ThermalExpansion 53x10⁻⁶ K⁻¹ at300K Hardness Knoop12.8with500gindenter SpecificHeatCapacity 218JKg⁻¹ K⁻¹ DielectricConstant 31.9at1MHz YoungsModulus(E) 31.71Gpa(2) ShearModulus(G) 7.58GPa(2) BulkModulus(K) 23.57Gpa(2) ElasticCoefficients C11=40.1;C12=15.3;C44=7.6(2) ApparentElasticLimit 20.7MPa(3000psi) PoissonRatio 0.276 Solubility 0.32g/100gwaterat20°C MolecularWeight 239.85 Class/Structure CubicCsCl,Pm3m,nocleavageplanes(1)
(1) Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0 (2) Arenberg, Measurements made at Naval Research Labs, USA 1948-49
MATERIALS DATA 113
Thallium Chloride (TlCl)
%T Wavelength µm 2mm 0.436 2.4 0.546 2.27 0.578 2.253 0.589 2.247 0.650 2.223 0.750 2.198 10.00 2.193 µm No µm No µm No µm No µm No
Thallium
Chloride - TlCl

Yttrium Aluminium Garnet (YAG)

MATERIALS DATA

YAGcrystalisproducedbytheCzochralskigrowthprocessuptoapproximately 100mmdiameter.

APPLICATIONS: YAG(YttriumaluminiumoxideY3Al5O12)isanactivelasercrystal whendopantssuchasNd,Tm,Er,andCrareused.Beingcubicthereisnodouble refractionanditissometimesusedforawindowmaterialsubstitutingforsapphire.

114
TransmissionRange 0.21to5.5µm RefractiveIndex 1.81523at1.06µm(1) ReflectionLoss 16.7%at1.06µm AbsorptionCoefficient n/a ReststrahlenPeak n/a dn/dT +9.1x10⁻⁶ K⁻¹ at1064nm(2) dn/dµ=0 n/a Density 4.56g/cc MeltingPoint 1940°C ThermalConductivity 12.9Wm⁻¹ K⁻¹ ThermalExpansion 7.8(111),7.7(110),8.2x10⁻⁶ K⁻¹ (100) Hardness Knoop1215 SpecificHeatCapacity 590JKg⁻¹ K⁻¹ DielectricConstant 11.7 YoungsModulus(E) 300GPa ShearModulus(G) n/a BulkModulus(K) n/a ElasticCoefficients C11=333;C12=111;C44=115 ApparentElasticLimit 280MPa PoissonRatio 0.28 Solubility Insolubleinwater MolecularWeight 593.62 Class/Structure Cubicgarnet,m3m
(1) Handbook of Optical Constants, ed Palik, V3, ISBN 0-12-544423-0 (2) Wilson, Thermo-Optic Coefficients. PhD dissertation. U Southern Calif. Jan 1980
115 Yttrium Aluminium Garnet
1mm Yttrium Aluminium Garnet - YAG Undoped %T Wavelength µm 1mm Yttrium Aluminium Garnet - YAG Undoped %T Wavelength nm µm No µm No µm No µm No µm No 0.266 1.9278 0.354 1.8725 0.532 1.8368 0.800 1.8245 0.808 1.8217 0.946 1.8186 1.030 1.8173 1.064 1.8169 1.333 1.8146 1.444 1.8140 1.500 1.8137 1.640 1.8132 2.014 1.8123 2.097 1.8121 2.123 1.8121 2.940 1.8113
MATERIALS DATA
(YAG)

Zinc Selenide (ZnSe)

MATERIALS DATA

ZincSelenideisproducedbysynthesisfromZincvapourandH2Segas,formingas sheetsonagraphitesubstrate.ZincSelenideismicrocrystallineinstructure,thegrain sizebeingcontrolledtoproducemaximumstrength.SinglecrystalZnSeisavailable, butisnotcommonbuthasbeenreportedashavinglowerabsorptionandthusmore effectiveforCO2 optics.

APPLICATIONS: ZnSeisusedwidelyforIRcomponents,windowsandlenses,andfor spectroscopicATRprisms.ZincSelenideisoneofthematerialsofchoiceforCO2 laser opticsoperatingat10.6µm.

* Zinc Selenide oxidizes significantly at 300°C, exhibits plastic deformation at about 500°C and dissociates about 700°C. For safety, Zinc Selenide windows should not be used above 250°C in normal atmosphere

116
TransmissionRange 0.6to21.0µm RefractiveIndex 2.4028at10.6µm ReflectionLoss 29.1%at10.6µm(2surfaces) AbsorptionCoefficient 0.0005cm⁻¹ at10.6µm(2) 0.0004cm⁻¹ at5.25µm(2) 0.0004cm⁻¹ at3.8µm(2) 0.0007cm⁻¹ at2.7µm(2) 0.005cm⁻¹ at1.3µm(2) ReststrahlenPeak 45.7µm dn/dT +61x10⁻⁶ K⁻¹ at10.6µmat298K dn/dµ=0 5.5µm Density 5.27g/cc MeltingPoint 1525°C*Seenotesbelow ThermalConductivity 18Wm⁻¹ K⁻¹ at298K ThermalExpansion 7.1x10⁻⁶ K⁻¹ at273K Hardness Knoop120with50gindenter SpecificHeatCapacity 339JKg⁻¹ K⁻¹ DielectricConstant n/a YoungsModulus(E) 67.2GPa ShearModulus(G) n/a BulkModulus(K) 40GPa ElasticCoefficients NotAvailable ApparentElasticLimit 55.1MPa(8000psi)(1) PoissonRatio 0.28 Solubility 0.001g/100gwater MolecularWeight 144.33 Class/Structure FCCCubic,F43m(#216),ZincBlendeStructure (Polycrystalline)
(1) Manufacturing Methods program ZnSe blanks. US Army R&D Feb 1980 (2) Manufacturers Published Data.

Zinc Selenide - ZnSe

117
MATERIALS DATA
µm No µm No µm No µm No µm No 0.54 2.6754 0.58 2.6312 0.62 2.5994 0.66 2.5755 0.7 2.5568 0.74 2.5418 0.78 2.5295 0.82 2.5193 0.86 2.5107 0.90 2.5034 0.94 2.4971 0.98 2.4916 1.0 2.4892 1.4 2.4609 1.8 2.4496 2.2 2.4437 2.6 2.4401 3.0 2.4376 3.4 2.4356 3.8 2.4339 4.2 2.4324 4.6 2.4309 5.0 2.4295 5.4 2.4281 5.8 2.4266 6.2 2.4251 6.6 2.4235 7.0 2.4218 7.4 2.4201 7.8 2.4183 8.2 2.4163 8.6 2.4143 9.0 2.4122 9.4 2.4100 9.8 2.4077 10.2 2.4053 10.6 2.4028 11.0 2.4001 11.4 2.3974 11.8 2.3945 12.2 2.3915 12.6 2.3883 13.0 2.3850 13.4 2.3816 13.8 2.3781 14.2 2.3744 14.6 2.3705 15.0 2.3665 15.4 2.3623 15.8 2.3579 16.2 2.3534 16.6 2.3487 17.0 2.3438 17.4 2.3387 17.8 2.3333 18.2 2.3278
Zinc Selenide (ZnSe)
Wavelength µm %T 0.56mm 1.06mm 2.20mm 4.00mm 6.08mm 8.36mm 10.0mm 6mm 14mm
Wavelength nm %T Transmission data table for these curves can be downloaded from the Crystran website
Zinc Selenide - ZnSe

Zinc Sulphide (Zinc Sulfide) FLIR (ZnS)

MATERIALS DATA

ZincSulfideisproducedbysynthesisfromZincvapourandH2Sgas,formingassheets onagraphitesubstrate.ZincSulfideismicrocrystallineinstructure,thegrainsize beingcontrolledtoproducemaximumstrength.ForwardLookingInfra-Red(FLIR) grade,whichispaleyellowandtranslucentinthevisible,isusedasdeposited withoutfurthertreatment.Itisstrongerthanmultispectralgrade.SinglecrystalZnSis available,butisnotcommon.

APPLICATIONS: ZnSFLIRisusedforIRwindowsandlensesinthethermalband(8to 14µm)asatoughfrontopticinthermalimagingsystems,particularlythosesubjected toharshenvironments.

* Zinc Sulfide oxidises significantly at 300°C, exhibits plastic deformation at about 500°C and dissociates about 700°C. For safety, Zinc Sulfide windows should not be used above 250°C in normal atmosphere.

118
TransmissionRange 1.0to13µm RefractiveIndex 2.192at10.6µm ReflectionLoss 24.6%at10.6µm(2surfaces) AbsorptionCoefficient 0.2cm⁻¹ at10.6µm(1) 0.02cm⁻¹ at3.8µm ReststrahlenPeak 30.5µm dn/dT +43x10⁻⁶K⁻¹ at3.39µm dn/dµ=0 n/a Density 4.08g/cc MeltingPoint 1827°C*Seenotesbelow ThermalConductivity 16.7Wm⁻¹ K⁻¹ at296K ThermalExpansion 6.6x10⁻⁶ K⁻¹ at273K Hardness Knoop160with50gindenter SpecificHeatCapacity 469JKg⁻¹ K⁻¹ DielectricConstant n/a YoungsModulus(E) 74.5GPa ShearModulus(G) n/a BulkModulus(K) n/a ElasticCoefficients NotAvailable ApparentElasticLimit 103.4MPa(15,000psi) PoissonRatio 0.29 Solubility 65x10⁻⁶ g/100gwater MolecularWeight 97.43 Class/Structure Polycrystallinecubic,ZnS,F43m
(1) Manufacturers Published Data.
119
MATERIALS DATA
Zinc Sulphide (Zinc Sulfide) FLIR (ZnS) Wavelength µm
%T 2mm 3mm 8mm 0.42 2.516 0.46 2.458 0.50 2.419 0.54 2.391 0.58 2.371 0.62 2.355 0.66 2.342 0.70 2.332 0.74 2.323 0.78 2.316 0.82 2.31 0.86 2.305 0.90 2.301 0.94 2.297 0.98 2.294 1.00 2.292 1.40 2.275 1.80 2.267 2.20 2.263 2.60 2.26 3.00 2.257 3.40 2.255 3.80 2.253 4.20 2.251 4.60 2.248 5.00 2.246 5.40 2.244 5.80 2.241 6.20 2.238 6.60 2.235 7.00 2.232 7.40 2.228 7.80 2.225 8.20 2.221 8.60 2.217 9.00 2.212 9.40 2.208 9.80 2.203 10.2 2.198 10.6 2.192 11.0 2.186 11.4 2.18 11.8 2.173 12.2 2.167 12.6 2.159 13.0 2.152 13.4 2.143 13.8 2.135 14.2 2.126 14.6 2.116 15.0 2.106 15.4 2.095 15.8 2.084 16.2 2.072 16.6 2.059 17.0 2.045 17.4 2.03 17.8 2.015 18.2 1.998 µm No µm No µm No µm No µm No
Zinc Sulfide - ZnS FLIR Grade

Zinc Sulphide (Zinc Sulfide) Multispectral (ZnS)

ZincSulfideisproducedbysynthesisfromZincvapourandH2Sgas,formingassheets onagraphitesubstrate.ZincSulfideismicrocrystallineinstructure,thegrainsize beingcontrolledtoproducemaximumstrength.MultispectralgradeisthenHot IsostaticallyPressed(HIP)toimprovethemidIRtransmissionandproducethevisibly clearform.SinglecrystalZnSisavailable,butisnotcommon.

APPLICATIONS: ZnSMultispectral(water-clear)isusedforIRwindowsandlensesin thethermalband(8to14µm)wheremaximumtransmissionandlowestabsorptionis required.Alsoselectedforusewherevisiblealignmentisanadvantage.

* Zinc Sulfide oxidizes significantly at 300°C, exhibits plastic deformation at about 500°C and dissociates about 700°C. For safety, Zinc Sulfide windows should not be used above 250°C in normal atmosphere. (1)

120
MATERIALS DATA
TransmissionRange 0.37to13.5µm RefractiveIndex 2.20084at10µm (1) ReflectionLoss 24.7%at10µm(2surfaces) AbsorptionCoefficient 0.2cm⁻¹ at10.6µm(2) 0.006cm⁻¹ at9.27µm(2) 0.0006cm⁻¹ at3.8µm(2) 0.0001cm⁻¹ at2.7µm(2) 0.0006cm⁻¹ at1.3µm(2) ReststrahlenPeak 30.5µm dn/dT +38.7x10⁻⁶ K⁻¹ at3.39µm dn/dµ=0 n/a Density 4.09g/cc MeltingPoint 1827°C*Seenotesbelow ThermalConductivity 27.2Wm⁻¹ K⁻¹ at298K ThermalExpansion 6.5x10⁻⁶ K⁻¹ at273K Hardness Knoop240with50gindenter SpecificHeatCapacity 515JKg⁻¹ K⁻¹ DielectricConstant 88 YoungsModulus(E) 74.5GPa ShearModulus(G) n/a BulkModulus(K) n/a ElasticCoefficients NotAvailable ApparentElasticLimit 68.9MPa(10,000psi) PoissonRatio 0.28 Solubility 65x10⁻⁶ g/100gwater MolecularWeight 97.43 Class/Structure HIPpolycrystallinecubic,ZnS,F42m
Refractive Indices of Zinc Sulfide. Mary Debenham
Applied OPtics / Vol 23, No 14 / July 1984
Manufacturers Published Data.
(NPL)
(2)
MATERIALS DATA 121
0.4047 2.54515 0.4358 2.48918 0.4678 2.44915 0.480 2.43691 0.5086 2.41279 0.5461 2.38838 0.5876 2.36789 0.6438 2.34731 0.6678 2.34033 0.7065 2.33073 0.780 2.31669 0.7948 2.31438 0.8521 2.30659 0.8943 2.30183 1.014 2.29165 1.1287 2.28485 1.5296 2.27191 2.0581 2.26442 3.000 2.25772 3.500 2.25498 4.000 2.25231 4.500 2.24955 5.000 2.24661 8.000 2.22334 9.000 2.21290 10.00 2.20084 11.25 2.18317 12.00 2.17101 13.00 2.15252 µm No µm No µm No µm No %T Wavelength µm
Sulfide
ZnS Multispectral Grade - Clear 5mm Wavelength nm Zinc Sulfide Multispectral - ZnS 5mm %T 1mm 7mm 4mm (Internal transmission)
Zinc Sulphide (Zinc Sulfide) Multispectral (ZnS)
Zinc
-

Fundamental Constants

AnabbreviatedlistoftheCODATArecommendedvaluesofthefundamental constantsofphysicsandchemistrybasedonthe2014adjustment.

units accepted for use with the SI

CODATARecommendedValuesoftheFundamentalPhysicalConstants:2014 PeterJ.Mohr,BarryN.Taylor,andDavidB.Newell,NIST,USA(25/06/2015)

Quantity Symbol Value Uncert Speedoflightinvacuum c,c₀ 299792458ms⁻¹ (exact) Magneticconstant μ₀ 4π×10⁻⁷ NA⁻² (exact) Electricconstant1/μ₀c² ε₀ 8.854187817...×10⁻¹² Fm⁻¹ (exact) GravitationalConstant G 6.67408(31)×10⁻¹¹ m³kg¯¹s⁻² 4.7×10⁻⁵ Planckconstant h 6.626070040(81)×10⁻³⁴ Js 1.2×10⁻⁸ h/2π ħ 1.054571800(13)×10⁻³⁴ Js 1.2×10¯⁸ Elementarycharge e 1.6021766208(98)×10⁻¹⁹ C 6.1×10⁻⁹ Magneticfluxquantumh/2e ɸ₀ 2.067833831(13)×10⁻¹⁵ Wb 6.1×10⁻⁹ Conductancequantum2e²/h G₀ 7.7480917310(18)×10⁻⁵ S 2.3×10⁻¹⁰ Electronmass me 9.10938356(11)×10⁻³¹ kg 1.2×10⁻⁸ Protonmass mp 1.672621898(21)×10⁻²⁷ kg 1.2×10⁻⁸ Fine-structureconste²/4πε₀ħc α 7.2973525664(17)×10⁻³ 2.3x10⁻¹⁰ Inversefine-structureconstant α⁻¹ 137.035999139(31) 2.3×10⁻¹⁰ Rydbergconstantα²mec/2h R 10973731.568508(65)m¯¹ 5.9×10⁻¹² Avogadroconstant NA,L 6.022140857(74)×10²³mol¯¹ 1.2×10⁻⁸ FaradayconstantNAe F 96485.33289(59)Cmol¯¹ 6.2×10⁻⁹ Molargasconstant R 8.3144598(48)Jmol¯¹K¯¹ 5.7×10¯⁷ BoltzmannconstantR/NA k 1.38064852(79)×10⁻²³ JK¯¹ 5.7×10¯⁷ Stefan-Boltzmannconstant(π²/60)k⁴/ħ³c² σ 5.670367(13)×10⁻⁸ Wm⁻² K⁻⁴ 2.3×10⁻⁶
Electronvolt:(e/C)J eV 1.6021766208(98)×10⁻¹⁹ J 6.1×10⁻⁹ (unified)atomicmassunit 1⁄12 m(¹²C) u 1.660539040(20)×10⁻²⁷ kg 1.2×10⁻⁸
Non-SI
Original photograph of crystals and crystal products by John Etches 1983
1 Broom Road Business Park, Poole, Dorset BH12 4PA UK Tel: +44 (0) 1202 307650 Fax: +44 (0) 1202 307651 Email: sales@crystran.co.uk Website: www.crystran.co.uk

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Crystran Handbook 2023 by Crystran Ltd - Issuu