Bo Song, Huajun Yuan, Cynthia Jameson, Sohail Murad, Chemical Engineering Department Primary Grant Support: US Department of Energy
Problem Statement and Motivation •
Understanding the interaction between nanoparticles and biological membrane is of significant importance in applications in cell imaging, biodiagnostics and drug delivery systems.
•
Some basic questions explored: • How do nanoparticles transport? • What structural changes occur? • Can a lipid membrane heal?
•
Use molecular dynamics simulations to develop better understanding of the transport process and characterization of nanoparticles.
•
Investigate the elastic and dynamic properties of lipid membrane, during the permeation of the nanoparticles.
Key Achievements and Future Goals
Technical Approach • • • •
Used various sizes of nanocrystals as probes. Used coarse-grained dipalmitoylphosphatidy-lcholine (DPPC) lipid bilayers as a simple model membrane. Explored the transport of nanocrystal across DPPC lipid bilayers Investigated the changes in the structural and mechanical properties of DPPC bilayers during permeation.
• • •
Used coarse-grained models to simulate nanoparticles and biomembrane systems successfully. Examined the permeation process of nanoparticles through lipid membranes and the response of lipid membrane at the fundamental molecular level. Explored the effect on transport across a lipid membrane arising from surface coatings on the nanoparticles.