Lenore D Zuck (contract with U of Pittsburgh– DARPA funded)
Problem Statement and Motivation • •
Key Achievements and Future Goals
Technical Approach • • •
•
Construction of robust, privacy preserving, fully verified, protocols that are fault tolerant, consume little power and memory, and are highly efficient and privacy preserving Use step-wise refinement to guarantee that implementation follows specification and preserves all properties of protocols Expand basic protocols to more sophisticated situations (that are anticipated in such a satellite cluster) and repeat the above steps UIC’s role is to provide for the formal framework to allow for the verification: • Automatic verification of systems with arbitrary nodes connected in arbitrary topologies • Development of methods of verification for fault tolerance, power, memory, and privacy properties
DARPA’s System F6 program aims at developing new space architecture where clusters of small, cheap, wirelessly connected satellites replace current satellite architecture The project will design, evaluate, develop, and fully verify asynchronous distributed system protocols to create a secure, robust, real-time, and reliable protocol suite capable of facilitating applicationlevel communication within DARPA’s F6 project.
• • • • •
•
The project started in May 2011 A protocol was developed for attaining secure aggregation of data in networks that are the topic of the project The protocol was formally modeled Its properties were formally specified. The properties were formally verified using the (real-time) modelchecker UPPAAL using small, realistic, network topologies In the near future we expect to expand the methodologies to apply to arbitrary topologies