Vol. 15, Issue 1: Fall 2018

Page 20

Without an atmosphere to act as a buffer, launched projectiles will not be slowed down. The heat created from friction will also not dissipate as easily, both of which can lead to damaged tools and halted construction (14). Human biological and physiological changes in the moon’s low gravity environment must also be considered. Currently, research suggests that microgravity can cause bone demineralization, muscle atrophy, and cardiovascular problems (17).

❝ These public and

private territorial issues, among others, must first be resolved for successful and international cooperation of organizations in the efficient and orderly colonization of the moon. However, these results are from studies conducted in the microgravity of space, where people feel almost no gravitational force, and not the low gravity environment of the moon, where people feel about a sixth of the gravitational force as they do on earth. In fact, some researchers claim that the moon’s gravity is enough to combat some of these side effects, making the moon a relatively robust staging ground for future space exploration (18). Still, more research must be conducted in this area to understand both the effects that extended periods of time in lunar gravity have on the human body and how the risks of these changes can be addressed. Finally, maintaining a sustainable energy source for the colony is another top priority. One method of powering a lunar base with our current technology is solar energy, although this approach is not the most promising. The moon has a solar

❝ We must also understand

the environmental challenges associated with the lunar surface. day (the time it takes for the Sun to return to its original position in the sky) of approximately 29 Earth days, so the moon will be dark for approximately 14 Earth days (19). Thus, energy acquisition when solar energy is not readily available on the surface of the moon an incredibly important area of development. Some researchers have proposed acquiring energy during the lunar night by using orbiting satellites. These satellites would transmit energy to the moon by a microwave or a laser, providing a source of continuous 20

power. However, the required area of solar panels on the satellites is projected to be about 5000 square meters (13), about the size of a football field. Consequently, the logistics of construction and hauling of this large array into orbit would be very challenging. Another way of generating power is through nuclear fusion energy. With nuclear fusion, though, safety concerns must be considered in the transportation of radioactive isotopes to the moon (13). Many of the ways that energy currently is generated on Earth can be used on the moon, but significant refinements and adjustments have to be made for safety and efficiency in the drastically different environment. Despite these substantial challenges, many proposals currently exist for timelines of lunar colonization. One proposal begins by sending robots to the moon. These robots would construct the lunar base or a substantial part of it before humans are sent in. Such an approach would increase efficiency and minimize risk during the initial stages of construction and colonization. To create the habitats, some proposals have suggested using 3D printing technology to drastically reduce the cost of materials and their transportation to the moon. The abundant lunar dust, known as regolith, would be used as the primary material for such 3D printing. Finally, to main-

❝ Despite these

substantial challenges, many proposals currently exist for timelines of lunar colonization. tain sustainability of the colony, mining of ice on the moon could be used to generate oxygen and water, preventing the need for the two molecules to be continuously shipped from Earth (18). We still have a long way to go before we can establish a permanent colony on the moon, and we’re kind of rusty - 40 years have passed since the last time a human has been on the lunar surface. Between now and the creation of a lunar colony, we still have to figure out answers to big questions, such as what long term life in low gravity entails, how a reliable source of

Columbia Science Review


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.