Verso le nuove frontiere delle tecnologie dell’informazione: le telecomunicazioni

Page 1


Prof. Marco Giordani (marco.giordani@unipd.it)

Mi presento…

• Marco Giordani (marco.giordani@unipd.it)

• Professore Associato @ DEI UNIPD.

• L. Triennale in Ingegneria dell’Informazione.

• L. Magistrale in Ingegneria delle Telecomunicazioni.

• Dottorato in Ingegneria delle Telecomunicazioni

• Reti wireless di nuova generazione (5G/6G).

UNIPD

Università degli Studi di Padova

• 32 Dipartimenti

• 70’000+ studenti

• 2700+ docenti

• 2700+ PTA

Dip. di Ingegneria dell’Informazione

Docenti e Ricercatori

Studenti triennali

Dottorandi Budget di ricerca

Cosa sono le telecomunicazioni?

Cosa sono (DAVVERO) le telecomunicazioni?

Why your mobile-generation children have a totally different sign for phone: https://www.dailymail.co.uk/femail/article -8503415/Dad-shows-new-hand-gesturekids-use-theyre-phone.html

https://abcnews.go.com/International/leo-xiv-conclave-numbersnumber-cardinals-length-voting/story?id=121606316

L’evoluzione delle telecomunicazioni

L’evoluzione delle telecomunicazioni

L’evoluzione delle telecomunicazioni

Di cosa parleremo stasera?

Verso le nuove frontier delle tecnologie dell’informazione:

LE COMUNICAZIONI SATELLITARI

Prof. Marco Giordani (marco.giordani@unipd.it)

L’ORDINE INCONTRA I GIOVANI: Aperitivo Ingegneristico

20 giugno 2025 // Mestre (VE)

Internet nel mondo

http://agcom.it

Pubblica sicurezza

https://radar.cloudflare.com/traffic/ir?dateRange=7d

Che soluzioni per la connettività?

LE reti non terrestri

Droni, palloni aerostatici, satelliti…

M. Giordani and M. Zorzi, "Non-Terrestrial Networks in the 6G Era: Challenges and Opportunities," in IEEE Network, vol. 35, no. 2, pp. 244-251, Mar. 2021.

LE reti non terrestri: Droni

DRONE (UAV)

“Volare basso”

Elevata flessibilità

Possono essere dispiegati “on demand”

Consumo elevato di potenza

Cono di copertura limitato

LE reti non terrestri: satelliti

GEO

MEO/LEO

36’000 km di altezza

Raggio di copertura ENORME

Ritardo di propagazione

300÷15’000 km di altezza

Raggio di copertura GRANDE

Saturazione della capacità di cella

Non stazionario (deve operare in costellazioni)

Starlink vs. iris2

Starlink IRIS2

Sistema privato

LEO (550 km)

In servizio (40€/mese)

~7000 satelliti (~42’000 in previsione)

Sistema UE (pubblica sicurezza)

LEO (2’000 km) + MEO (10’000 km)

In servizio dal 2035

290 satelliti (in previsione)

2.6 miliardi di USD 10 miliardi di Euro

Copertura globale

Copertura mirata per regioni strategiche UE

Tipi di scenari: TRASPARENTE

Tipi di scenari: Rigenerativo

SatelliteUESatelliteUESatelliteUESatelliteUE

SATcom: alcuni risultati

Carrierfrequency2GHz20GHz2GHz20GHz Bandwidth30MHz400MHz30MHz400MHz

DLFSPL159.1dB179.1dB190.6dB210.6dB

DLSNR6.6dB8.5dB0dB11.6dB

Altitude600kmN/A600kmN/A35786kmN/A35786kmN/A EIRP34dBW/MHz23dBm16dBW/MHz33dBm59dBW/MHz23dBm40dBW/MHz33dBm

Antennadiameter2mN/A0.5m0.6m22mN/A5m0.6m

Antennagain30dBi0dBi38.5dBi39.7dBi51dBi0dBi58.5dBi39.7dBi

Noisefigure-7dB-1.2dB-7dB-1.2dB Kaband(LEO) Kaband(GEO) Sband(LEO) Sband(GEO)

Fig.2: End-to-endthroughput,PDR,andlatencyattheapplicationlayervs.thesourcerate R .Wefocusonaregenerativepayloadarchitecture, andconsideraLEOsatelliteat h =600 kmvs.aGEOsatelliteat h =35786 km,atbothSandKabands.

Grazie a: Mattia Figaro, Francesco Rossato, Alessandro Traspadini, Michele Zorzi

Figure 3.3 presentstheaverageRTTmeasuredinbothterrestrialandnon-terrestrialnetworks, categorizedbydestinationandweatherconditions.ThebarsindicatesthemeanRTT,whilethe verticallinesindicatethevariance(i.e. µ ± ).

SATcom : alcuni risultati (VERI)

ItisevidentthattheterrestrialnetworkachievessignificantlylowerRTTsfor close destinations comparedtothenon-terrestrialnetwork.However,for far destinations,thenon-terrestrialnetwork performscomparablyorevenbetterthantheterrestrialnetwork.Thisoutcomeisexpected,asfor close destinations,thenon-terrestrialnetworkisdisadvantagedbytheinitialsatellitelink(extended bent-pipeapproach,seelaterinsubsection 3.4),whereasfor far destinations,leveragingsatellite connectivitybecomesbeneficial.It’simportanttonoticethatthevarianceinRTTforthenonterrestrialnetworkishigherthanthatoftheterrestrialnetwork,regardlessofdestination.

Figure9:Distributionofmedian(a)downloadand(b)upload goodputoverStarlinkfromselectedcitiesglobally.

• RTT: rete terrestre migliore per distanze brevi, ma Starlink è competitiva (o migliore) su lunghe distanze

• Starlink competitivo con rete 5G per applicazioni realtime, soprattutto in aree remote.

Interestingly,theRTTvaluesinthenon-terrestrialnetworkappeartobeindependentofweather conditions. Figure3.3:PingaverageRTTbyWeatherandDestination

Table 1: Luna gaming results over 150 mins playtime. Values denote me dian±SD and the worst performer is highlighte d.

Figure10:UplinkZoomtra coveraterrestrial(left)and Starlink(right).Verticallinesshow15srecon gurations. achieve ⇡ 50–100Mbpsdownloadand ⇡ 4–12Mbpsuploadrates atthe75th percentile.Wealsodonot ndanycorrelationbetween baselinelatencies(seeFigure6)andupload/downloadgoodput, evidentfromthecontrastingcasesofDublinandManila.However, weobserveaninversecorrelationbetweenlossratesandgoodputs;increasingfrom4–8%atthe75th -percentile(seeFigure22in AppendixC).Seattle,notableforitslatencyperformance,records averagegoodputs.Consideringhighmeasurementdensityfrom thisregion,thetrendmightbeduetoStarlink’sinternalthrottling orload-balancingtopreventcongestion[68].Wealso ndthat

Figure 11: Cloud gaming over 5G ( left) and Starlink (right).

a: Bartolomeo Morellato Mohan, Nitinder, et al. "A multifaceted look at starlink performance." Proceedings of the ACM Web Conference 2024.

Vertical dashed lines show Starlink recon guration inter vals. which we trace to FEC (For ward Error Corre ction) packets that are fre quently sent in addition to raw vide o data (on average

±

Verso le nuove frontier delle tecnologie dell’informazione:

LE AUTO A GUIDA AUTONOMA

Prof. Marco Giordani (marco.giordani@unipd.it)

L’ORDINE INCONTRA I GIOVANI: Aperitivo Ingegneristico

20 giugno 2025 // Mestre (VE)

1’300’000 90%

5 livelli di automazione

No, la guida autonoma non è così semplice…

ParameterD0/S0D0/S1D0/S2D11/S0D14/S0D14/S1D14/S2

Quanto costa trasmettere?

Avg.size[MB]3.2041.5110.2350.0710.2020.1000.016

Encodingtime[ms]00023.328.212.971.95

Decodingtime[ms]00010.4813.575.810.72

RangeNet++inferencetime[ms]05656005656

Sourcerate[Mbps]256.3120.918.85.716.281.3

Throughput(d< 50 m)[Mbps]259.4124.320.25.617.38.61.4 Throughput(

Velocità media upload 4G LTE: ~10 Mbps

Velocità media upload 5G: ~20 Mbps.

https://www.speedtest.net/global-index/italy

Fig.6:Meanthroughputandconfidenceintervals(shadedareas)vs. d,andfordifferentHSCcompressionconfigurations.Solid(dashed)linesarerelativeto theuseofrealdatafromSemanticKITTI(statisticaltrafficmodels).

COMPRESSIONE

J-LS(Spherical) LZW(Spherical)

Quanto costa COMPRIMERE?

Octree(LOW) Octree(HIGH) G-PCC

PNG(Cartesian) J-LS(Cartesian)

• Compressione è causa di data processing.

L’impatto della compressione non è trascurabile.

Octree(LOW) Octree(HIGH) G-PCC

2DImage Cartesian Octree

2DVideo Spherical G-PCC

PNG(Cartesian) J-LS(Cartesian) MJ2(Spherical) PNG(Spherical) J-LS(Spherical) LZW(Spherical)

Figure3:PSNRfordifferent2Dvs.3Dcompressionmethods.“Image” Cartesianfilesencodethreegeometriccoordinatesasatrichannelimage,thususingabout1/3moreBPPsthaninthe sphericalmethods.Wealsotriedtoconvertthepointcloudinto sphericalcoordinatesusingtheradiusonly,thusrepresenting theLiDAR’sinputasasingle-channelimage.Whilethis approachpermitstoreducetheBPPsby2/3comparedto Cartesianfiles,thefinalcompressionratewasunsatisfactory.

Figure3:PSNRfordifferent2Dvs.3Dcompressionmethods.“Image” compressionisobtainedbyaveragingPNGandJ-LScompression. Cartesianfilesencodethreegeometriccoordinatesasatrichannelimage,thususingabout1/3moreBPPsthaninthe sphericalmethods.Wealsotriedtoconvertthepointcloudinto sphericalcoordinatesusingtheradiusonly,thusrepresenting theLiDAR’sinputasasingle-channelimage.Whilethis approachpermitstoreducetheBPPsby2/3comparedto Cartesianfiles,thefinalcompressionratewasunsatisfactory.

Octree(LOW) Octree(HIGH) G-PCC

PNG(Cartesian) J-LS(Cartesian) MJ2(Spherical)

PNG(Spherical) J-LS(Spherical) LZW(Spherical)

Figure4:Compression(above)anddecompression(below)timesfordifferent 2Dvs.3Dcompressionmethods. (De)compressiontime. TimelycompressionanddecomG-PCC

Third,Fig.2illustratesthatvideo-basedmethodslikeLZW

Third,Fig.2illustratesthatvideo-basedmethodslikeLZW

Figure4:Compression(above)anddecompression(below)timesfordifferent 2Dvs.3Dcompressionmethods. (De)compressiontime. Timelycompressionanddecom-

Figure3:PSNRfordifferent2Dvs.3Dcompressionmethods.“Image” compressionisobtainedbyaveragingPNGandJ-LScompression.

F. Nardo, D. Peressoni, P. Testolina, M. Giordani, A. Zanella, “Point

AI

Epidermal lesions

example images from two disease classes. These test images highlight the difficulty of malignant versus benign discernment for the three medically

Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks." nature 542.7639 (2017): 115-118.

Epidermal lesions

Melanocytic lesions Melanocytic lesions (dermoscopy)

1.28 MILIONI

example images from two disease classes. These test images highlight the difficulty of malignant versus benign discernment for the three medically

Affidabilità

“l’oggetto” è piccolo.

L’impatto della compressione non è trascurabile.

algoritmi di detection algoritmi di detection

Fig.5.Totalcompressionanddecompressiontimevs.thecompression )forDraco.

Fig.7.AP@0.70(%)forthecarclassvs.thecompressionconfiguration,for differentcodecsanddetectors.Weusethenotation“q xx”toindicatethatthe performanceofDracodependsonlyon q .

Fig.8.AP@0.50(%)forthepedestrianclassvs.thecompressionconfiguration,fordifferentcodecsanddetectors.Weusethenotation“q xx”toindicate thattheperformanceofDracodependsonlyon q .

Fig.9.Totalcompressionanddecompressiontimevs.AP@0.70(%)forthe carclassandthecompressedfilesize,fordifferentdetectors.Thedashedred linecorrespondstotheTDdelayrequirement,setto100msbasedonTableI. minore compressione minore compressione

F. Bragato, M. Neri, P. Testolina, M. Giordani, F. Battisti, “Teleoperated Driving: a New Challenge for 3D Object Detection in Compressed Point Clouds,” submitted to the IEEE Transactions on Intelligent Transportation Systems (T-ITS), 2025.

Grazie a: Filippo Bragato, Michael Neri, Paolo Testolina, Federica Battisti

Possiamo DAVVERO FIDARCI DELL’AI?

Ti fidi delle auto a guida autonoma?

E se l’incidente fosse inevitabile?

Preference for inaction

Alcune statistiche…

Sparing pedestrians

https://www.moralmachine.net

Male

Female

Female

Executive

Male

Sparing females

Preference

Sparing the ft

Male doctor

Female doctor

Female athlete

Executive

Sparing higher status

Executive

Sparing the lawful

Male

Sparing the young

Female

Sparing more characters

Sparing humans

Chi deve decidere?

Prof. Marco Giordani (marco.giordani@unipd.it)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.