Issuu on Google+

Harmonizing  Water  and  Energy:   The  Water-­‐Energy  Nexus   Jerry  Sehlke  and  Michael  E.  Campana   American  Water  Resources  Associa<on   Seventh  Inter-­‐American  Dialogue  on  Water  Management      

Medellín,  Colombia   13-­‐19  November  2011  

Gerald.Sehlke@inl.gov              aquadoc@oregonstate.edu   Presenta<on  online  at:   hPp://bit.ly/sWnXj6    


Water  and  Energy  are                                                                        …  Interdependent      Water  for  Energy                              and                                Energy  for  Water   Energy and power production require water:! •  Thermoelectric cooling •  Hydropower •  Energy minerals extraction/mining •  Fuel Production (fossil fuels, H2, biofuels) •  Emission control "

Water production, processing, distribution, and end-use require energy: •  Pumping •  Conveyance and Transport •  Treatment •  Use conditioning •  Surface water & Groundwater


Water  


Major  water  supply  types/sources   •  Fresh  water  

•  Saline  water   –  –  –  – 

–  Precipita<on     –  Surface  water   –  Groundwater    

•  Brackish  water   –  –  –  – 

Estuaries   Terminal  Lakes   Surface  water   Groundwater    

Oceans   Inland  seas   Terminal  lakes   Groundwater  

 

•  Alterna<ve  water   –  –  –  –  – 

Desaliniza<on   Wastewater   Mining  water   Produced  water   Greywater  


Water  Availability   Hydrologic Inputs/Outputs Basin Precipitation

Surface Water Inflow

Physical Constraints

Ground Water Inflow

Ground Water Outflow Basin ET Water Transfers Water in Basin

Quatity Spatial Distribution Temporal Distribution

Surface Water Outflow

Virtual Water Exports

Quality

ET Losses from Basin Agriculture

Water Use

Diffuse Sources Domestic

Rain Water Harvesting

Physicial Constraints Available Fresh Water

Public Acceptance

Surface Water Diversion

Commercial

Municiple

Socioeconomic Constraints

Consumptive Use

Return Flows

Ground Water Pumping

Cost

Industrial Political Will Instream Flows Treaties

Legal Constraints

Navigation Ecosystem Services

Compacts Federal Law

Socioeconomic Constraints

Tribal Rights

Desalinization

Energy

Sea Water Pumping

State Law Water Rights

Environmental Constraints

G.  Sehlke  10/2011  


River  runoff  throughout  the  20th   century  


Water  withdrawal  and  consumpIon  


Trends  in  global  water  use  by  sector  


Freshwater  use  -­‐  country  profiles  


U.S.  water  withdrawals  &  consumpIon  

[USGS,  2004]  

U.S. Freshwater Consumption, 100 Bgal/day Livestock 3.3%

Irrigation 80.6%

Industrial 3.3%

Domestic 7.1%

Mining 1.2%

Commercial 1.2%

Thermoelectric 3.3%

[USDOE,  2006]  


Energy  


Major  energy  types/sources   •  Electricity  

–  Coal   –  Crude  and  alterna<ve  (shale   oil  and  tar  sands)  oils   –  Natural  gas   –  Nuclear  power   –  Geothermal  power   –  Hydropower   –  Biofuels   –  Wind  power   –  Solar  power  

•  Transporta<on  fuels   –  Oil   –  Natural  gas   –  Biofuels  

•  Hea<ng  fuels   –  Oil   –  Natural  gas   –  Biofuels  

•  Energy  feedstocks   –  –  –  – 

Oil     Coal  liquids   Natural  gas   Biofuels  


Example  of  energy  life  cycles   Explora<on  

Prospect  

•   Coal   •   Uranium   •   Oil  Shale   •   Tar  Sand   •   Crude  Oil   •   Gas   •   Geothermal  

-­‐-­‐-­‐-­‐-­‐-­‐-­‐   Assess  

Access/   Develop   Mining   • Surface   • Subsurface   Drilling         -­‐-­‐-­‐   Dam  Rivers   Build    

Extract/   Capture/   Generate   Hauling   •   Coal  

Pumping   •   Oil   •   Gas  

Turbines  

•   Hydro   •   Geothermal   •   Wind  

Photovoltaic  

•   Hydro   •   Solar   •   Wind   •   Wind  Farms   Fuel  Cells   •   Solar   • Solar  Farms   •   Hydrogen   •   Biomass   • Biofuel  Plants       Socioeconomic  &  Environmental  Impacts/Issues     Land  Disturbances   Fish  &Wildlife  Impacts   Waste  Disposal/Pollutant  Discharge   Energy  Return  on  Energy  Investment   Water  return  on  Water  Investment   Economic  Benefits  (ROI)/Impacts  

Transport  

Trucking   •   Coal   •   U2  ore   •   Shale   •   Sands  

Railroads  

•   Coal   •   U2  ore   •   Oil  Shale   •   Oil  Sands  

Pipelines   •   Oil   •   Gas   •   Steam  

Process/   Refine   Clean/   sort/size   • Coal  

Extract  

• U  ore   • Tar  oil   • Shale  oil  

Refine   • Oil   • Gas    

Distribute  

Pipelines   Trucking   Railroads           -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐   Transmission    lines    

Use  

Transporta<on   Electricity   Hea<ng/Cooling   Manufacturing   Feedstock   •   Petrochemicals   •   Fer<lizer  


Global  electricity  generaIon   •  Primary  sources  of  electricity  globally  (IEA  2011):  

–  Approximately  70%  is  generated  from  fossil  fuels  (2007)   –  Coal  (42%)   –  Natural  gas  (21%)   –  Nuclear  (14%)   –  Hydropower  (16%)   –  Oil  (6%)   –  Non-­‐hydro  renewables,  e.g.,  solar,  wind,  biofuels  (2%)  

•  Note:  electricity  accounts  for  40%  of  global  energy-­‐ related  CO2  emissions  which  are  an<cipated  to  grow  by   58%  globally  by  2030,  hence  the  focus  on  developing   non/low  carbon  alterna<ves.    


Per  capita  energy  consumpIon  (2003)  


Growth  in  world  energy  demand   •  Interna<onal  Energy  Outlook  2011  (USEIA  2011)  projec<ons  for   world  energy  markets  through  2035.  

–  Energy  consump<on  will  grow  by  53  percent  between  2008  and  2035   –  China  and  India  account  for  half  of  the  projected  increase   –  Renewable  energy  will  be  the  fastest  growing  source  of  primary   energy  source  (10%  in  2008  to  15%  in  2035;  2.8%  growth/year)   –  Fossil  fuels  will  remain  the  dominant  source  of  energy  (78%  in  2035)   –  Petroleum  and  other  liquids  fuel  use  will  increase  by  26.9  Mbbls/day,   but  the  growth  in  conven<onal  crude  oil  produc<on  is  less  than  half   this  amount  (11.5  Mbbls/day)   –  Natural  gas  produc<on  plant  liquids  increase  by  5.1  million  barrels  per   day,  World  produc<on  of  unconven<onal  resources  (including   biofuels,  oil  sands,  extra-­‐heavy  oil,  coal-­‐to-­‐liquids,  and  gas-­‐to-­‐liquids),   which  totaled  3.9  million  barrels  per  day  in  2008,  increases  to  13.1   million  barrels  per  day  in  2035  (Figure  2).      


Energy  demand  is  driven  by  popula<on  growth   and  economic  expansion  (USEIA  IEO  2011)  

PopulaIon  of  the  world  and  its  regions  1950–2050     (in  millions)  


Impacts  


Energy  development  impacts  on  the   environment   Popula<on  growth  and    economic   expansion  Increase  per  capita   demand  

Energy Conservation/Efficiency Growth +

-

Electricity   Transporta<on   Hea<ng   Manufacturing   Feedstock's   +

-

Energy Demand

Energy Cost -

+

Energy Supply + Energy Infrastructure

Environmental Repair

+

Energy Development

-

Water  use  for  explora<on,     energy  access,  development,     extrac<on,  capture,  transporta<on,     processing,  distribu<on,  and  use  

+

Infrastructure Retired +

Waste Products Environmental Degradataion

Ecosystem  Services  Loses   Land  Disturbance/Change   Climate  Change   Toxic  Air/Water/Soil  Pollu<on   Hydrologic  Modifica<on  

+

Air   Solid  Waste   Waste  Water  Discharge  


Water  demand/impacts  of  transportaIon  fuels  


One  opIon  is  to  develop  hydropower   in  undeveloped  parts  of  the  world  


We  have  significantly  fragmented  &   regulated  flows  in  our  rivers  

Great  care  must  be  taken  to  reduce  and  miIgate  potenIal   impacts  of  future  development  


Goals  


Water  &  energy  Millennium   Development  Goals     •  Water  and  energy  sustainability  and  improved   management  can  contribute  to  mee<ng  the  UN   MDGs:     –  Goal  1:  Eradicate  extreme  poverty  and  hunger   –  Goal  2:  Achieve  universal  primary  educa<on   –  Goal  3:  Promote  gender  equality  and  empower  women   –  Goals  4-­‐6:  Reduce  child  mortality;  improve  maternal   health;  and  combat  HIV/AIDS,  malaria  and  other  diseases     –  Goal  7:  Ensure  environmental  sustainability   –  Goal  8:  Develop  a  global  partnership  for  development  


Water-­‐energy  por^olio  –   balancing  compeIng  needs   Supply   Economics  

Short  term  

Na<onal   Social   Economic   Environmental   Goals  

Regional  

Long  term  

Environment   Demand  


Developing  SoluIons  


PFA  2.3  Harmonize  Water  and  Energy   •  In  order  to  move  water-­‐energy  planning  and   management  towards  long-­‐term,  integrated   management,  two  ini<al  sets  of  priori<es  and   preliminary  targets  were  iden<fied  to  “Harmonize   Water  and  Energy”  in  the  Americas  (PFA  2.3):  

–  By  2012,  develop  a  Water-­‐Energy  Nexus  collabora<on   Network  for  the  Americas  that  will  coordinate  the   development  of  sub-­‐regional  policies,  guidelines  and  best-­‐ prac<ces  that  promote  the  interdependency  between   water  and  energy.   –  By  2015,  carry  out  an  inventory  of  significant  water  and   energy  technologies,  management  systems,  and  prac<ces   and  develop  a  roadmap  for  addressing  infrastructure  gaps   and  sustainability  concerns.  


Water-­‐energy  nexus  collabora<on   network  for  the  Americas   •  The  Americas    Region  is  a  very  large  and  diverse  region,   physically,  culturally,  and  ins<tu<onally,.    The  primary   challenge  is  how  to  reach  out  to  this  very  large,  diverse  and   dispersed  community?     •  It  has  been  determined  that  the  best  way  to  accomplish  this   objec<ve  is  through  a  mix  of  face-­‐to-­‐face  mee<ngs  and  virtual   communica<ons,  via  the  Internet.  The  goal  of  this  target  is  to   reach  out  to  every  country  in  the  Americas  to  engage   individuals  and  organiza<ons  to  collaborate  on  water  and   energy  issues.     •  This  effort  includes  water  and  energy  related  government   representa<ves,  professional  associa<ons,  non-­‐government   organiza<ons,  the  private  sector,  academicians,  water  and   energy  users,  and  other  members  of  civil  society.  


Water-­‐energy  nexus  collabora<on   network  for  the  Americas  (cont’d)   •  The  intent  of  this  target  area  is  to  develop  a  long-­‐term  water-­‐energy   community,  that  while  focused  on  suppor<ng  and  par<cipa<ng  in  the   World  Water  Forum,  collabora<ons  and  coopera<on  will  be  useful  enough   to  the  par<cipants  that  they  will  desire  to  con<nue  on  the  dialogs  and   collabora<ons  long  into  the  future.   •  In  order  to  communicate  on  the  Internet:   –  A  forum  page  was  developed  to  allow  individuals  and  groups  to  communicate   directly  with  each  other  and  to  specific  communi<es  of  interest  (e.g.,  sub-­‐ regional  /local  groups  or  topical  discussions).  To  get  an  invita<on  to  join,  send  an   email  to:  wen.webmaster@gmail.com  or  join  by  going    to  h`p://

awrawaterforum.ning.com/?xgi=0yLd0or4amE5s   –  A  wiki  site  (h`p://wwf.awramedia.org/)  was  developed  to  allow    individuals  to   upload  contacts  and  links  and  documents,  and  to  jointly  develop  documents  on   topics  of    mutual  interest  

•  These  tools  were  launched  in  November  2011  with  invita<ons  to  joint  sent   out  to  ~300  individuals  and  organiza<ons  throughout  the  Americas   Region.  


Inventorying  significant  water-­‐energy   technologies,  management  systems  &  prac<ces   •  This  effort  will  build  off  efforts  and  processes   developed  under  target  1.     •  The  goal  of  this  target  is  to  conduct  an  assessment  of   all  significant  energy  produc<on  technologies  that  can   be  brought  to  bear  to  generate  sufficient  energy  to   capture,  treat  and  distribute  the  quan<<es  of  water   necessary  to  meet  sub-­‐regional  water-­‐related  MDGs.   •  It  addi<on,    it  will  develop  guidelines  and  analy<cal   tools  to  help  planners  and  decision  makers  to  plan  and   implement  the  best  mix  of  energy  technologies  to   meet  those  goals  in  each  sub-­‐region.  


Inventorying  significant  water-­‐energy   technologies,  management  systems  &  prac<ces   •  Brazil  has  conducted  an  ini<al  na<onal  assessment  and   developed  a  vision  document  which  addressed  its   needs,  constraints  and  goals  for  future  water-­‐energy   development   •  The  US  has  developed  a  na<onal  assessment  of  water-­‐ energy  needs  and  constraints,  and  numerous  other   countries  have  produced  na<onal  water  and/or  energy   assessments  and  developed    similar  documents   •  The  results  of  these  efforts  provide  excellent  case   studies  that  will  both  help  the  countries  that   developed  them,  and  they  will  inform  and  help  refine   the  future  focus  and  ac<vi<es  associated  with  this  task  


Examples  of  naIonal  water-­‐energy   policies  &  assessments  


OpImizing  the  water-­‐energy  mix   •  The  goal  of  this  task  is  to  holis<cally  assess  and   understand  the  available  energy  and  water  supplies,   e.g.:  

–  Endogenous  (local)  versus  exogenous  (imported)  resources   –  Source  types  and  reliability   –  Source  quan<ty,  quality,  spa<al  and  temporal   characteris<cs  

•  To  understand  intersectoral  and  environmental   demands   •  To  integrate  energy  and  water  resources  to  help   understand  the  best,  loca<on-­‐specific  mix  of  water   and  energy  supplies  in  order  to  ensure  water,  energy   and  economic  security  ,  and  environmental   sustainability  


The  U.S.  Energy-­‐Water  Nexus   •  In  2005,  the  U.S.  Congress  directed  the  Department  of  Energy  to   assess  and  report    on  the  interdependency  of  energy  and  water,   focusing  on  the  threat  to  na<onal  energy  produc<on  resul<ng  from   limited  water  supplies   •  In  addi<on,  Congress  requested  the  development  of  a  na<onal   roadmap  to    assess  the  effec<veness  of  exis<ng  programs  within   the  Department  of  Energy  and  other  Federal  agencies  in  addressing   energy  and  water-­‐related  issues,  and  assist  the  DOE  in  defining  the   direc<on  of  research,  development,  demonstra<on  and   commercializa<on  (RDD&C)  efforts  on  energy-­‐water  issues.     •  In  2006,  the  Department  of  Energy  delivered  “Energy  Demands   •  on  Water  Resources:  Report  to  Congress  on  the  Interdependency  of   Energy  and  Water”   •  The  “Energy-­‐Water  Challenges:  Stakeholder  Input  on  Emerging   Needs”  was  developed,  but  final  approval  is  s<ll  pending  


Major  naIonal  needs  and  issues  idenIfied  in   U.S.  energy-­‐water  nexus  regional  workshops   Better resources planning and management •  •  • 

Integrated regional energy and water resource planning and decision support tools Infrastructure , regulatory and policy changes for improved energy/water efficiency Improved water supply and demand characterization, monitoring, and modeling  

Improved water- and energy-use efficiency •  •  • 

Improved water efficiency in thermoelectric power generation Improved biofuels/biomass water-use efficiency Reduced water intensity for emerging energy resources

Development of alternative water resources and supplies •  • 

Oil and gas “produced water” treatment for use Energy efficiency and assessment of impaired water treatment and use


Summary  of  U.S.  research  and  development   programs  for  integrated  resources   management   –  Accelerate  water  resources   forecas<ng  and  management   –  Evaluate  impacts  of  climate   variability  and  improve   hydrological  forecas<ng   –  Improve  common  decision   support  tools   –  Develop  system  analysis   approaches  for:  Co-­‐loca<on  of   energy  and  water  facili<es,   improved  na<onal  transmission   capabili<es  to  support   renewables,  distributed   genera<on  of  biofuels    


Summary  of  U.S.  research   programs  for  electric  power  sector  

Hybrid  Wet-­‐Dry  Cooling   System  

–  Improve  dry  and  hybrid   cooling  system   performance   –  Improve  ecological   performance  of  intake   structures  for  hydropower   and  once-­‐through  cooling   –  Improve  materials  and   cooling  approaches   compa<ble  with  use  of   degraded  water   –  Electric  grid  infrastructure   upgrades  to  improve  low   water  use  renewable   technology  integra<on  


Harmonizing  Water  and  Energy  in   Brazil   •  Brazil  conducted  an  na<onwide  assessment  of   available  water  and  energy  resources  and  water   and  energy  needs  as  part  of  the  preparatory   process  for  the  6th  World  Water  Forum   •  The  results  (“Harmonizing  Water  and  Energy:   Time  for  Solu<ons”)  provides  a  valuable  case   study  rela<ve  to  holis<cally  assessing  na<onal/ sub-­‐regional  (e.g.,  Amazon  Basin)  availability  and   needs,  assessing  challenges  and  opportuni<es,   and  developing  a  holis<c  approach  to  future   water-­‐energy  development    


Expansion  planning  of  electric  power  in  Brazil:   key  messages  and  recommenda<ons   • 

• 

The  existence  of  a  consistent  ins<tu<onal  framework  is  a   prerequisite  for  building  a  sustainable  energy  mix.  Brazil  has  a  rich   and  robust  framework  which,  however,  should  be  improved.    This   is  especially  true  when  seeking  the  harmoniza<on  of  policies   related  to  public  water  and  energy  issues,  which  oven  produce   results  not  aligned,  conflic<ng  and  even  antagonis<c.   Brazil  has  a  compara<ve  advantage  and  at  the  same  <me,  a  strong   compe<<ve  advantage  in  an  energy  system  based  on  renewable   energy  -­‐  most  notably  the  water.  It  also  has  a  compe<<ve   advantage  in  the  regime  of  complementarily  between  the   seasonal  wind  and  hydro  power  sources.  The  country  should  take   advantage  of  these  benefits  and  consolidate  a  sustainable  energy   matrix  with  intelligent  management  of  water  resources:  that  is   predominantly  water,  supplemented  by  wind  power  and  biomass.  


Expansion  planning  of  electric  power  in  Brazil:   key  messages  and  recommenda<ons  (cont’d)   • 

• 

Energy  expansion  planning  should  con<nue  and  increase  the  use   of  tools  at  broader  and  larger  scale:  most  notably,  Integrated   Environmental  Assessment  (IAA),  the  Strategic  Environmental   Assessment  (SEA)  and  Ecological-­‐Economic  Zoning  (EEZ),  as  a  way   to  ensure  real  energy  sustainability  and  promote  regional   sustainable  development.   Hydroelectric  development  will  focus  in  the  Amazon  over  the  next   20  years  since  the  hydroelectric  poten<al  of  other  regions  have   almost  all  been  developed.  This  a  necessity.    In  addi<on,  there  is  a   recogni<on  of  the  richness  and  complexity  of  the  region.  These   two  considera<ons  should  permeate  the  whole  process  of   planning,  development,  implementa<on  and  opera<on  of   hydroelectric  projects  in  the  Amazon  region  and  result  in  new   ways  to  avoid,  minimize  and  compensate  for  impacts  and  create   and  maximize  benefits.  


Expansion  planning  of  electric  power  in  Brazil:   key  messages  and  recommenda<ons  (cont’d)   • 

• 

There  is  a  growing  trend  of  deploying  run-­‐of-­‐river  power  plants   using  bulb  turbines.  Although  these  plants  have  the  advantage  of   op<mizing  the  u<liza<on  of  natural  flows  without  the  impacts  of   large  reservoirs,  their  characteris<cs  imply  a  submission  to     seasonal  hydrologic  condi<ons,  and  consequently,  a  greater   vulnerability  of  the  system.  One  of  the  biggest  challenges  facing   Brazil  and  the  world  today  is  therefore  to  reconcile  the  need  for   increased  storage  capacity  of  the  water  necessary  to  ensure  the   supply  of  electricity,  to  allow  the  guarantee  of  universal  access  to   water.   Not  using  the  hydroelectric  poten<al  of  Brazil  by  banning  projects   with  reservoirs  may  waste  an  important  na<onal  resource  and   reduce  the  ability  to  adapt  to  climate  change  and  the  expansion   of  other  energy  sources.  


Sharing  of  water  and  power:  key   messages  and  recommenda<ons   •  Coopera<on  in  the  field  of  water  sharing  and   energy  is  possible,  but  to  implement  a  lot  of  risks   and  threats  of  all  kinds  (poli<cal,  economic,  social,   cultural  and  technical)  need  to  be  worked  out.  One   challenge  is  iden<fying  the  appropriate  actors  to   promote  advances  in  this  area  and  encourage  them   to  ac<on;   •  Sharing  of  water,  mostly  in  the  form  of   hydroelectric  power,  is  of  great  importance  to   South  America  for  its  implementa<on  condi<on  is   to  establish  a  stable,  durable  and  reliable  supply   among  the  partners  


Sustainability  of  hydroelectric  projects:  key   messages  and  recommenda<ons   •  The  existence  of  an  ins<tu<onal  and  legal  framework  that  promotes   the  sustainability  of  hydropower  is  key.  Brazil  has  this  framework,  a   consolidated  environmental  licensing  process  advanced  and  extremely   demanding,  however,  the  process  can  be  enhanced  by  giving  greater   emphasis  to  social  aspects  of  the  process  from  the  beginning;   •  Hydroelectric  plants  must  provide  integrated  solu<ons  contribute  to   the  sustainable  development  of  the  region  where  they  live.  Should   implement  ac<ons  that  generate  power  economically  viable,  socially   just  and  environmentally  sound.  That  is,  an  enterprise  should   determine  how  the  protagonist,  but  according  to  their  size  and  in   accordance  with  the  community,  a  role  in  promo<ng  regional   development.  It  will  be  essen<al  to  consider  the  influence  of  an   enterprise,  or  joint  ventures,  has  on  the  environment  where  it   operates  and  its  role  in  promo<ng  the  development  of  this   environment.  Integrated  Environmental  Assessment  is  an  ideal  tool  to   guide  the  formula<on  of  these  new  integrated  solu<ons.  


Construc<on  of  power  sector:  dialogue  with   society,  key  messages  and  recommenda<ons   •  It  is  essen<al  to  have  an  interna<onal  consensus  on  what   cons<tutes  sustainable  hydroelectricity.  This  consensus  may  have   posi<ve  impact  on  interna<onal  policy  and  serve  as  a  reference  for   the  development  or  improvement  of  the  ins<tu<onal  framework  of   countries.  Interna<onal  ini<a<ves  in  development,  it  is  suggested   to  focus  discussions  on  the  issue  in  the  Protocol  for  the  Evalua<on   of  the  IHA  Hydropower  Sustainability,  being  the  newest  tool  and   process  is  s<ll  ongoing.   •  The  understanding,  par<cipa<on  and  agreement  of  organized   society  today  are  the  main  factors  for  the  realiza<on  of  an  ini<a<ve   that  could  lead  to  change  in  the  paPern  or  rou<ne  life  of  a   community,  as  is  the  case  of  a  hydroelectric  plant.  This  strategy  of   rapprochement  with  the  company  may  allow  a  reduc<on  of  faults   already  observed  in  other  dialogue  processes,  minimizing  the  risk  of   conflict,  wear  social,  environmental  and  economic,  and  avoiding   the  crea<on  of  myths  from  the  lack  of  informa<on.  


Construc<on  of  power  sector:  dialogue  with   society…  (con<nued)   –  In  Brazil  there  is  a  significant  ins<tu<onal  framework  applicable  to  the   hydropower  sector  including  a  requirement  that  the  dialogue  with   society.  This  framework  is  expressed  in  the  Cons<tu<on  and  Na<onal   Policies,  Laws,  Rules  and  Regula<ons  that  govern  the  maPer,  however,   sees  room  for  improvement  and  expansion  of  the  dialogue  at  all   stages  of  development  of  hydropower  projects  (planning,  design,   implementa<on  and  opera<on)   –  In  the  planning  stage,  broadening  the  dialogue  should  be  inserted  in   the  process  of  broadening  the  focus  of  vision  of  planning  for  a  regional   scale.  This  regional  level  should  focus  on  building  a  regional  vision  for   the  future,  which  also  include  hydropower  projects  in  the  region.  The   construc<on  of  this  vision  must  be  broad  and  par<cipatory-­‐oriented   methods  and  criteria;  The  beginning  of  the  dialogue  and   communica<on  with  the  community  should  be  given  as  soon  as   possible;  


Construc<on  of  power  sector:  dialogue  with   society…  (cont’d)   –  In  the  design  stage  of  the  licensing  process  should  increase   dialogue  with  the  community  in  rela<on  to  the  current   situa<on,  also  with  support  from  methods  and  criteria   developed  for  this,  as  a  way  to  establish  clear  and   an<cipate  poten<al  impacts  and  environmental  benefits   and  of  social  enterprises.  This  dialogue  should  take  place   as  an  extension  of  the  dialogue  ini<ated  at  the  stage  of   planning;   –  In  the  stage  of  construc<on,  dialogue  with  the  local   community  inevitably  occurs.  It  is  important  that,  again,   this  dialogue  was  established  as  an  extension  of  the   dialogic  process  already  established  and  supported  by   methods  and  criteria  developed  from  the  experience  of   entrepreneurs;    


Construc<on  of  power  sector:  dialogue  with   society…  (cont’d)   –  In  the  stage  of  opera<on  in  its  ini<al  period  of   transi<on  from  deployment  scenario,  care  and   mechanisms  established  in  the  previous  phases   must  be  maintained  un<l  all  issues  related  to  that   phase  have  been  treated.  Then,  the  enterprise   should  determine  how  the  protagonist  but   according  to  their  size  and  in  accordance  with  the   community,  a  role  in  promo<ng  sustainable   development.  Innova<ve  social  mechanisms  are   fundamental  to  the  establishment  of  dialogue   with  the  community  at  this  stage.  


Conclusions   •  The  water-­‐energy  related  efforts  and  ac<vi<es   associated  with  these  tasks  will  con<nue  to  grow  and   mature.    We  will  learn  from  each  other  through   regional  communica<ons  and  collabora<on.   •  These  efforts  and  ac<vi<es  are  not  designed  for  or   intended  to  be  for  the  few  or  for  the  short-­‐term,   they  are  intended  to  be  robust,  sustainable  and  to   grow  long  into  the  future  


By  developing  a  be`er  understanding  of  water  and  energy   resources  and  the  nexus  between  them,  and  by  building   soluIons  now,  we  can  reduce  potenIal  conflicts  in  the  future  


Thank  You  for  Your  Time  and      A1en2on!     Gerald.Sehlke@inl.gov     aquadoc@oregonstate.edu     Presenta<on  online  at:     hPp://bit.ly/sWnXj6    


Water & Energy