Department of Chemical Engineering

Page 1

Bo Song, Huajun Yuan, Cynthia Jameson, Sohail Murad, Chemical Engineering Department Primary Grant Support: US Department of Energy

Problem Statement and Motivation •

Understanding the interaction between nanoparticles and biological membrane is of significant importance in applications in cell imaging, biodiagnostics and drug delivery systems.

Some basic questions explored: • How do nanoparticles transport? • What structural changes occur? • Can a lipid membrane heal?

Use molecular dynamics simulations to develop better understanding of the transport process and characterization of nanoparticles.

Investigate the elastic and dynamic properties of lipid membrane, during the permeation of the nanoparticles.

Key Achievements and Future Goals

Technical Approach • • • •

Used various sizes of nanocrystals as probes. Used coarse-grained dipalmitoylphosphatidy-lcholine (DPPC) lipid bilayers as a simple model membrane. Explored the transport of nanocrystal across DPPC lipid bilayers Investigated the changes in the structural and mechanical properties of DPPC bilayers during permeation.

• • •

Used coarse-grained models to simulate nanoparticles and biomembrane systems successfully. Examined the permeation process of nanoparticles through lipid membranes and the response of lipid membrane at the fundamental molecular level. Explored the effect on transport across a lipid membrane arising from surface coatings on the nanoparticles.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Department of Chemical Engineering by UIC College of Engineering - Issuu