Range-Extender System for E-Birds using SBSP

Page 1

Proposal for Research Project

Range-Extender System for E-Birds using SBSP

AUG2023 CAVUUK 22MontroseSt.,G11RE,Glasgow,UK T:01412282282 W:cavu.aero E:info@cavu.aero
TM

Background:

ElectricMobilityisrevolutionizingthelogisticsandtransportationindustries,startingwithE-carstohelpachieve net zero transport. For the years before 2017, traditional auto manufacturers such as Toyota, Volkswagen and MercedesBenzwerethemarketleadersbutthenTeslamadeitsrapidentryintothetop10listsandtherestishistory. Tesla’s obvious success is not only because of environmental concerns about traditional auto technology or governmentsubsidiariesbutalsobetterdesign,lowermaintenancerequirements,robustnessandthesmartfeatures inherent in electric mobility. In short, battery electric vehicles, and in particular Tesla, have totally disrupted the marketplace,asshownbythefactthatTeslahavebecomebyfarthelargestautomanufacturerintheWorld.

Butwhataboutheavydutyvehiclessuchaselectrictrucks,aircraftandships?Therearemanyresearchprograms activeinthisareaandafewcommercialsolutionshavealreadyreachedthemarketbutthemainchallengeisthatof limitedrange:inotherwords-energystorageistheproblemthatrequiresasolution.

Somecompanieshavetakentheapproachofputtinglargenumbersofbatterypacksintotheirtrucks,forexample, the400kWhbatterypacksontheElectricActrostruckbutevenwithlargeamountsofstorage,therangeisunable toexceed400km.OtherapproachestoincreaserangehaveinvolvedusingFuelCellscombinedwithhydrogentanks orevenusinghydrogenasadropinreplacementfuelinspeciallyadaptedcombustionengines,buttheimprovements inrangewerenegligibleduetothefactthathydrogenenergydensityisafractionoffossilfuels&sothistechnology didnotdeliveraviablesolution.

Conventional thinking indicates that developments in battery technologies will eventually deliver significant increasesinenergydensity.Butenergydensitywillneedtoincrease10-foldtodelivercommerciallyusefulranges for electric trucks, aircraft and ships. These sorts of improvements to energy density are simply not predicted to happenevenbythemostoptimisticproponentsofcurrentbatterytechnologies.

Forelectricaviationtheproblemsareevenmoreacutethanfortrucksandships.Eveniftherearebigtechnological improvementsinbatterystorage&hydrogentanks,thesesolutionscannotworkinthecontextofe-aviationbecause they’resimplytooheavy.Fore-aviation,maximumtakeoffweightisthelimitingfactor,sowhenalotofbatterypacks orhydrogentanksareinstalledinanelectricaircraft,netpayloaddramaticallydecreases,whichmeansthattheeaircraftcancarryfewerpassengersorlesscargo,thusreducingprofitabilitysubstantially.

Tobecommerciallyviable,electricaviationneedstosolveoneofthebiggestchallengesinaviation.Eithersolvethe problemofenergydensity,whichthegraphstellusisatleastagenerationawaybaseduponcurrenttechnologies,or findanothersolution.Oursolutionfore-aviationnotonlydeliversbettersavingsinCO2 emissionswhencompared toexistingbatterysolutions,butcanconsiderablyimprovesafety,bycarryinglessfuel&batteriesinthefirstplace, deliveringhighernetpayloadsforbetterefficiencyandwithfewertechnicalstops.Howdoweachievethis?Through ouruniqueapproach- TM

CAVUUK 22MontroseSt.,G11RE,Glasgow,UK T:01412282282 W:cavu.aero E:info@cavu.aero

Abstract:

Space-basedsolarpower(SBSP),wirelesspowertransmission&electricaircraftarerapidlydevelopingtechnologies allmakingtheirwaysoutoftherealmsofscientificfiction,almostatsametime!

Ourresearchproposestoaligntheabovementionedtechnologiesduringa10-20yearperiodtodeliverlongrange electricmobilityinair,seaandontheground,withouthavingtocarryhugefueltanksorbatterystoragearrays.

Electric Aviation can be not only CLEAN aviation, but much more EFFICIENT & SAFE aviation

WebelieveE-aviationshouldbeabletosolveoneofthebiggestchallengesinconventionalaviation!It’snolonger only about zero emission flights, but can considerably improve safety by carrying less fuel & fewer batteries, delivering more efficient flights, increasing net payloads & requiring fewer technical stops! But HOW? Simply by TM-ingaircraftduringflights! TM

We are developing technologies towards full Commercial Readiness within the next 10-20 years but the key technologies already exist and are well understood. We already have space-based solar stations designed and launchedinearly2023toGeosynchronous(GEO)orbit(35,786km),whichharvestsolarenergyusingultra-light, highefficiencyPVmodules,convertingthissolarpowertoRadioFrequency(RF)powertransmission,anddelivering cleanenergytoground-basedormobilerectennapotentiallyatthescaleofgigawatts.Thesesystemsusemicrowave beamsinthe8-10GHzrange,whicharenon-ionizinginnatureandwithintensitiesthatarelowereventhansunlight, so the systems areclean,safe, efficientandhave beencalculated to be price-competitive with ground-based solar power.Whilstthesespace-basedsolarstationsareexpensivetoinstallinGEOorbits,theygenerateenergy24/7at muchhigherefficienciesthanground-basedarrays,duetolackofreflectionandabsorptionbytheatmosphereand a better constant orientation towards the sun. But if we have more economic orbits like LEO where hundreds of Starlinksatellitesarecurrentlyoperating,thatcouldbeafractionofthecosts.It'spossibletohavehighlyeconomic satellites in specially-designed LEO orbits to enable power generation more than 60-70% of the time or to be receivingpowerbeamedfromGEOsolarstationsandactingasrelaystosendthepoweronwardsbyutilizingstate ofthearttechnologytolockenergybeamstoE-birdsalongtheirflightpaths.Thisis TM

TocoverthewholeNorthAtlanticarea(containingmanyofthemostcommoncommercialflightpaths),werequire c. 16-24 LEO satellites flying in 500 km orbits, using a smart communication systems to receive energy demand signals from a E-birds/E-ships, selecting the closest satellite & sending a locked microwave energy beam to a rectennaontheaircraft(1-3mdiameterdependingonaircrafttype&chargingpowerrequirement),converttoDC andchargetheonboardbatteryarrays

Thisapproachwillremovetheneedtocarrytonsofbatterystorageorfuel,provides(theoretically)limitlessrange andremovestheneedfortechnicalstops,resultinginsignificantimprovementsinnetpayloadandsafety.Allthishas thepotentialtorevolutionizethewholeaviationandshippingindustries,notjustbydrasticallyreducingemissions, butthroughvastimprovementsinefficiency&safety.Thisispossibleduetoourinnovativesolution: ™

T:01412282282

W:cavu.aero

UK
CAVU
22MontroseSt.,G11RE,Glasgow,UK
E:info@cavu.aero

TMmajorcomponents:

▪ SomeGEObasedsolarstationstogeneratepower(canbedevelopedbyourgrouporwecanutilizeexisting systemsbuiltbyindustryleaders).

▪ A network of LEO sats to generate and receive power and build TM zone(s) of operation, managechargestorageanddistributionincludingcommunicationbetweensatellitesandrelayingenergyto E-birds/Shipswhichrequirepowerdelivery,lockingon&sendingenergybeamtoreceiverswiththerequired numberofLEOsatellitesina TMzonedependentupontheareatobecovered.

▪ RectennamodulesonE-birds/ShipstoreceiveenergyandconverttoDCusableenergy.

We believe that our proposed systems would be a highly efficient way of keeping E-birds/Ships charged during missions,canbeprice-competitivebecauseit’sbasedprincipallyupontheuseofLEOsatellitenetworkswhichcan bedevelopedgraduallystartingfromadefined TMzoneandthenscaleduptoeventuallyprovidewhole Earth coverage. We therefore believe thatinvestment into the developmentof the TM systems is an opportunity potentially leading to disruption of the whole aviation & shipping industries, solving all the major technical, commercial and environmental challenges at same time. So, in coming years, the operator of the TMnetwork,whetheritisacompany,agencyoraconsortiumofpartners,couldbethekeyproviderof energyservicestoallaircraft&shipsoveralargeareaoftheEarth’ssurface.

Project Outline:

1.Missionanalysis/needsidentificationandplanning:

▪ E-birds/Shipsrequirements

▪ Satellite&Launchlimitationsandrequirements

▪ Feasibilitystudy

▪ Surveyofrelatedprojects

▪ Involvedtechnologies&innovations

▪ Relatedprojects:

➢ Ultra-lightspacePVwith>30%eff.

➢ Antenna,Relays

➢ Thermalsolutions

➢ E-birds/Shipsrectenna,storagecharging

▪ ProjectIPProtection

2.Conceptualdesign:

▪ Statisticaldesignofmissionandsatellite

▪ Space-basedPVforxkW&yMWmodules

▪ Antenna,Relays

▪ E-birdsrectenna,storagecharging

▪ Spaceorbitdesign

CAVUUK 22MontroseSt.,G11RE,Glasgow,UK
01412282282 W:cavu.aero E:info@cavu.aero
T:

▪ Satellitesubsystemdesign;suchasElectricalpower,TT&C,Structureandmechanism,thermalcontrol, Attitudedeterminationandcontrol,Propulsion,Onboardcomputerandpayload

3.Detaileddesign&simulationsfor:

▪ Missiondetaileddesign

▪ Range-extendersystembySpace-basedPVfor:

➢ EVTOLwith5kW(TBC)engine

➢ E-Aircraftwith2*650kW(TBC)engines

▪ Allsubsystemsofsatellites(bothLEOandGEO)

4.Prototypesandengineeringmodel

▪ Stage1:Ground-to-E-Birdsrangeextendersystemfor:

➢ EVTOLwith5kW(TBC)engine

➢ E-Aircraftwith2*650kW(TBC)engines

▪ Stage2:Space-basedPVrangeextendersystemfor:

➢ E-Aircraftwith2*650kW(TBC)engines

▪ Testandanalyzeresults

5.TechnologydevelopmenttobecommerciallyavailableinUKaerospace,NorthAtlantic,…

Goals and achievements of the project

CAVUUK
MontroseSt.,G11RE,Glasgow,UK
22
info@cavu.aero
T:01412282282 W:cavu.aero E:
No. Description Current TRL Target TRL 1 Advancementofcleanenergysupplytechnology 3 7 2 Developmentofremoteenergytransmissiontechnology 3 7 3 Spacemissiondesigntosupportelectricvehicles 5 7 4 Systemdesignandconstructionof TMsatellitepayloads 3 7 5 DesignandmanufactureofCAVULEOsatellitebus 3 7 6 Dev.ofinfrastructuretechnologiestosupportandproduce TM 3 7 7 Technologydev.ofcomplexandsensitivesubsystemsofnewfuturesatellites 3 7
No. Description ECSS mapping Phase Duration (m) Timeline (Each block = 6 months) 1 Missionanalysis/Requirements identification&planning 0,A 12 2 Conceptualdesign B 12 3 Detaildesign&simulations C 24 4 Prototypes& engineeringmodel Stage1 D 24 Stage2 D 36 5 Technologydevelopment D 24
Timetable:

Project life cycle in ECSS standard

Phases 0, A, and B arefocusedmainlyon:

▪ Elaborationofsystemfunctionalandtechnicalrequirementsandidentificationofsystemconceptstocomply withthemissionstatement,takingintoaccountthetechnicalandprogrammaticconstraintsidentifiedbythe projectinitiatorandtop-levelcustomer.

▪ Identification of all activities and resources to be used to develop the space and ground segments of the project,

▪ Initialassessmentsoftechnicalandprogrammaticrisk,

▪ Initiationofpre-developmentactivities.

Phases C and D comprise all activities to be performed in order to develop and qualify the space and ground segmentsandtheirproducts.

Phase E comprises all activities to be performedinorder to launch, commission, utilize,andmaintainthe orbital elementsofthespacesegmentandutilizeandmaintaintheassociatedgroundsegment.

Phase F comprisesallactivitiestobeperformedinordertosafelydisposeallproductslaunchedintospaceaswell asgroundsegment.

Each of the above projectphases includes end milestones in the form of project review(s), the outcome of which determines readiness of the project to move forward to the next phase. With the exception of the MDR which normallyinvolvesonlytheprojectinitiator,andthetop-levelcustomer,allotherprojectreviewsuptoandincluding theARaretypicallycarriedoutbyallprojectactorsdowntothelowestlevelsupplierinthecustomer-supplierchain involvedintheprojectphasescontainingthesereviews.

CAVUUK 22MontroseSt.,G11RE,Glasgow,UK T:01412282282 W:cavu.aero E:info@cavu.aero

FromthePRRtothePDR,thesequenceofthereviewsis“topdown”,startingwiththetop-levelcustomerandhistoplevelsupplier,andcontinuingdownthecustomer-supplierchaintothelowestlevelsupplier.FromtheCDRtothe AR,thesequenceofreviewsisreversedto“bottomup”,startingwiththelowestlevelsupplieranditscustomerand continuingupthroughthecustomer-supplierchaintothe1stlevelsupplierandthetop-levelcustomer.Thissocalled “Vmodel”isillustratedinFigure.

Project deliverables

Thelistofitemsandequipmenttobedeliveredtotheprojectisincludedinthetablebelow.

CAVUUK 22MontroseSt.,G11RE,Glasgow,UK T:01412282282 W:cavu.aero E:info@cavu.aero
No. phase Main deliverables Wight % Most important specifications 1 Missionanalysis/Requirements identification&planning Technicaldocuments Managementdocuments Productassurancedocuments Phasereview 10 Systemrequirements,Design criteria 2 Conceptualdesign 10 Systemmodulesfunctionsand PreliminaryDefinition 3 Detaildesign&simulations 15 Systemdesign,parameters, simulations,Approveddrawings 4 Prototypes& engineeringmodel Stage1 Hardwareandphysicaloutputs -OnePrototypes&oneengineering &Groundbasemodel1 25 Groundbaseprototypes Stage2 30 Spacebaseprototypes 5 Technologydevelopment Phasereview 10 Technologydocuments 1 withoutlaunchandflightmodel,onlyonemodelofLEOsatellite.
CAVUUK 22MontroseSt.,G11RE,Glasgow,UK T:01412282282 W:cavu.aero E:info@cavu.aero
Breakdown Structure Project Manager ProjectManagement control Productassurance Systemengineering Bus Payload Electricalpower Structureand mechanism Thermalcontrol Attitudedetermination andcontrol Projectofficeanddocumentation configuration Propulsion TT&C Onboardcomputer Assembly,integration andtest SKYCHARGE payload Communication payload Project ManagementOffice CAVUaerospacespacesection Financialcontrol Legalteam Project ManagementOffice ProjectIP protection Groundstationteam Research associates & costs No. Phase R research associates Cost (£) 1 Missionanalysis/Requirements identification&planning 18 1,600,000 2 Conceptualdesign 18 1,400,000 3 Detaildesign,simulations&LLI procurement 20 14,000,000 4 Prototypes& engineeringmodel Stage1 15 29,000,000 Stage2 15 58,000,000 5 Technologydevelopment 20 TobePlanned Total 93,700,000
Organization

<700kgSATPower >4kW/kg

UltralightfoldableconcentratedPV-antennamodules<100g/m2

DC/RF8-10GHzMicrowaveBeam

Time-phasecontrolbeam

LEO Relay

Satellites

2mwiderectennaonE-bird

Power:XkW

8-12 km

2kmwideGroundrectenna

Power:XMW

500 km

22MontroseSt.,G1

T:01412282282

W:cavu.aero

37,000 km

1RE,Glasgow,UK

E:info@cavu.aero

UK
CAVU

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.