ESSENTIAL MATHEMATICS CORE
FOR THE AUSTRALIAN CURRICULUM
SECOND EDITION
David Greenwood
Bryn Humberstone
Justin Robinson
Jenny Goodman
Jennifer Vaughan
Stuart Palmer

FOR THE AUSTRALIAN CURRICULUM
SECOND EDITION
David Greenwood
Bryn Humberstone
Justin Robinson
Jenny Goodman
Jennifer Vaughan
Stuart Palmer
This textbook advance is provided as a sample for course preparation, planning and for use by teachers until the final products is available.
It should not be:
• made available in any other form
• uploaded to any website not affiliated to or authorised by Cambridge University Press & Assessment
• sold, reproduced or otherwise exploited for financial gain
• used in whole or in part to create a derivative work
• edited in any way (this includes the removal or modification of any branding, photographs or illustrations)
These advanced chapters have been provided for use by your school prior to publication of the textbook. The PDF supplied and all downloaded or printed excerpts must be destroyed once the textbook has been released.
For questions related to these instructions, please email copyright@cambridge.org
ShaftesburyRoad,CambridgeCB28EA,UnitedKingdom
OneLibertyPlaza,20thFloor,NewYork,NY10006,USA
477WilliamstownRoad,PortMelbourne,VIC3207,Australia
314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India
103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467
CambridgeUniversityPress&AssessmentisadepartmentoftheUniversityofCambridge. WesharetheUniversity’smissiontocontributetosocietythroughthepursuitofeducation, learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org
©DavidGreenwood,BrynHumberstone,JustinRobinson,JennyGoodmanandJenniferVaughan2021,2025
Thispublicationisincopyright.Subjecttostatutoryexceptionandtotheprovisionsofrelevantcollective licensingagreements,noreproductionofanypartmaytakeplacewithoutthewrittenpermissionof CambridgeUniversityPress&Assessment.
Firstpublished2021
SecondEdition2025 2019181716151413121110987654321
CoverandtextdesignedbySardineDesign TypesetbydiacriTech PrintedinChinabyC&COffsetPrintingCo.,Ltd.
AcataloguerecordforthisbookisavailablefromtheNationalLibraryofAustraliaat www.nla.gov.au
ISBN978-1-009-593-724
Additionalresourcesforthispublicationatwww.cambridge.edu.au/GO
ReproductionandCommunicationforeducationalpurposes
TheAustralian CopyrightAct1968 (theAct)allowsamaximumofonechapteror10%ofthepagesofthispublication,whicheveristhe greater,tobereproducedand/orcommunicatedbyanyeducationalinstitutionforitseducationalpurposesprovidedthattheeducational institution(orthebodythatadministersit)hasgivenaremunerationnoticetoCopyrightAgencyLimited(CAL)undertheAct.
FordetailsoftheCALlicenceforeducationalinstitutionscontact:
CopyrightAgencyLimited Level12,66GoulburnStreet
SydneyNSW2000
Telephone:(02)93947600
Facsimile:(02)93947601
Email:memberservices@copyright.com.au
ReproductionandCommunicationforotherpurposes
ExceptaspermittedundertheAct(forexampleafairdealingforthepurposesofstudy,research,criticismorreview)nopartofthis publicationmaybereproduced,storedinaretrievalsystem,communicatedortransmittedinanyformorbyanymeanswithoutprior writtenpermission.Allinquiriesshouldbemadetothepublisherattheaddressabove.
CambridgeUniversityPress&AssessmenthasnoresponsibilityforthepersistenceoraccuracyofURLsforexternalorthird-partyinternet websitesreferredtointhispublicationanddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain,accurateorappropriate. Informationregardingprices,traveltimetablesandotherfactualinformationgiveninthisworkiscorrectatthetimeoffirstprintingbut CambridgeUniversityPress&Assessmentdoesnotguaranteetheaccuracyofsuchinformationthereafter.
PleasebeawarethatthispublicationmaycontainimagesofAboriginalandTorresStraitIslanderpeoplewhoarenowdeceased.Several variationsofAboriginalandTorresStraitIslandertermsandspellingsmayalsoappear;nodisrespectisintended.Pleasenotethattheterms ‘IndigenousAustralians’and‘AboriginalandTorresStraitIslanderpeoples’maybeusedinterchangeablyinthispublication.
CambridgeUniversityPress&AssessmentacknowledgestheAboriginalandTorresStraitIslanderpeoplesofthisnation.Weacknowledgethe traditionalcustodiansofthelandsonwhichourcompanyislocatedandwhereweconductourbusiness.Wepayourrespectstoancestors andElders,pastandpresent.CambridgeUniversityPress&AssessmentiscommittedtohonouringAboriginalandTorresStraitIslander peoples’uniqueculturalandspiritualrelationshipstotheland,watersandseasandtheirrichcontributiontosociety.
3 Fractions,decimalsandpercentages
3G Convertingfractions,decimalsandpercentages
3I
4 Measurement
Measurement,Number
5A
5E
5F
5G
5H
7H
8 Statisticsandprobability
8A Interpretinggraphsandtables
8B Frequencytablesandtallies
8C Graphsoffrequencytables
8D Rangeandmeasuresofcentre
8E Surveyingandsampling
8F
8G Two-stepexperiments
8H Treediagrams
8I Venndiagrams
8J Two-waytables 527
8K Experimentalprobability
9A TheCartesianplane
9B Usingrulesandtablestoexplorelinearrelationships
9C Plottingstraightlinegraphs
9D
9E Usinggraphstosolvelinearequations
9F Usinggraphstosolvelinearinequalities 591
9G Gradient
9H Applicationsoflineargraphs
9I Non-lineargraphs
10C Rotation
10D Congruentfigures
10E Congruenttriangles
10F Tessellations
10G Congruenceandquadrilaterals 678
10H Similarfigures
10I Similartriangles
Maths@Work:Fashiondesigner
DavidGreenwood istheHeadofMathematicsatTrinityGrammarSchoolinMelbourneand has30+ years’experiencemathematicsfromYear7to12.Heistheleadauthorfor theCambridgeEssentialseriesandhasauthoredmorethan80titlesfortheAustralian Curriculumandforthesyllabusesofthestatesandterritories.Hespecialisesinanalysing curriculumandthesequencingofcoursecontentforschoolmathematicscourses. Healsohasaninterestintheuseoftechnologyfortheteachingofmathematics.
BrynHumberstone graduatedfromtheUniversityofMelbournewithanHonoursdegreein PureMathematics,andhas20+ years’experienceteachingsecondaryschoolmathematics. HewasaHeadofMathematicsfrom2014–2024attwoindependentschoolsinVictoria. Brynispassionateaboutapplyingthescienceoflearningtoteachingandcurriculum design,tomaximisethechancesofstudentsuccess.
JustinRobinson isco-founderof TheWellbeingDistillery,anorganisationcommittedtoenergising, equippingandempoweringteachers.Heconsultswithschoolsgloballyonthefieldsof studentandeducatorwellbeing.Priortothis,Justinspent25yearsteachingmathematics, coveringalllevelsofsecondaryeducationincludingteachingVCE,IBandA-Levels.His drivingpassionwasengagingandchallengingstudentswithinasafelearningenvironment. JustinisanHonoraryFellowoftheUniversityofMelbourne’sGraduateSchoolofEducation.
JennyGoodman hastaughtinschoolsforover28yearsandiscurrentlyteachingataselective highschoolinSydney.Jennyhasaninterestintheimportanceofliteracyinmathematics education,andinteachingstudentsofdifferingabilitylevels.ShewasawardedtheJones MedalforeducationatSydneyUniversityandtheBourkePrizeforMathematics.Shehas writtenforCambridgeMATHSNSWandwasinvolvedintheSpectrumandSpectrumGoldseries.
JenniferVaughan hastaughtsecondarymathematicsforover30yearsinNewSouthWales, WesternAustralia,QueenslandandNewZealandandhastutoredandlecturedinmathematics atQueenslandUniversityofTechnology.Sheispassionateaboutprovidingstudentsofallability levelswithopportunitiestounderstandandtohavesuccessinusingmathematics.Shehas hadextensiveexperienceindevelopingresourcesthatmakemathematicalconceptsmore accessible;hence,facilitatingstudentconfidence,achievementandanenjoymentofmaths.
StuartPalmer wasbornandeducatedinNSW.Heisafullyqualifiedhighschoolmathematics teacherwithmorethan25years’experienceteachingstudentsfromallwalksoflifein avarietyofschools.HehasbeenHeadofMathematicsintwoschools.Heisverywell knownbyteachersthroughoutthestatefortheprofessionallearningworkshopshe delivers.StuartalsoassiststhousandsofYear12studentseveryyearastheyprepare fortheirHSCExaminations.AttheUniversityofSydney,Stuartspentmorethana decaderunningtutorialsforpre-servicemathematicsteachers.
Theauthorandpublisherwishtothankthefollowingsourcesforpermissiontoreproducematerial: Cover: © GettyImages/Westend61.
Images: © GettyImages/Slavica,Chapter1Opener/Portra,p.14(1)/JuanSilva,p.14(2)/GrantFaint,p.22/Vostok,p.33/ RobertRusu/500px,p.37/SimpleImages,p.41/KLH49,p.47(1)/PhynartStudio,p.47(2)/biglanphotop.50/ChrisClorp.50/ MartinBarraudp.53/mbolina,Chapter2Opener/KarlTapalesp.70(1)/JorgGreuel,p.70(2)/StephenSimpson,p.71(1)/Andrew Merry,p.71(2)/aimintang,p.79/117Imageryp.87/DigitalVision,p.93/MassimoBorchi/AtlantidePhototravel,p.99(1)/ fotografixx,p.104/ArturDebat,p.112/SrdjanPav,p.113/kyoshino,p.114/Thossaphol,Chapter3Opener/ChrisGriffiths, p.133/IntiSt.Clairp.143/ericfoltzp.145/MarcoBottigelli,p.148/AndrewHoltp.154/JacobWackerhausenp.165(1)/Jordan Lye,p.175/Westend61,p.182/retalesbotijerop.184/MartinRuegnerp.185(1)/jpgfactory,p.185(2)/ArturDidyk,p.188(1)/ LariBat,p.188(2)/HUIZENGHU,p.191/pamspix,p.196/pink cotton candy,p.205(1)/sengchyeteo,p.205(2)/Vitalliy,Chapter 4Opener/PatrickT.PowerPhotographyp.214(1)/Jackyenjoyphotographyp.214(2)/mikkelwilliam,p.230(2)/DouglasSacha p.242/EdwinTan,p.256/GrantFaint,p.258/calvindexter,p.261/Nikada,p.264/xiayuan,p.269/MarcoLaske,p.270/John White,p.279/Westend61p.281/MariiaSiurtukova,297/VincentsEar,Chapter5Opener/Westend61,p.304/EzraShaw, p.305/VioletaStoimenova,p.308/PaulBiris,p.312/AndrewJohnWells,p.324/ImageSource,p.326/AngelaEast jellibat@gmail.com,p.327/PetkoNinov,p.335/simonkr,Chapter6Opener/wundervisuals,p.359/HeathKorvola,p.369/ macroworld,p.375/Sadeugra,p.383/JosephSohm,p.387/ColinAndersonProductionsptyltd,p.393/GaryJohnNorman, p.394(3)/IrinaBelova,p.395/JacobsStockPhotographyLtd,p.396/GSPictures,p.397/PMImages,p.401/KeithBinns,p.409/ skibreck,Chapter7Opener/Dudits,p.415/hilmi m,p.416/JonathanKitchen,p.421/LPETTET,p.440(1)/guvendemir,p.445/ SimonMcGill,p.450/ghornephoto,p.453/SiegfriedLayda,Chapter8Opener/krisanapongdetraphiphat,p.467/AjaKoska, p.495(1)/fstop123,p.496(2)/EkaterinaSmirnova,p.501/JennyDettrick,p.502/PeterCade,p.504/bywildestanimal,p.505/ LaurenceMonneret,p.510/ChrisWindsor,p.511(2)/oonalp.513/35007,p.532/JacobsStockPhotographyLtd,p.534/ AndersenRossPhotographyInc,p.542/TheCrimsonMonkey,p.543/DianaMiller,p.543/PeterVahlersvik,p.545/NoDerog, p.548/Toa55,Chapter9Opener/MikeKemp,p.563/ngkokkeongphotography,p.567/swissmediavision,p.570(1)/ Andrew Howe,p.570(2)/MG 54,p.571/bessy,p.580/HagenProduction,p.582/AndrewHolt,p.584/JohnMLund PhotographyInc,p.605/alxpin,p.608(2)/MichaelBlann,p.614/Imgorthand,p.620/CarolYepes,p.623/Fototrekking,p.625/ MarciaStraub,p.633/sarayutThaneerat,p.637(1)/atosan,Chapter10Opener/PeterFunnell,p.654/gavinmay,p.667/ HinterhausProductions,p.688/DavidCTomlinson,p.695.
Everyefforthasbeenmadetotraceandacknowledgecopyright.Thepublisherapologisesforanyaccidentalinfringementand welcomesinformationthatwouldredressthissituation.
© AustralianCurriculum,AssessmentandReportingAuthority(ACARA)2009topresent,unlessotherwiseindicated.Thismaterial wasaccessedfromtheACARAwebsite(www.acara.edu.au).ThematerialislicensedunderCCBY4.0(https://creativecommons. org/licenses/by/4.0/).ACARAdoesnotendorseanyproductthatusesACARAmaterialormakeanyrepresentationsastothe qualityofsuchproducts.Anyproductthatusesmaterialpublishedonthiswebsiteshouldnotbetakentobeaffiliatedwith ACARAorhavethesponsorshiporapprovalofACARA.Itisuptoeachpersontomaketheirownassessmentoftheproduct.
Thesecondeditionof EssentialMathematicsCOREfortheAustralianCurriculum hasbeensignificantlyrevisedandupdatedtosuit theteachingandlearningofVersion9.0oftheAustralianCurriculum.Manyoftheestablishedfeaturesoftheserieshavebeen retained,buttherehavebeensomesubstantialrevisions,improvementsandnewelementsintroducedforthiseditionacrossthe print,digitalandteacherresources.
Newcontenthasbeenaddedatallyearlevels.In Year7,thereisnewcontentonratiosandproportions,volumeoftriangular prisms,netsofsolidsandmeasurementrelatingtocircles.Allgeometrytopicsarenowcontainedinasinglechapter(Chapter7).In Year8,thereisnewcontentonorderofoperations,3D-coordinates,operationswithnegativefractions,areasofsectorsand compositeshapes,Pythagoras’theorem,inequalities,similarfigures,two-stepexperimentsandtreediagrams.For Year9,thereis newcontentonerrorsinmeasurement,inequalities,factorisation,samplingandproportion,quadraticsexpressionsandparabolas. In Year10,thereisnewcontentoncompositesolids,errorsinmeasurement,networksandlogarithmicscales.
Version9.0placesincreasedemphasison investigations and modelling,andthisiscoveredwithrevisedModellingactivitiesat theendofchaptersanddownloadableInvestigations.Therearealsomanynewelaborationscovering FirstNationsPeoples’ perspectives onmathematics,rangingacrossallsixcontentstrandsofthecurriculum.Thesearecoveredinasuiteofspecialised investigationsprovidedintheOnlineTeachingSuite.
• Technologyandcomputationalthinking activitieshavebeenaddedtotheendofeverychaptertoaddressthecurriculum’s increasedfocusontheuseoftechnologyandtheunderstandingandapplicationofalgorithms.
• Targetedskillsheets –downloadableandprintable–havebeenwrittenforeverylessonintheseries,withtheintentionof providingadditionalpracticeforstudentswhoneedsupportatthebasicskillscoveredinthelesson,withquestionslinkedto workedexamplesinthebook.
• EditablePowerPointlessonsummaries arealsoprovidedforeachlessonintheseries,withtheintentionofsavingthetime ofteacherswhowerepreviouslycreatingthesethemselves.
Alsonewforthiseditionisaflexible,comprehensivediagnosticassessmenttool,availablethroughtheOnlineTeachingSuite.This tool,featuringaround10,000newquestions,allowsteacherstosetdiagnosticteststhatarecloselyalignedwiththetextbook content,viewstudentperformanceandgrowthviaarangeofreports,setfollow-upworkwithaviewtohelpingstudents improve,andexportdataasneeded.
EssentialMathematicsCOREfortheAustralianCurriculum9.0 containsworkingprogramsthataresubtlyembeddedinthe exercises.ThesuggestedworkingprogramsprovidetwopathwaysthroughthebooktoallowdifferentiationforBuildingand Progressingstudents.
EachexerciseisstructuredinsubsectionsthatmatchtheAustralianCurriculum9.0proficiencystrands(withProblem-solving andReasoningcombinedintoonesectiontoreduceexerciselength),aswellas‘Goldstar’( ).Thequestions* suggestedforeach pathwayarelistedintwocolumnsatthetopofeachsubsection.
• Theleftcolumn(lightestshade)showsthequestionsintheBuildingworkingprogram.
• Therightcolumn(darkestshade)showsthequestionsintheProgressingworkingprogram.
Theworkingprogramsmakeuseoftwo gradientsthathavebeencarefullyintegrated intotheexercises.Agradientrunsthrough theoverallstructureofeachexercise–where there’sanincreasinglevelofsophistication requiredasastudentprogressesthrough theproficiencystrandsandthenontothe ‘GoldStar’question(s)–butalsowithineach proficiencystrand;thefirstfewquestions inFluencyareeasierthanthelastfew,for example,andthefirstfewProblem-solvingand reasoningquestionsareeasierthanthelastfew.
Questionsintheworkingprogramshavebeenselectedtogivethemostappropriatemixoftypesofquestionsforeachlearning pathway.StudentsgoingthroughtheBuildingpathwayaregivenextrapracticeattheUnderstandingandbasicFluencyquestions andonlytheeasiestProblem-solvingandreasoningquestions.TheProgressingpathway,whilenotchallenging,spendsalittleless timeonbasicUnderstandingquestionsandalittlemoreonFluencyandProblem-solvingandreasoningquestions.TheProgressing pathwayalsoincludesthe‘Goldstar’question(s).
Thereareavarietyofwaysofdeterminingtheappropriatepathwayforstudentsthroughthecourse.Schoolsandindividual teachersshouldfollowthemethodthatworksbestforthem.Ifrequired,theWarm-upquizatthestartofeachchaptercanbe usedasadiagnostictool.Thefollowingarerecommendedguidelines:
• Astudentwhogets 40% orlowershouldheavilyrevisecoreconceptsbeforedoingtheBuildingquestions,andmayrequire furtherassistance.
• Astudentwhogetsbetween 40% and 75% shoulddotheBuildingquestions.
• Astudentwhogets 75% andhighershoulddotheProgressingquestions.
Forschoolsthathaveclassesgroupedaccordingtoability,teachersmaywishtoseteithertheBuildingorProgressingpathwaysas thedefaultpathwayforanentireclassandthenmakeindividualalterationsdependingonstudentneed.Forschoolsthathave mixed-abilityclasses,teachersmaywishtosetanumberofpathwayswithintheoneclass,dependingonpreviousperformance andotherfactors.
* Thenomenclatureusedtolistquestionsisasfollows:
3,4:completeallpartsofquestions3and4
• 1–4:completeallpartsofquestions1,2,3and4
• 10(½):completehalfofthepartsfromquestion 10(a,c,e,.....orb,d,f,.....)
• 2–4(½):completehalfofthepartsofquestions2,3and4
• –:completenoneofthequestionsinthissection.
• 4(½),5:completehalfofthepartsofquestion4 andallpartsofquestion5
•
1 NEW Newlessons: authoritativecoverageofnewtopicsintheAustralianCurriculum9.0intheformofnew,road-tested lessonsthroughouteachbook.
2 AustralianCurriculum9.0: contentstrands,sub-strandsandcontentdescriptionsarelistedatthebeginningofthechapter (seetheteachingprogramformoredetailedcurriculumdocuments)
3 Inthischapter: anoverviewofthechaptercontents
4 NEW Quickreference: Multiplication,primenumber,fractionwallanddivisibilityrulestablesatthebackofthebook
5 Chapterintroduction: setscontextforstudentsabouthowthetopicconnectswiththerealworldandthehistoryof mathematics
6 Warm-upquiz: aquizforstudentsonthepriorknowledgeandessentialskillsrequiredbeforebeginningeachchapter
7 Sectionslabelledtoaidplanning: Allnon-coresectionsarelabelledas‘Consolidating’(indicatingarevisionsection)or withagoldstar(indicatingatopicthatcouldbeconsideredchallenging)tohelpteachersdecideonthemostsuitablewayof approachingthecoursefortheirclassorforindividualstudents.
8 Learningintentions: setsoutwhatastudentwillbeexpectedtolearninthelesson
9 Lessonstarter: anactivity,whichcanoftenbedoneingroups,tostartthelesson
10 Keyideas: summarisestheknowledgeandskillsforthesection
11 Workedexamples: solutionsandexplanationsofeachlineofworking,alongwithadescriptionthatclearlydescribesthe mathematicscoveredbytheexample.Workedexamplesareplacedwithintheexercisesotheycanbereferencedquickly, witheachexamplefollowedbythequestionsthatdirectlyrelatetoit.
12 Nowyoutry: try-it-yourselfquestionsprovidedaftereveryworkedexampleinexactlythesamestyleastheworkedexample togivestudentsimmediatepractice
differentiatedquestionsetsfortwoabilitylevelsinexercises
14 Puzzlesandgames: ineachchapterprovideproblem-solvingpracticeinthecontextofpuzzlesandgamesconnectedwith thetopic
15 Gentlestarttoexercises: theexercisebeginsatUnderstandingandthenFluency,withthefirstquestionalwayslinkedto thefirstworkedexampleinthelesson
16 Chapterchecklist: achecklistofthelearningintentionsforthechapter,withexamplequestions
17 Chapterreviews: withshort-answer,multiple-choiceandextended-responsequestions;questionsthatare‘GoldStar’are clearlysignposted
18 Maths@Work: asetofextendedquestionsacrosstwopagesthatgivepracticeatapplyingthemathematicsofthechapter toreal-lifecontexts
19 NEW Technologyandcomputationalthinking activityineachchapteraddressesthecurriculum’sincreasedfocusonthe useofdifferentformsoftechnology,andtheunderstandingandimplementationofalgorithms
20 Modellingactivities: anactivityineachchaptergivesstudentstheopportunitytolearnandapplythemathematicalmodelling processtosolverealisticproblems
21 NEW TargetedSkillsheets,oneforeachlesson,focusonasmallsetofrelatedFluency-styleskillsforstudentswhoneed extrasupport,withquestionslinkedtoworkedexamples
22 Workspaces: almosteverytextbookquestion–including allworking-out–canbecompletedinsidetheInteractive Textbookbyusingeitherastylus,akeyboardandsymbol palette,oruploadinganimageofthework
23 Self-assessment: studentscanthenself-assesstheir ownworkandsendalertstotheteacher.Seethe Introductiononpagexformoreinformation
24 Interactivequestiontabs canbeclickedonsothat onlyquestionsincludedinthatworkingprogramare shownonthescreen
25 HOTmathsresources: ahugecateredlibraryofwidgets, HOTsheetsandwalkthroughsseamlesslyblendedwith thedigitaltextbook
26 Desmosgraphingcalculator,scientificcalculatorand geometrytoolarealwaysavailabletoopenwithinevery lesson
27 Scorcher: thepopularcompetitivegame
28 Workedexamplevideos: everyworkedexampleis linkedtoahigh-qualityvideodemonstration,supporting bothin-classlearningandtheflippedclassroom
29 Arevisedsetof differentiatedauto-marked practicequizzes perlessonwithsavedscores
30 Auto-markedmaths literacyactivitiesteststudents ontheirabilitytounderstandandusethekey mathematicallanguageusedinthechapter 29
31 Auto-markedpriorknowledgepre-test (the‘Warm-upquiz’oftheprintbook)fortestingtheknowledgethatstudents willneedbeforestartingthechapter
32 Auto-markedprogressquizzesandchapterreviewquestions inthechapterreviewscanbecompletedonline
33 InadditiontotheInteractiveTextbook,a PDFversionofthetextbook hasbeenretainedfortimeswhenuserscannotgo online.PDFsearchandcommentingtoolsareenabled.
34 NEW DiagnosticAssessmentTool included withtheOnlineTeachingSuiteallowsforflexible diagnostictesting,reportingandrecommendations forfollow-upworktoassistyoutohelpyour studentstoimprove
35 NEW PowerPointlesson summariescontainthe mainelementsofeachlessoninaformthatcanbe annotatedandprojectedinfrontofclass
36 LearningManagementSystem withclass andstudentanalytics,includingreportsand communicationtools
37 Teacherviewofstudents’workand self-assessment allowstheteachertoseetheir class’sworkout,howstudentsintheclassassessed theirownwork,andany‘redflags’thattheclass hassubmittedtotheteacher
38 Powerfultestgenerator withahugebankof levelledquestionsaswellasready-madetests
39 Revampedtaskmanager allowsteachersto incorporatemanyoftheactivitiesandtoolslisted aboveintoteacher-controlledlearningpathways thatcanbebuiltforindividualstudents,groupsof studentsandwholeclasses
40 Worksheets,Skillanddrill,mathsliteracy worksheets,and twodifferentiatedchapter testsineverychapter,providedineditableWord documents
41 Moreprintableresources: allPre-testsand Progressquizzesareprovidedinprintableworksheet versions
Essentialmathematics:whybeingabletocomputewith integersisimportant
Inanemergency,ambulanceparamedicsoftenadministerintravenousfluidstoresuscitatea patient.Theyusemultiplicationanddivisiontocalculatedriprates,volumesandtimes.
Electronicsengineersandtechnicianscomputesquaresandsquarerootswhendesigningaudio amplifierstoproduceastrongenoughmusicalsignaltorunloudspeakers.
Boardgamedesignersusedivisibilityrulesinvariouswaystomakegamesmoreengagingand complex.Scoringsystemsandplayerprogressionrulesbasedonwhetheraplayer’sscoreis divisiblebyacertainnumber,encouragestrategicplay.Also,distributingskillpointsevenlyacross charactersensuresequalopportunityforall.
Skiers,snowboardersandmountainclimbersselecttheirgearaccordingtotemperatureforecasts. OnewintermorningatAustralia’sThredboTopStation,thetemperaturewas −6°Cbutwindsof 72 km/hhelpedtocauseafreezingcold‘feelslike’temperatureof −21°C.
Inthischapter
1AAddingandsubtracting positiveintegers (Consolidating)
1BMultiplyinganddividing positiveintegers (Consolidating)
1CSquares,cubesandother powers
1DNumberproperties
1EDivisibilityandprime factorisation
1FNegativeintegers (Consolidating)
1GAddingandsubtracting negativeintegers
1HMultiplyinganddividing negativeintegers
1IOrderofoperationsand substitution
AustralianCurriculum9.0
Usethe4operationswithintegersand withrationalnumbers,choosingand usingefficientstrategiesanddigital toolswhereappropriate(AC9M8N04)
Usemathematicalmodellingtosolve practicalproblemsinvolvingrational numbersandpercentages,including financialcontexts;formulateproblems, choosingefficientcalculationstrategies andusingdigitaltoolswhere appropriate;interpretand communicatesolutionsintermsofthe situation,reviewingtheappropriateness ofthemodel(AC9M8N05)
©ACARA
Ahostofadditionalonlineresources areincludedaspartofyourInteractive Textbook,includingHOTmathscontent, videodemonstrationsofallworked examples,auto-markedquizzesand muchmore.
1 Decideifthefollowingexpressionsrelateto A addition (+) S subtraction ( ) M multiplication (×) or D division (÷) Totalsum a Difference b 10 morethan 7 c 10 lessthan 13 d 5 groupsof 3 e
3sin 18 f
2 Completetheseadditions.
3 Completethesesubtractions.
4 Completethesemultiplications.
5 Completethesedivisions.
6
Listthefirst 5 multiplesof 6. a
Listthefirst 4 multiplesof 9 b
Whatisthelowestcommonmultiple(LCM)of 6 and 9? c
7 Listallthefactorsof 12. a
Listallthefactorsof 15 b
Whatisthehighestcommonfactor(HCF)of 12 and 15? c
8 Primenumbershaveexactlytwofactors.Ofthefirst 15 positiveintegers(listedbelow),listthe numberswhichareprime.Writeyourprimesinascending(increasing)order.Thefirstprime iscircled.
1 2 3456789101112131415
9 Answerthefollowingastrue(T)orfalse(F). 2 + 3 × 4 = 2 + 12 a 10−8 ÷ 2 = 10−4 b (5−2) × 7 = 3 × 7 c 9 × 3 + 5 = 9 × 8 d 9 × (3 + 5) = 9 × 8 e 12 ÷ 3 × 4 = 1 f
10 Statethemissingnumbersforeachpartinthistable.
a 2 × 2 = √4 = 2
b 3 × 3 = √9 =
c 4 × 4 = √16 =
d 6 × 6 = √36 =
e 9 × 9 = √ = 9
f 10 × 10 = √ = 10
g × = 49 √49 = h × = 144 √144 =
11 Whatarethenexttwonumbersineachofthesepatterns?
3, 2, 1, , a
2, 0, −2, , b −9, −10, −11, , c
12 Usethisnumberlinetohelpfindtheanswer.
2−5 a 0−3 b
−4 + 6 c
−2 + 7 d
Learningintentions
• Tounderstandthecommutativelawforaddition.
• Tobeabletousethementalstrategiesofpartitioning,compensatinganddoublingtocalculateasumordifference ofwholenumbersmentally.
• Tobeabletousetheadditionandsubtractionalgorithmsto ndthesumanddifferenceofwholenumbers.
Keyvocabulary: sum,difference,algorithm,commutativelaw,compensating,doubling,countingon
ThenumbersystemthatweusetodayiscalledtheHindu–Arabicordecimalsystem.Itusesthedigits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9
Thevalueofeachdigitdependsonitsplaceinthenumber,so,forexample,the 4 in 3407 hasaplace valueof 400.Wholenumbersinclude 0 (zero)andthecounting(natural)numbers 1, 2, 3, 4, … TheCounting numbers 1, 2, 3, 4, … arecalledpositiveintegers.Wecanaddorsubtractwholenumberstofindsumsand differences.
Lessonstarter:Sumanddifference
Useaguess-and-checkmethodtotrytofindapairofnumbersdescribedbythesesentences.
• Thesumoftwonumbersis 41 andtheirdifferenceis 11
• Thesumoftwonumbersis 41 andtheirdifferenceis 1
Describethemeaningofthewords‘sum’and‘difference’.Discusshowyoufoundthepairofnumbers ineachcase.
Keyideas
Youcanaddinanyorder.
e.g. 7 + 5 = 5 + 7 9 + 3 + 1 = 9 + 1 + 3
• Thisiscalledthe commutativelaw foraddition.
Youcannotsubtractinanyorder.
e.g. 7−5 ¢ 5−7
Ifthenumbersarelarge,writenumbersincolumnsanduseknown algorithms tocalculatethe answer.
1 Matcheachofthequestionsintheleft-handcolumn(a, b, c and d)totheworkingoutintheright-hand column(I, II, III, IV).
Thetotalof 156, 94 and 6 a 2491 + 945 I Take 856 awayfrom 2491 b 2491−856 II 945 morethan 2491 c
less 863 d
2 Writeeachofthefollowingusinganaddition (+) orasubtraction ( ) signinsteadofthewords.Donot workouttheanswer.
26 plus 17 a 43 takeaway 9 b
134 minus 23 c
Thesumof 19 and 29 e
Thedifferencebetween 59 and 43 g
36 morethan 8 i
32 lessthan 49 k
451 add 50 d
Thesumof 111 and 236 f
Thedifferencebetween 339 and 298 h
142 morethan 421 j
120 lessthan 251 l
3 Describethesesumsanddifferencesastrue(T)orfalse(F)?
Fluency
Example1Usingmentalarithmetic
Evaluatethisdifferenceandthesesumsmentally.
Nowyoutry
Evaluatethisdifferenceandthesesumsmentally.
Thismethodiscalledcompensating.
Thismethodiscalleddoubling.
Thismethodiscalledcountingon.
5 Completethesedifferences.
4 Completethesesums. HintforQ4andQ5: Dothesewithoutacalculator oralgorithm.
6 Evaluatethesesumsanddifferencesmentally.
+ 25 e
Useanalgorithmtofindthissumanddifference.
a 9138 + 217
b ✁ 113 ✁ 411
Nowyoutry
Useanalgorithmtofindthissumanddifference.
8 + 7 = 15 (carrythe 1 tothetenscolumn) 1 + 3 + 1 = 5 9 + 2 = 11
Borrowfromthetenscolumnthensubtract 6 from 11.Nowborrowfromthehundreds columnandthensubtract 8 from 13
7 Useanalgorithmtofindthesesumsanddifferences.
HintforQ7:Carrythe 1 for sumslargerthan 9 and borrow‘ten’forsubtraction.
8 Aracingbike’sodometershows 21432 kmatthestartof araceand 22110 kmattheendoftherace.Howfarwas therace?
9 Kristianhas $246 morethanSally.Davidhas $56 lessthanSally.IfSallyhas $492,howmuchdoKristian andDavideachhave?
10 Callumwalks 15 kmonMondayand 3 kmmoreeachday.HowmanykilometresdoesCallumwalkon Thursday?
11 Thesumoftwonumbersis 39 andtheirdifferenceis 5.Whatisthelargernumber?
Fillingthegapandmagictriangles
12a Writethedigitmissingfromthesesumsanddifferences.
b Findthemissingdigitsinthesesumsanddifferences.
c Thesidesofamagictriangleallsumtothesametotal.
Showhowitispossibletoarrangeallthedigitsfrom 1 to 9 sothateachsideaddsto 17. i
Showhowitispossibletoarrangethesamedigitstoadifferenttotal.Howmanydifferent totalscanyoufind?
Learningintentions
• Tounderstandthecommutativeanddistributivelawformultiplication.
• Tobeabletousementalstrategiestocalculatesimpleproductsandquotients.
• Tobeabletousethemultiplicationanddivisionalgorithmsto ndtheproductandquotientofwholenumbers.
Keyvocabulary: product,quotient,remainder,distributivelaw,commutativelaw
Multiplyinganddividingaretwokeyoperationsinmathematicsandareusefulinmanypracticalsituations suchasfindingthecostof 9 ticketsat $109 eachorthenumberoftrucksneededtocarry 280 tonnes ofcoal.
Lessonstarter:Multiplicationordivision?
Insolvingmanyproblemsitisimportanttoknowwhethermultiplicationordivisionshouldbeused. Decideifthefollowingsituationsrequiretheuseofmultiplicationordivision.Discusstheminagroup orwithapartner.
• Thenumberofcookies 4 peoplecangetifapacketof 32 cookiesissharedequallybetweenthem.
• Thecostofpaving 30 squaremetresofcourtyardatacostof $41 persquaremetre.
• Thenumberofsheetsofpaperin 4000 boxesof 5 reamseach(1 reamis 500 sheets).
• ThenumberofhoursIcanaffordaplumberat $75 perhourifIhaveafixedbudgetof $1650 Makeupyourownsituationthatrequirestheuseofmultiplicationandanotherfordivision.
A product istheresultofmultiplication.
Multiplicationcanbedone: mentally
e.g. 6 × 5 = 30
• using an algorithm e.g. 217 26 1302 2176 4340 21720 5642 13024340 × × × + •
Youcanmultiplynumbersinanyorder.
e.g. 6 × 5 = 30 and 5 × 6 = 30
• Thisisthe commutativelaw formultiplication.
The distributivelaw ishelpfulwhenmultiplying.
e.g. 5 × 34 = 5 × (30 + 4)
= 5 × 30 + 5 × 4
= 150 + 20 = 170
Usingdivisionresultsinfindinga quotient anda remainder
e.g. 38113 ÷ = and 5 remainder
dividend divisor quotient or 38 ÷ 11 = 3 5 11
Divisioncanbedone: mentally e.g. 56 ÷ 8 = 7
usinganalgorithm 7 732 ) 512214
Und er stand ing 1–3 3
1 Matcheachofthequestionstotheworkingoutontheright.
Theproductof 9 and 6 a 15 × 12 I
36 dividedby 12 b 15 ÷ 5 II 15 lotsof 12 c 9 × 6 III
Thequotientwhen 15 isdividedby 5 d 15 ÷ 12 IV
Divide 12 into 15 e 36 ÷ 12 V
2 Useyourknowledgeofthemultiplicationtablestoanswerthefollowing.
5 × 8 a 11 × 9 b 6 × 7 c 9 × 8 d 11 × 6 e 12 × 11 f 8 × 4 g 7 × 9 h
3 Arethesesimpleequationstrue(T)orfalse(F)?
4 × 13 = 13 × 4 a 2 × 7 × 9 = 7 × 9 × 2 b 6 ÷ 3 = 3 ÷ 6 c 60 ÷
Fluency
Example3Usingmentalstrategiesformultiplication
Useamentalstrategytoevaluatethefollowing.
5 × 160 a
Solution
HintforQ2:You shouldknowmostof theseoffbyheart.
Explanation
a 5 × 160 = 800 Tomultiplyby 5 youcanmultiplyby 10 thenhalvetheresult. 160 × 10 = 1600, 1600 ÷ 2 = 800
b 7 × 89 = 623 89 = 90−1 Â 7 × 89 = 7 × 90−7 × 1 = 630−7 = 623 (thisisthedistributivelaw)
c 5 × 43 × 2 = 430 5 43 25243 1043 430 ××=×× =× = look for easy pairs
Nowyoutry
Useamentalstrategytoevaluatethefollowing.
4 Useamentalstrategytoevaluatethefollowing.
HintforQ4:Dothese mentally.
Example4Usingmentalstrategiesfordivision
Useamentalstrategytoevaluatethefollowing.
Solution
Explanation
a 464 ÷ 4 = 116 Todivideby 4 youcandivideby 2 twice. 464 ÷
halvingthenumber)
b 480 ÷ 5 ÷ 2 =
Nowyoutry
Useamentalstrategytoevaluatethefollowing.
5 Useamentalstrategytoevaluatethefollowing.
Dividingby 5 andthenby 2 isthesameas dividingby 10 480 ÷ 10 = 48
HintforQ5:Chooseoneofthe mentalstrategiesdescribed above.
Example5Usinganalgorithmformultiplicationanddivision Useanalgorithmtoevaluatethefollowing.
412 × 25 a 938 ÷ 13 b
Solution
Explanation a 412 × 25 2060 8240 10300
b 13 72 ) 9328 rem 2
So 938 ÷ 13 = 72 and 2 remainder.
938 ÷ 13 = 72 2 13
412 × 5 = 2060 and 412 × 20 = 8240 Addthesetwoproductstogetthefinal answer.
93 ÷ 13 = 7 and 2 remainder
28 ÷ 13 = 2 and 2 remainder
Wewriteremaindersasfractions 72 2 13
Nowyoutry Useanalgorithmtoevaluatethefollowing. 137 × 12 a 354 ÷ 7 b
6 Useanalgorithmtoevaluatethefollowing.
HintforQ6:Usethesettingout describedin Example5
7 Usetheshortdivisionalgorithmtoevaluatethefollowing.Writeyouranswerusingfractionsifthereis aremainder.
8 Auniversitystudentearns $550 for 20 hoursofwork.Whatisthestudent’spayrateperhour?
9 Packetsofbiscuitsarepurchasedbyasupermarket inboxesof 12.Thesupermarketorders 220 boxes andsells 89 boxesinoneday.Howmanyboxesare left?Howmanypacketsofbiscuitsremaininthe supermarket?
10 Rileybuysafridgewhichhecanpayforbythe followingoptions.
9 paymentsof $183 A $1559 upfront B Whichoptionischeaperandbyhowmuch?
11 Theshovelofagiantexcavatorcanmove 6 tonnesofrockineachload.Howmanyloadsare neededtoshift 750 tonnesofrock?
12 Tomsaves $362 aweek.Howmuchwillhesavein 52 weeks? Maximumtickets 13
13 Achildtickettoatheatreis $7 andanadultticketis $12. Findthecostof 2 adultand 3 childtickets. a Findthecostof 1 adultand 5 childtickets. b Genspendsexactly $90 tobuychildticketsandadulttickets.Findthemaximumnumberoftickets thatGencouldpurchase.
c
Learningintentions
• Tounderstandthemeaningofanexpressionwrittenintheform an intermsofrepeatedmultiplicationof a.
• Tobeableto ndthesquare,squareroot,cubeandcuberootofcertainsmallwholenumbers.
Keyvocabulary: base,index,power,indexnotation,expandedform,product,square,squareroot, cube,cuberoot
Inmathematicstherearemanywaystoabbreviateexpressions.
Usingrepeatedaddition, 4 + 4 + 4 + 4 + 4 canbewrittenas 5 × 4 usingmultiplication.
Usingrepeatedmultiplication, 3 × 3 × 3 × 3 canbewrittenas 34 usingindexnotation. Weread 34 as“3 tothepowerof 4”.
Canyouexplainwhywecallthenumbers 1, 4, 9 and 16 squarenumbers?
Drawdiagramsforthenexttwosquarenumbers.
Usecenticubestobuildthefirstthreecubenumbers.Write downthenextcubenumber.
Indexnotation
expanded form base index or power
The base of 3 showsthefactorthatisrepeatinginmultiplication,andthe power or index isthe numberoftimesitappears.
The square ofanumberiswritten a2 anditmeans a × a
e.g. 52 means 5 × 5 (wesay 5 squared,thesquareof 5,or 5 tothepowerof 2)
Theoppositeofsquaringisfindingthe squareroot ofanumber.Thesymbol √ means squareroot.
e.g. √9 = 3 as 32 = 9
• Thesquarerootofanumberisalwayspositiveorzero.
The cube ofanumber a is a3 = a × a × a
e.g. 53 = 5 × 5 × 5 (wesay 5 cubed,or, 5 tothepowerof 3)
Theoppositeofcubingistakingthe cuberoot ofanumber.Thesymbolforcuberootis 3 √
e.g. 3 √8 = 2 as 23 = 2 × 2 × 2 = 8
Und er stand ing
1 Writeeachofthefollowingusingindexnotation. 2 × 2
2 Matcheachexpressioninwordstoanexpressioninsymbols,givenontheright.
Thesquareof 10 a
3 Copyandcomplete.
32 = 3 × 3 = a
4 Copyandcomplete.
Fluency
Example6Usingindexnotation
Writeeachproductusingindexnotation.
Solution
a 8 × 8 × 8 = 83
b 7 × 7 × 7 × 7 × 7 × 7 = 76
Nowyoutry
Writeeachproductusingindexnotation.
Explanation
Thenumber 8 appears 3 times.Wewrite 8 to thepowerof 3
The 7 appears 6 times.Wewrite 7 tothe powerof 6
5 Writeeachofthefollowingproductsusingindexnotation.
Example7Usingexpandednotation
Write 54 inexpandedform. a
Solution
a 54 = 5 × 5 × 5 × 5
b 54 = 625
Nowyoutry
Write 25 inexpandedform. a
6 Writeeachindexnotationinexpandedform.
Findthevalueof 54 b
Explanation
Thepowerof 4 tellsusthatthenumber 5 appears 4 times. 54 = 5 × 5 × 5 × 5
Findthevalueof 25 b
7 Findthevalueofthefollowingbyfirstwritingtheminexpandedform.
Example8Findingsquares,cubes,squarerootsandcuberoots
Evaluatethefollowing.
a 62 = 6 × 6 = 36
23 = 2 × 2 × 2 = 8
Nowyoutry Evaluatethefollowing.
Explanation
Findtheproductof 6 withitself.
8 Evaluatethesesquaresandsquareroots.
2 d
HintforQ8: 32 = 9 and √9 = 3 42 a 102 b 132 c
25 g
9 Evaluatethesecubesandcuberoots.
10 Decidewhichofthefollowingislarger.
23 or 32 a 24 or 32 b 25 or 52 c
11 Copyandcomplete.
If 132 = 169,then √169 = a If 152 =
,then √225 = b If √625 = 25,then 252 = c If 93 = 729,then 3 √729 = d
If 3 √1331 = 11,then 113 = e
12 Given 5 × 5 × 5 × 4 × 4 iswrittenas 53 × 42 (thedifferentbasesof 5 and 4 arekeptseparate),write eachofthefollowinginindexform.
× 12 × 4 × 4 ×
Algebraicindices
13 Writeeachofthefollowinginindexform.Remember,differentbasesarekeptseparate. HintforQ13:
p × p × p × q × q e
a × a × a × a × b × b f
a × a × b × b × b × b g
x × x × x × x × y h
Learningintentions
• Tounderstandthataprimenumberhasexactlytwofactorsandacompositenumberhasmorethantwofactors.
• Tobeableto ndthelowestcommonmultiple(LCM)oftwonumbers.
• Tobeableto ndthehighestcommonfactor(HCF)oftwonumbers.
Keyvocabulary: countingnumbers,multiple,factor,lowestcommonmultiple(LCM),highestcommonfactor(HCF), primenumbers,compositenumbers
Simplepropertiesofnumbersareattheheartofmorecomplexmathematicsandassociatedproblems.Prime numbersforexampleformthebasisofouronlinebankingencryptioncodesasitisverydifficulttofindthe primefactorsoflargenumbers.
In 60 seconds,writedownasmanynumbersasyoucanthatfiteachdescription.
• Multiplesof 7
• Factorsof 144
• Primenumbers
Compareyourlistswiththeresultsoftheclass.Whatisthelargestprimenumberthattheclass cameupwith?
A multiple ofanumberisobtainedbymultiplyingthenumberbythe countingnumbers 1, 2, 3, …
e.g.Multiplesof 9 include 9, 18, 27, 36, 45, … (thinkofyourmultiplicationtables).
The lowestcommonmultiple(LCM) isthesmallestmultipleoftwoormorenumbersthatis common.
e.g.Multiplesof 3 are 3, 6, 9, 12, 15 , 18, …
Multiplesof 5 are 5, 10, 15 , 20, 25, …
TheLCMof 3 and 5 istherefore 15
A factor ofanumberhasaremainderofzerowhendividedintothegivennumber.
e.g. 11 isafactorof 77 since 77 ÷ 11 = 7 with 0 remainder.
The highestcommonfactor(HCF) isthelargestfactoroftwoormorenumbersthatiscommon.
• Factorsof 24 are 1, 2, 3, 4, 6, 8, 12 , 24
• Factorsof 36 are 1, 2, 3, 4, 6, 9, 12 , 18, 36
• TheHCFof 24 and 36 istherefore 12
Primenumbers haveonlytwofactors:thenumberitselfand 1
• 2, 13 and 61 areexamplesofprimenumbers.
• 1 isnotconsideredtobeaprimenumber.(Ithasonlyonefactor.)
Compositenumbers havemorethantwofactors.
• 6, 20 and 57 areexamplesofcompositenumbers.
Und er stand ing
1 Writedownthefactorsofeachnumber. 4 a 6 b 12 c
2 Writedownthenextterm(multiple)ineachofthesepatterns.
2, 4, 6, 8, a 3, 6, 9, 12, b
7, 14, 21, d 6,
3
Thefactorsof 16 are 1, 2, 4, 8, 16
Thefactorsof 24 are 1, 2, 3, 4, 6, 8, 12, 24
Thefactorsof 18 are 1, 2, 3, 6, 9, 18
Thefactorsof 30 are 1, 2, 3, 5, 6, 10, 15, 30.
Thefactorsof 8 are 1, 2, 4, 8
Usingtheinformationgiveninthetable,writedowntheHCFofeach pairofnumbers.
,
,
,
,
,
,
,
,
HintforQ3:HCF istheHighest CommonFactor. 16 and 24 a 24 and 30 b 18 and 30 c 16 and 8 d 24 and 18 e 8 and 24 f 16 and 18 g 18 and 8 h
4 UsethefirstsixmultiplesofthenumbersgiventofindtheLCMofeach pairofnumbers.
Number Multiples
2 2, 4, 6, 8, 10, 12
4 4, 8, 12, 16, 20, 24
3 3, 6, 9, 12, 15, 18
5 5, 10, 15, 20, 25, 30
6 6, 12, 18, 24, 30, 36
2 and 4 a 4 and 3 b 3 and 6 c 4 and 6 d 4 and 5 e 5 and 6 f
Fluency
Example9Workingwithprimesandcomposites
HintforQ4:LCM istheLowest CommonMultiple.
5,6,7–8(½)
Decidewhethereachofthefollowingisaprimenumberoracompositenumber.
29 a 63 b
Solution
5,6,7–8(½)
Explanation
a 29 isaprimenumber 29 hasonly 2 factors— 1 and 29.Itisaprime number.
b 63 isacompositenumber 63 hasfactors 1, 3, 7, 9, 21, 63
Nowyoutry
Decidewhethereachofthefollowingisaprimenumberoracompositenumber.
39 a 53 b
5 Decidewhethereachofthefollowingnumbersisprime orcomposite.
7 a 12 b 27 c 69 d 105 e 28 f 15 g 11 h 31 i 37 j 49 k 99 l
6 Choosetheprimenumbersfromthefollowinglist:
FindtheLCMof 6 and 8
Solution
Multiplesof 6 are:
6, 12, 18, 24, 30, …
Multiplesof 8 are:
8, 16, 24, 32, 40,
TheLCMis 24.
Nowyoutry
FindtheLCMof 4 and 10
7 FindtheLCMofthesepairsofnumbers.
2, 3 a 5, 9 b 8, 12 c 4, 8 d 25, 50 e
,
FindtheHCFof 36 and 48.
Solution
Factorsof 36 are:
1, 2, 3, 4, 6, 9, 12, 18, 36
Factorsof 48 are:
1, 2, 3, 4, 6, 8, 12, 16, 24, 48
TheHCFis 12
Nowyoutry
FindtheHCFof 24 and 32
8 FindtheHCFofthesepairsofnumbers.
6, 8 a 18, 9 b
HintforQ5:Primeshaveexactlytwo factors,compositeshavemorethan twofactors.
, 25, 26, 27, 28, 29, 30.
,
,
,
,
,
Explanation
First,listsomemultiplesof 6 and 8
Continuethelistsuntilthereisatleastonein common.
Choosethesmallestnumberthatiscommonto bothlists.
Explanation
First,listfactorsof 36 and 48
Choosethelargestnumberthatiscommonto bothlists.
, 24 c 24, 30 d
, 13 e 19, 31 f 72, 36 g 108, 64 h 6, 4 i 6, 12 j 8, 24 k 15, 25 l
9 Find:
theLCMof 8, 12 and 6 a
theLCMof 7, 3 and 5 b
theHCFof 20, 15 and 10 c
theHCFof 32, 60 and 48 d
9–119,11,12
10 Ateacherhas 64 studentstodivideintoequalgroupsofgreaterthan 2 withnoremainder.Inhow manywayscanthisbedone?
11 Belowarethenumbers 1 to 100 Listalltheprimenumbers.Howmanynumbersareprimenumbers?
12 Threesetsoftrafficlights(A,BandC)allturnredat9:00amexactly.LightsetAturnsredevery 2 minutes,lightsetBturnsredevery 3 minutesandlightsetCturnsredevery 5 minutes. Howlongdoesittakeforallthreelightstoturnredagainatthesametime?
13 Goldbach’sconjecture isafamousmathematicalstatementthatsaysthateveryevennumbergreater thantwocanbewrittenasthesumoftwoprimenumbers.
Theevennumbers 4, 6 and 8 havebeenwrittenasthesumoftwoprimes. Showhowtheevennumbers 10 to 30 canbewrittenasthesumoftwoprimes.Somecanbedonein morethanoneway.
4 = 2 + 2
6 = 3 + 3
8 = 3 + 5 10 = 12 = 14 = 16 = 18 = 20 = 22 = 24 = 26 = 28 = 30 = Thefirsttenprimenumbers.
AgraphillustratingGoldbach’sconjectureuptoandincluding 50 isobtainedbyplotting thenumberofwaysofexpressingevennumbersgreaterthan 4 asthesumoftwoprimes.
14 Twinprimesarepairsofprimenumbersthatdifferby 2.Ithasbeensuggestedthatthereareinfinitely manytwinprimes.UsethetableofprimesyoucreatedinQuestion 11 ofthisexerciseandlistthepairs oftwinprimeslessthan 100
Learningintentions
• Tobeabletowriteanumberasaproductofprimefactors.
• Tobeabletoconstructafactortree.
• Tobeabletousethedivisibilitytestsforsingle-digitfactorsotherthan 7.
• Tounderstandhowthelowestcommonmultipleandhighestcommonfactoroftwonumberscanbefoundusing theirprimefactorform.
Keyvocabulary: primenumber,factortree,highestcommonfactor(HCF),lowestcommonmultiple(LCM),divisibility tests,primefactorisation
Everywholenumbergreaterthan 1 canbe writtenasaproductofprimenumbers,e.g. 6 = 3 × 2 and 20 = 2 × 2 × 5
Writingnumbersasaproductofprimenumbers canhelptosimplifyexpressionsanddetermine otherpropertiesofnumbersorpairsofnumbers.
Totestifanumberisdivisibleby 2,wesimply needtoseeifthenumberisevenorodd.All evennumbersaredivisibleby 2.Asaclass, canyoudescribedivisibilitytestsforanyofthe following?
• Divisibleby 3
• Divisibleby 4
• Divisibleby 5
• Divisibleby 6
• Divisibleby 8
• Divisibleby 9
• Divisibleby 10
Afactortreecanbeusedtoseehowanumbercanbebroken downintoitsprimefactors.
A factortree isanillustratedbreakdownofanumberintoitsprimefactors.
Primefactorisation usesafactortree,orsimilar,towriteanumberasaproduct ofitsprimefactors.
e.g. 12 = 2 × 2 × 3 or 22 × 3 (usingindices)
The highestcommonfactor(HCF) canbefoundusingprimefactors.
TheHCF=Allcommonprimesraisedtothesmallestpower.
e.g. 12 = 22 × 320 = 22 × 5 Â HCF = 22 or 4
The lowestcommonmultiple(LCM) canbefoundusingprimefactors.
TheLCM = Alldifferentprimesraisedtothehighestpower.
e.g. 12 = 22 × 320 = 22 × 5 Â LCM = 22 × 3 × 5 = 60
Divisibilitytests
Anumberis:
• divisibleby 2 ifitiseven(endswiththedigit 0, 2, 4, 6 or 8),e.g. 24
• divisibleby 3 ifthesumofallthedigitsisdivisibleby 3
e.g. 162 where 1 + 6 + 2 = 9,whichisdivisibleby 3
• divisibleby 4 ifthenumberformedbythelasttwodigitsisdivisibleby 4
e.g. 148 where 48 isdivisibleby 4
• divisibleby 5 ifthelastdigitisa 0 or 5
e.g. 145 or 2090
• divisibleby 6 ifitisdivisiblebyboth 2 and 3
e.g. 456 where 6 isevenand 4 + 5 + 6 = 15,whichisdivisibleby 3
• divisibleby 8 ifthenumberformedfromthelast 3 digitsisdivisibleby 8,orifthelastthree digitsare 000
e.g. 2112 where 112 isdivisibleby 8 and 2000 whichendsin 000
• divisibleby 9 ifthesumofallthedigitsaredivisibleby 9
e.g. 3843 where 3 + 8 + 4 + 3 = 18 whichisdivisibleby 9
• divisibleby 10 ifthelastdigitisa 0
e.g. 4230
• Thereisnosimpletestfor 7
1 Givethemissingnumbersinthesefactortrees.
2 Givethemissingwordornumber.Anumberisdivisibleby:
5 ifthelastdigitis 0 or a
2 ifthelastdigitis b
10 ifthelastdigitis c
8 ifthenumberformedbythelast digitsisdivisibleby 8 d
6 ifitisdivisiblebyboth 2 and . e
3 ifthesumofthedigitsisdivisibleby f
9 ifthe ofthedigitsisdivisibleby 9 g
4 ifthenumberformedbythelast digitsisdivisibleby 4 h
Useafactortreetowrite 300 asaproductofprimefactors.
Solution
Explanation
First,divide 300 intotheproductof any two factors. Choosetheeasiestpair.
300 = 30 × 10
Continuedividingnumbersintotwofactors untilthefactorsareprime.
Circletheprimefactors.
Writethefactorsinascendingorder.
Useindexnotation(powers)toabbreviateyour answer.
Useafactortreetowrite 224 asaproductofprimefactors.
3 Copyandcompletethesefactortreestohelpwritetheprimefactorformofthegivennumbers.
4 Useafactortreetofindtheprimefactorformofthesenumbers.
Usedivisibilityteststodecideifthenumber 627 isdivisibleby 2, 3, 4, 5, 6, 8 or 9
Solution
Explanation
Notdivisibleby 2 since 7 isodd.Thelastdigitneedstobeeven.
Divisibleby 3 since 6 + 2 + 7 = 15 and thisisdivisibleby 3
Notdivisibleby 4 as 27 isnotdivisible by 4
Notdivisibleby 5 asthelastdigitisnot a 0 or 5
Notdivisibleby 6 asitisnotdivisible by 2
Notdivisibleby 8 asthelast 3 digits togetherarenotdivisibleby 8
Notdivisibleby 9 as 6 + 2 + 7 = 15 whichisnotdivisibleby 9
Nowyoutry
Thesumofallthedigitsneedstobedivisibleby 3
Thenumberformedfromthelasttwodigitsneedsto bedivisibleby 4
Thelastdigitneedstobea 0 or 5
Thenumberneedstobedivisiblebyboth 2 and 3
Thenumberformedfromthelastthreedigitsneedsto bedivisibleby 8
Thesumofallthedigitsneedstobedivisibleby 9
Usedivisibilityteststodecideifthenumber 342 isdivisibleby 2, 3, 4, 5, 6,
5 Usedivisibilityteststodecideifthesenumbersaredivisibleby 2,
or 9.
,
HintforQ5:Dotheseventests oneachnumber.
FindtheLCMandHCFof 105 and 90,usingprimefactorisation.
Solution
105 = 3 × 5 × 7 90 = 2 × 32 × 5
LCM = 2 × 32 × 5 × 7 = 630
HCF = 3 × 5 = 15
Nowyoutry
Explanation
First,expresseachnumberinprimefactorform. Notethat 3 and 5 arecommonprimes.
FortheLCMincludeallthedifferentprimes, raisingthecommonprimestotheirhighest power.
FortheHCFincludeonlythecommonprimes raisedtothesmallestpower. 105 and 90 both haveone 3 andone 5.
FindtheLCMandHCFof 18 and 42,usingprimefactorisation.
6 CopyandcompletethistableofLCMsandHCFs.
7 Findthehighestcommonprimefactorsofthesepairsofnumbers.
8 FindtheLCMandtheHCFofthesepairsofnumbers,usingprimefactorisation.
,
Problem-solving and reasoning 9 9,10
9 Whatisthesmallestnumberthatcanbedivided,withoutgivingaremainder,byallofthefollowing fournumbers? 2, 3,
10 NanaMagoo’stwograndchildrenlovetovisither.Lachlanvisitsherevery 8 dayswhileBrycevisitsevery 18 days.TheybothvisitedherlastMonday. Howmanydayswillitbefromthatvisitbeforetheybothvisitheronthe samedayagain?
HintforQ10:You mightliketomakea listtohelpyouhere!
Findthemissingdigit 11
11 Usethedivisibilityrulesgiventoyouatthestartofthissectiontofindthemissingdigitforeachof thefollowing.Insomecasestheremightbemorethanonedigitthatworks.Inthesecases,listall thepossibleanswers.
2 6 ifthenumberisdivisibleby 3 (remembertolistallpossibleanswers). a
1 35 ifthenumberisdivisibleby 9 b
4 3 ifthenumberisdivisibleby 3. c
4 3 ifthenumberisdivisibleby 3 and 9. d
276 ifthenumberisdivisibleby 2. e
276 ifthenumberisdivisibleby 2 and 5. f
1 1A Evaluatethesesumsandthesedifferencesmentally.
2 1A Useanalgorithmtofindthesesumsandthesedifferences.
3 1B Useamentalstrategytoevaluatethefollowing.
4 1B Useanalgorithmtoevaluatethefollowing.
5 1C Writeeachproductinindexnotation.
7 × 7 × 7 × 7 a 5 × 5 × 2 × 2 × 2 b 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 c
6 1C Evaluatethefollowing.
7 1D FindtheLCMofthesepairsofnumbers.
8 1D FindtheHCFofthesepairsofnumbers.
9 1E Useafactortreetowrite 240 asaproductofprimefactors.
10 1E Usedivisibilityteststodecideif 72 isdivisibleby 2, 3, 4, 5, 6, 8,or 9
11 1E FindtheLCMandHCFof 40 and 110,usingprimefactorisation.
Learningintentions
• Tounderstandthatintegerscanbenegative,zeroorpositive.
• Tounderstandhowtouseanumberlinetoaddorsubtractpositiveintegers.
• Tobeabletoaddapositiveintegertoanegativeinteger.
• Tobeabletosubtractapositiveintegerfromapositiveornegativeinteger.
Keyvocabulary: integer,positivenumber,negativenumber,numberline
TheIndianmathematicianBrahmaguptasetoutrulesfornegativenumbersinthe 7thcentury. Today,negativenumbersareusedinscience,engineeringandbusiness.Theyhelpusdescribeopposites suchasleftandright,upanddown,profitandloss,andtemperaturesaboveandbelowfreezing.
Negativenumberare usedtodescribe temperaturesbelow freezing(i.e.below 0° C).
Describehowtousenegativenumbersinthesesituations.
• 6°Cbelowzero
• Alossof $4200
• 150 mbelowsealevel
• Aturnof 90° anticlockwise
• Thesolutiontotheequation x + 5 = 3
Canyoudescribeanothersituationinwhichyoumightmakeuseof negativenumbers?
Negativenumbers arenumberslessthanzero.
The integers are , −4, −3, −2, −1, 0, 1, 2, 3, 4
• Theseinclude positive integers(naturalnumbers),zeroandnegativeintegers.
• Theseareillustratedclearlyona numberline 110 2 2 3 4 3 4
Zero
negative numbers
Valuesdecreaseasyoumovetothe leftalongthenumberline
positive numbers
Valuesincreaseasyoumovetotheright alongthenumberline
Addingorsubtractingapositiveintegercanresultinapositiveornegativenumber.
• Addingapositiveinteger
2 + 3 = 5
• Subtractingapositiveinteger
Und er stand ing
1 Writedownthenumbersuggestedby:
2 Copythenumberlinebelowandmark(withadot)theintegers −3, −1, 1, 3 and 5
3 Writethesymbol < (lessthan)or > (greaterthan)tomakethesestatementstrue.
4 Whatisthefinaltemperature?
Example15Addingapositiveinteger
Evaluatethefollowing.
Nowyoutry
Evaluatethefollowing.
5 Evaluatethefollowing.
−1 + 2 a
−10 + 11 c
+ 7 b
+ 12 d
−20 + 35 e −6 + 4 f
−7 + 2 g −15 + 8 h
−26 + 19 i −38 + 24 j
−10 + 15 k −2 + 9 l
−7 + 3 m
−6 + 9 o
Example16Subtractingapositiveinteger
Evaluatethefollowing. 3−7 a
b
+ 7 n
+ 1 p
3−7 = −4
−2−3 = −5
Nowyoutry
Evaluatethefollowing.
13−20 a −8−17 b
6 Evaluatethefollowing.
4−5 a 10−15 b
0−26 c 14−31 d
6−8 e 10−9 f
−4−7 g −11−20 h
−14−15 i −10−100 j
−11−6 k 0−12 l
−15−5 m 3−12 n
8−4 o −8−4 p
7 Evaluatethefollowing.
−9 + 6 a −9−6 b
HintforQ5:Start withtheleftnumber andmoverighton thenumberline.
HintforQ6:Start withtheleftnumber andmovelefton thenumberline.
+ 12 c
d −7−7 e −7 + 0 f 15−14 g 15−16 h −9−10 i
+ 10 j
k
+ 10 l 100−101 m
n
8 Workfromlefttorighttoevaluatethefollowing.
+ 25 o
+ 40 p
−3 + 4−8 + 6 a 0−10 + 19−1 b 26−38 + 14−9 c 9−18 + 61−53 d
9 Writethesum(e.g. −3 + 4 = 1)ordifference(e.g. 1−5 = −4)tomatchthesenumberlines.
10 Writethemissingnumber.
11 Inahigh-risebuildingthereare 8 floorsabove groundleveland 6 floorsbelowgroundlevel. Aliftstartsatthe 2ndfloorandmoves 4 floorsup, then 7 floorsdownbeforemovingdowna further 3 floors.
Atwhatfloordoestheliftfinish?
12 OnMondayMillyborrows $35 fromafriend. OnTuesdayshepaysherfriend $40.OnFriday sheborrows $42 andpaysback $30 thatnight. HowmuchdoesMillyoweherfriendthen?
CompleteSuzanne’saccountfortheweekshown.Acreditisanaddition (+) andadebitisa subtraction ( )
Spendingandearning
openingbalance
pays 1 week’srentof $375 375 earns $80 babysitting receives $100 fromherparentsforherbirthday buysapairofjeansfor $90 buysatopfor $45 payshermonthlymobilephonebill $49 gives $25 tocharity
HowmuchwouldSuzanneneedtodeposit(credit)intoheraccountsothatshecanpaytherentfor thenextweek?
14 Findwhatintegerneedstobeaddedorsubtractedtoeachsothattheendresultisalwayszero.
Learningintentions
• Tounderstandthataddinganegativenumberisthesameassubtractingitsopposite.
• Tounderstandthatsubtractinganegativenumberisthesameasaddingitsopposite.
• Tobeabletoaddorsubtractnegativeintegers.
Keyvocabulary: integer,positivenumber,negativenumber,opposite
If + represents +1 and represents −1 then + addedtogetherhasavalueofzero.
Usingthesesymbols, 5 + (−2) = 3 couldbeillustratedastheadditionof 2 ,leavingabalanceof 3
So 5 + (−2) isthesameas 5−2.
Also 5− (−2) = 7 couldbeillustratedfirstas 5 + and 2 togetherthensubtractingthe 2
So 5− (−2) isthesameas 5 + 2
Whenaddingorsubtractingnegativeintegerswefollowtherulessetoutbytheabovetwoillustrations, aswellasthepatternsbelow.
Lessonstarter:Lookingatpatternsforaddingandsubtracting negativenumbers
Copyandcomplete.
64 + 10
63 + 9
6 2 + 8
61 + 60 +
6(1)+−→ same as 615 −=
6(2) +− → same as 62 =
6 ( 3)+− → same as 63 =
6 ( 4)+− → same as 64 =
6(1) → same as 61+=
6(2) → same as
6(3) → same as 6(4) → same as
The opposite ofanumberdiffersbyafactorof −1
e.g.Theoppositeof 7 is −7 andtheoppositeof −12 is 12
Addinga negativenumber isthesameassubtractingitsopposite.
e.g. 2 + (−3) = 2−3 = −1 twooppositesignsgiveasubtraction/minus −4 + (−7) = −4−7 = −11
Subtractinganegativenumberisthesameasaddingitsopposite.
e.g. 2− (−5) = 2 + 5 = 7 twolikesignsgiveanaddition/plus −6− (−4) = −6 + 4 = −2
Und er stand ing 1–3 3
1 −3 and 3 areopposites.Writedowntheoppositesofthesenumbers.
2 Writethewords‘add’or‘subtract’tosuiteachsentence. Toaddanegativenumber, itsopposite. a Tosubtractanegativenumber, itsopposite. b
3 Arethefollowingstatementstrue(T)orfalse(F)? 5 + (−2) = 5 + 2 a 3 + (−4) = 3−4 b
+ (−4) = −6−4 c −1 + (−3) = 1−3 d 8− (−3
(
Fluency
Example17Addingnegativenumbers
Evaluatethefollowing. 10 + (−3) a −3 + (−5) b
Solution
a 10 + (−3) = 10−3 = 7
b −3 + (−5) = −3−5 = −8
Explanation
Adding −3 isthesameassubtracting 3
1011987 6 + and =
Adding −5 isthesameassubtracting 5
+ and =
Nowyoutry
Evaluatethefollowing. 24 + (−7) a −13 + (−5) b
4 Evaluatethefollowing.
6 + (−2) a 4 + (−1) b
+ (−12) c
+ (−5) d 2 + (−4) e
+ (−20) i
+ (−40) f
+ (−50) j
+ (−6) g
+ (−22) k
+ (−5) h
+ (−10) l 7 + (−8) m
+ (−12) n 6 + (−12) o
+ (−12) p −8 + (−8) q 5 + (−5) r
+ (−15) s
Example18Subtractingnegativenumbers
Evaluatethefollowing.
4− (−2) a
Solution
a 4− (−2) = 4 + 2 = 6
b −11− (−6) = −11 + 6 = −5
Nowyoutry
Evaluatethefollowing.
(−12) a
5 Evaluatethefollowing.
(−14) d
HintforQ4:Toadda negative,subtract itsopposite.
+ (−6) t
(−6) b
Explanation
Subtracting −2 isthesameasadding 2 7654 3 and =+
Subtracting −6 isthesameasadding 6 7 8 9 10 11 12
(−4) b
(−13) e
(−320) f −5− (−3) g
(−10) h
HintforQ5:To subtractanegative, additsopposite. 2− (−3) a
(−16) i −10− (−42) j
(−5) m
(−18) p
(−8) s
(−31) k
(−5) n
(−41) q
(−12) t
6 Evaluatethefollowingmixedproblems.
+ (−50) b
+ (−12) d
g
(−5) l
(−12) o
(−52) r
c
+ 6 e
+ (−15) h
(−6) f
+ (−7) i
7 Anicecubeisremovedfromafreezerat −25°Candplacedinto aglassofjuiceat 7°C.Whatisthedifferencebetweenthetwo temperatures?
8 Kelvinowesthebank $450000.Whatmusthedepositintohisaccounttoonlyowe $270000?
9 Statethemissingnumberineachofthefollowing.
10 Anadditionfactlike 2 + 3 = 5 canbeusedtogeneratetwosubtractionfacts: 5−2 = 3 and 5−3 = 2
Writetwosubtractionfactsthatcanbegeneratedfrom 4 + 6 = 10. a
Writetwosubtractionfactsthatcanbegeneratedfrom 7 + (−2) = 5 b
Explainwhy 5− (−6) = 11 byusinganadditionfactinvolving 5, −6 and 11. c
11 If a = −5 and b = −3,findthevalueof:
12 Writedownthemissingnumber. 4 + = 1 a 6 + = 0 b −2 + = −1 c + (−8) = 2 d + (−5) = −3 e + (−3) = −17 f 12− = 14 g 8− = 12 h −1− = 29 i (−7) =
Puzzleswithnegatives
HintforQ11:Replacethe pronumeralinthestatement withthenumberitrepresents. e.g. a = −2 then a + (−5) = −2 + (−5) = −2−5 = −7
13 Placetheintegersfrom −3 to 2 inthismagictrianglesothateachsideaddsto thegivennumber.
−3 a 0 b
14 Amagicsquarehaseachrow,columnanddiagonalsaddingtothesamemagicsum. Completethesemagicsquares.
Learningintentions
• Tounderstandthattheproductorquotientoftwointegerswillbepositiveifthetwointegershavethesamesign.
• Tounderstandthattheproductorquotientoftwointegerswillbenegativeifthetwointegershaveoppositesigns.
• Tobeabletouseorderofoperationswithintegers.
Keyvocabulary: sign,integer,positiveinteger,negativeinteger,product,quotient,orderofoperations
Asarepeatedaddition,theproduct 3 × (−2) canbewrittenas −2 + (−2) + (−2) = −6.So 3 × (−2) = −6 and, since a × b = b × a forallnumbers a and b,then −2 × 3 isalsoequalto −6
Fordivisionwecanwritetheproduct 3 × 2 = 6 asaquotient 6 ÷ 2 = 3
So,if 3 × (−2) = −6 then −6 ÷ (−2) = 3
Alsoif −2 × 3 = −6 then −6 ÷ 3 = −2
Thequotientoftwonegativenumbersresultsinapositivenumber,andtheproductorquotientoftwo numbersofoppositesignisanegativenumber.
Also, 6 ÷ (−2) = −3 canalsoberearrangedto −3 × (−2) = 6.Sotheproductoftwonegativenumbersis apositivenumber.
• Writethemissingnumbersinthesetables.Youshouldcreateapatterninthethirdcolumn.
• Writethemissingnumbersinthesesentences.Usethetablesabovetohelp.
3 × 5 = so 15 ÷ 5 = a −3 × 5 = so −15 ÷ 5 = b
3 × (−5) = so −15 ÷ (−5) = c −3 × (−5) = so 15 ÷ (−5) = d
The product or quotient oftwo integers ofthesame sign isa positiveinteger.
• Positive × Positive = Positive
• Positive ÷ Positive = Positive
• Negative × Negative = Positive
• Negative ÷ Negative = Positive
Theproductorquotientoftwointegersofoppositesignsisa negativeinteger
• Positive × Negative = Negative
• Positive ÷ Negative = Negative
• Negative × Positive = Negative
• Negative ÷ Positive = Negative
Und er stand ing 1–3 3
1 Choosethecorrectwordstocompleteeachsentence.
Theproduct (×) orquotient (÷) oftwonumbersofthe signisa integer. a
Theproduct (×) orquotient (÷) oftwonumbersofthe signisa integer. b
2 Withoutfindingtheanswertotheseproducts,decideiftheanswerwouldbepositiveornegative.
3 Withoutfindingtheanswertothesequotients,decideiftheanswerwouldbepositiveornegative.
Fluency
Example19Findingproductsofintegers
Evaluatethefollowing. 3 × (−7) a
Solution
× (
Explanation
a 3 × (−7) = −21 Theproductoftwonumbersofoppositesignisnegative. + × =
b −4 × (−12) = 48−4 and −12 arebothnegativeandsotheproductwillbepositive. × =+
Nowyoutry
Evaluatethefollowing. −4 × 6 a −7 × (−11) b
4 Evaluatethefollowing.
Example20Findingquotientsofintegers
Evaluatethefollowing.
−63 ÷ 7 a −121 ÷ (−11) b
Solution
Explanation
a −63 ÷ 7 = −9 Thetwonumbersareofoppositesignssotheanswerwillbenegative. ÷+ =
b −121 ÷ (−11) = 11−121 and −11 arebothnegativesothequotientwillbepositive. ÷ =+
Nowyoutry
Evaluatethefollowing.
÷ (−8) a
5 Evaluatethefollowing. −10 ÷ 2 a
÷ (−9) b
÷ 19 b
÷ 15 c −120 ÷ 4 d 32 ÷ (−16) e
6 ÷ (−2) g
÷ (−3) j
÷ (−6) m
÷ 2 f
÷ (−2) h −12 ÷ 6 i
÷ 5 k
÷ (−5) n
÷ (−9) l
÷ 1 o −8 ÷ (−1) p
6 Decideiftheanswertothefollowingis −2
8 ÷ (−2) a −1 × (−2) b
−10 ÷ 5 c −16 ÷ 8 d −2 × 1 e −2 × 0 f
7 If (−2)2 = −2 × −2 = 4,findthevalueofthefollowing.
(−5)2 a (−6)2 b (−7)2 c (−8)2 d (−9)2 e (−10)2 f
Problem-solving and reasoning
8 Writethemissingnumber. × 3 = −9 a × (−7) = 35 b × (−4) = −28 c −3 × = −18 d
−19 × = 57 e ÷ (−9) = 8 f ÷ 6 = −42 g 85 ÷ = −17 h
−150 ÷ = 5 i
9 Will (−2)3 giveapositiveornegativeanswer?Explainwhy.
10 Insert × and/or ÷ signstomaketheseequationstrue.
−2 3 (−6) = 1 a
10 (−5) (−2) = 25 b
6 (−6) 20 = −20 c
−14 (−7) (−2) = −1 d
11 Theproductoftwonumbersis −24 andtheirsumis −5.Whatarethetwonumbers?
Bracketplacements
12 Insertbracketsinthesestatementstomakethemtrue.
−2 + 1 × 3 = −3 a −10 ÷ 3− (−2) = −2 b
−8 ÷ (−1) + 5 = −2 c −1−4 × 2 + (−3) = 5 d
−4 + (−2) ÷ 10 + (−7) = −2 e 20 + 2−8 × (−3) = 38 f 1− (−7) × 3 × 2 = 44 g 4 + (−5) ÷ 5 × (−2) = −6 h
Learningintentions
• Tounderstandtherulesfororderofoperations
• Tobeabletoevaluatenumericalexpressionsusingtheorderofoperations
• Tobeabletosubstituteintegersforpronumeralsinordertoevaluateexpressions
Keyvocabulary: Orderofoperations,brackets,evaluate,substitute
Anexpressionsuchas a + 2 × b canbeevaluated ifweknowthevaluesof a and b.Theexpression includestheoperationsaddition(listedfirst)and multiplication;however,byconvention,weknow thatmultiplicationisdonebeforetheaddition.In thissectionwewilldealwithorderofoperations, usingbothpositiveandnegativeintegers.
Expansionjointspreventbridgesfrombuckinginhotweather. Engineersapplytheorderofoperationsaftersubstitutingvalues forthebridgelength, Lm,temperatures, t°Cto T °C,andagiven a valueintotheexpansionlengthformula: l = aL(T t)
Lessonstarter:Bracketplacement
Isitpossible,byinsertingbrackets,tomake 3 × 5−2 + 6 = 15 true?
Insertapairofbracketstomaketheequationcorrect. Trymakingupyourownsimilarproblem.
Therulesfororderofoperationsare:
• Dealwithoperationsinsidebracketsfirst.
• Dealwithpowers.
• Domultiplicationanddivisionnext,workingfromlefttoright.
• Doadditionandsubtractionlast,workingfromlefttoright.
Expressionscanbeevaluatedbysubstitutingnumbersforthegivenpronumerals.
Forexample:If a = −2 and b = −3,then a + 5b = −2 + 5 × (−3) = −2 + (−15) = −17
• Remember,forexample,that 5b means 5 × b and a 3 means a ÷ 3
10(74)2
Und er stand ing 1–3 2,3
1 Byfollowingtheorderofoperations,describetheoperationthatneedstobedonefirst.
2 + 3 × 9 a 10−2 ÷ 2 b 1 × 3 + 5 c
6 × (9−6) d (12 + 6) ÷ 2 e
2 Decideifbothsidesofthesesimplestatementsareequal.
(2 + 3) −1 = 2 + 3−1 a
(3 + (−2)) (−1) = 3 + (−2) (−1) b
5 × (2 + (−3)) = 5 × 2 + (−3) c
−8 × 2− (−1) = −8 × (2− (−1)) d
−10 ÷ 2−4 = −10 ÷ (2−4) e
−2 × 3 + 8 ÷ (−2) = (−2 × 3) + (8 ÷ (−2)) f
3 Statethemissingnumberstocompletetheworkingforthesesubstitutions.
a + 2b (a = −3, b = 4)
a + 2b = −3 + 2 × 4 = + = a 3 × (a b)(a = 5, b = −1) 3 × (a b) = 3 × (5− (−1)) = 3 × = b
Example21Usingorderofoperationswithpositiveintegers
Evaluatethefollowing.
10 + 5 × 3 a
15− (7−3) b
20 ÷ (2 × (5−3)) c
Solution
a 10 + 5 × 3 = 10 + 15 = 25
b 15− (7−3) = 15−4 = 11
c 20 ÷ (2 × (5−3))
= 20 ÷ (2 × 2)
= 20 ÷ 4 = 5
Nowyoutry
Evaluatethefollowing.
17−8 ÷ 4 a
10 × (15−9) b
27 ÷ (3 × (9−6)) c
Explanation
Multiplication (×) isdoneBEFOREaddition (+) 5 × 3 = 15
Bracketsneedtobedonefirst (7−3) = 4.Thendothe subtraction 15−4
Startwiththeinnermostbrackets (5−3)
Finishworkingwiththebrackets-wefollowtheorderof operationswithinthebrackets (2 × 2)
Thenthedivision 20 ÷ 4.
4 Findtheanswerstoeachofthefollowing.
12 + 5 × 2 a
10 × 2 + 6 c
(9−2) × 4 e
28 ÷ (2 × 7) g
24−6 × 3 b
15 ÷ 3−2 d
18− (12−8) f
56−5 × 10 h
120 + 200 ÷ 5 i 88 × 2 ÷ 8 j
12 ÷ (18 ÷ 6) k
55 ÷ 11 × 5 m
240 ÷ 10 × 2 o
16−18 ÷ 9 l
55−25 ÷ 5 n
58 + 100 ÷ 20 p
100−25 ÷ 5 q (24−9) × 3 r
5 Evaluate.
56−4 × 6 a 96 ÷ 4 + 3 × 6 b
150−7 × (10−3 × 2) c 12 × (13−8) × (24−18) d
7 + 30 ÷ (10 ÷ (7−5)) e
13− (6− (5−3)) × 3−1 f
Evaluatethefollowing.
5−6 × (−2) a −21 ÷ (5− (−2)) b 2 × 102 ÷ 5 c
Solution Explanation a 5−6 × (−2) = 5− (−12) = 17
Dothemultiplicationbeforetheadditionand rememberthat 5− (−12) = 5 + 12
b −21 ÷ (5− (−2)) = −21 ÷ 7 = −3
c 2 × 102 ÷ 5 = 2 × 100 ÷ 5 = 200 ÷ 5 = 40
Nowyoutry
Dealwithbracketsfirstandrememberthat 5− (−2) = 5 + 2
Dealwithpowersbeforeotheroperations. (Note: 2 × 102 ¢ 202.)
Evaluatethefollowing. 12−15 ÷ (−3) a (−3−5) × (7 + (−4)) b 4 × 32 ÷ 2 c
6 Evaluatethefollowing.Remembertousethenormalorderofoperations.
−2 × 3 × 5 a −6−2 × 3 b
× (−1) c −3 ÷ (−1) + 7 × (−2) d 6 × (−2) −10 ÷ (−5) e
+ 8 × (−2) ÷ (−16) f 20−10 ÷ (−5) × 2 g 0 × (−3) + 2 × (−30) h 35−10 ÷ (−2) + 0 i
7 Useorderofoperationstoevaluatethefollowing.
3 × (2−4) a (7− (−1)) × 3 b (−8 + (−2)) ÷ (−5) c
40 ÷ (8− (−2)) + 3 d 0 × (38− (−4)) × (−6) e −6 × (−1 + 3) ÷ (−4) f ((−2) + 1) × (8− (−3)) g (−6−4) ÷ (50 ÷ (−10)) h −2 × (8−7 × (−2)) i
8
Useorderofoperationstoevaluatethefollowing.
5 × 22 ÷ 10 a
7 + 32 × 2 b
6−42 × (−2) c
8 + 13 ÷ (−3) d
22 −32 e
33 ÷ 9 + 1 f
Substitutethegivenintegerstoevaluatetheexpressions.
a −3b with a = −2 and b = −4 a (a + b) ÷ (−5) with a = −7 and b = 2 b
a2 b3 with a = −2 and b = −3 c
Solution
a a −3b = −2−3 × (−4) = −2− (−12) = −2 + 12 = 10
b (a + b) ÷ (−5) = (−7 + 2) ÷ (−5) = −5 ÷ (−5) = 1
c a2 b3 = (−2)2 (−3)3 = 4− (−27) = 4 + 27 = 31
Nowyoutry
HintforQ8:Multiplicationand divisioniscalculatedbeforeaddition andsubtraction.
Explanation
Substitute a = −2 and b = −4 andthenevaluate, notingthat −2− (−12) = −2 + 12
Substitute a = −7 and b = 2 andthendealwith thebracketsbeforethedivision.
Usebracketswhensubstitutingintoexpressions withpowers.
(−2)2 = −2 × (−2) = 4 (−3)3 = −3 × (−3) × (−3) = −27
Substitutethegivenintegerstoevaluatetheexpressions.
4a + b with a = −3 and b = −4 a
a + (b ÷ (−2)) with a = −10 and b = −6 b
a3 b2 with a = −2 and b = −3 c
9 Evaluatetheseexpressionsusing a = −2 and b = 1.
a + b a
a b b
2a b c
b a d
a −4b e
3b −2a f
b × (2 + a) g
a (2− b) h
(2b + a) (b −2a) i
10 Evaluatetheseexpressionsusing a = −3 and b = 5
a + b2 a
a2 b b
b2 a c
b3 + a d
11 True(T)orfalse(F)?
5 + 9 = 5 + 3 × 3 a
10 + 2 × 7 = 12 + 7 b
18−6 + 5 = 12 + 5 c
3 × 5 × 6 = 15 × 6 d
120 ÷ 6 × 2 = 20 × 2 e
(5 + 3) × 9 = 8 × 9 f
11–1312–15
12 Insertoperationsymbols (+, , ×, ÷) betweenthenumberstomakeeachofthefollowing statementstrue.
5 4 9 = 0 a
5 4 9 = 11 b
5 4 9 = 41 c
13 Insertbracketsinthesestatementstomakethemtrue.
−2 + 1 × 3 = −3 a
−10 ÷ 3− (−2) = −2 b
−8 ÷ (−1) + 5 = −2 c
−1−4 × 2 + (−3) = 5 d
−4 + (−2) ÷ 10 + (−7) = −2 e
20 + 2−8 × (−3) = 38 f
14 Evaluatethefollowing.
3 × (−2)2 a
−2 × (−2)3 b
−16 ÷ (−2)3 c
−4 + √25 d
7− √16 e
−26 + 3 √27 f
−4 + 2 × 3 √8 g
−8 ÷ 3 √−64 + 1 h
−3 × (−2)3 + 4 i
15 Writeeachofthefollowingsituationsintomathematicalsymbolsandnumbers,andthencalculate. MurrayreceivesfourdollarsfromhisMumandsevendollarsfromhisDadaspocketmoneyeach weekfor 12 weeks.Howmuchmoneydoeshehaveattheendofthe 12 weeks?
a Araffleprizeconsistsof $5000 cashand 6 shoppingvoucherseachworth $500.Whatisthetotal valueoftheraffleprize?
c
b Sallyhasfiftydollars.Shebuysfourpensattwodollarseachandeightexercisebooksatthreedollars each.HowmuchchangedoesSallyget?
Afurnitureretailerneedsmanyskills includingbeingagoodcommunicatoranda successfulsalesperson.Theyneedtoapplythe mathematicsofmoneymanagementtostock orders,deliverycosts,insuranceandpayrates. Itisimportantthattheyknowtheirproducts andhaveoptionsforclients.Asuccessful retailerrelatestocustomersinaconfident, friendly,cheerfulandhelpfulmanner.
1 Aloungeroomfurniturebusinessadvertisesthatallloungesarereducedby $250.Whatisthesale priceonthefollowingloungescurrentlyinstock?
2-seaterleatherloungemarkedat $2340 a
2.5-seaterleatherloungewithchaisemarkedat $2599 b
3-seater + 2-seatersofasetmarkedat $2099 c
2-seaterreclinerloungeinfabricmarkedat $2249 d
7-seatercornerloungeinfabricmarkedat $4130. e
2 Floorstockisatermdescribingfurniturethathasbeendisplayedintheshowroomforcustomers totryout.Itisoftendiscountedforaquicksaleandisusuallyavailableforimmediatedelivery. Completethetablebelowtofindthesavingsoneachoftheseloungesandotheravailable productsfromthewholesalecentre.
Recliner 3-piece
Cornersuite
$4499
$2250
$3299 $1999
2.5-seaterleatherchaise $2295 $1999
Outdoorsofa
Occasionalchair
$1120 $895
$369 $149
3 Themodelsondisplayareavailableineitherleatherorfabric.
Findoutthedifferenceinthepricesofeachloungesuiteinleathercomparedwithfabric. a Onaverage,howmuchmoredoestheretailerchargefortheleathermodels? b
Model Leather Fabric Differenceinprice
ER 2 + chaise
$2099 $1499
DW 3450 R $2350 $1890
Ebony 3 + 2 $3495 $2599
Reclinerandconsole 3 $1149 $799
VictaEL + 1 $3297 $2599
4 JenandBraddecidetobuyagreyBostonChaiseloungesuite.Theyinvestigatetheiroptionsfromtwo differentoutletstofindthebestoverallpriceincludingdelivery. Whichisthebestbuyandbyhowmuch?
Option 1:CustomSofas
Leatherlounge $1999
Upgradeoncolourofleatherto
grey $160
Delivery $100
Option 2:LeisureLounges
Lounge—greyleather $2199
Delivery $70
5 Aloungesuitebusiness,LuxuryLounges,usesaspreadsheetfororders. HintforQ5:
a
b
c
CopythefollowingExcelspreadsheet.Formatallthenumbercells toNumberwith 0 d.p.andallpriceandcostcellstoCurrency with 0 d.p.
Ifleatherfurniturecosts 25% morethanfabric,enterformulas intothe‘Priceinleather’columntocalculatetheseprices.Seethe hintboxforextraclues.
EnterformulasincolumnGtocalculate‘Costoffurniture’andthe ‘Totalcostoforder’.Costswillbe $0 untilthenumbersofitemsare enteredfrompart d
• Toincreaseapriceby 25%, multiplyitby 1.25.
• Tofillformulasdowna column,dragthe’fillhandle’ down.
• CellG3 formula =
d
Useyourspreadsheettocalculatethetotalcostofeachofthefollowingorders.
Wilburbuysgardengnomesfromalocalsupplierandsellsthemforaprofit.Therearethreesizes ofgnomes:
Wilbursetsupabalancesheettokeeptrackofhisexpenditureandrevenue.Thefollowingincomplete exampleshowsfourtransactionsstartingfromaninitialbalanceof $0.Negativenumbersareusedto indicatemoneyleavinghisaccount,andpositivenumbersareusedformoneyenteringhisaccount.
Presentareportforthefollowingtasksandensurethatyoushowclearmathematicalworkings, explanationsanddiagramswhereappropriate.
a Explainwhythebalanceafterthefirsttransactiononthebalancesheetis $100
b Explainwhythebalanceafterthesecondtransactiononthebalancesheetis $56
c Thetableabovehastwomissingnumbers.
i WhatistheeffectonWilbur’sbalancewhenhesells 6 smallgnomes?
ii Whatisthenewbalanceafterhesellsthesegnomes?
d IfWilburpurchasesafurther 12 mediumgardengnomesfromthesupplierdeterminethe balanceattheendofthistransaction.
a TheproblemistodeterminesalestargetssothatWilburwillbeinprofit(withapositivebalance) attheendofamonth.Writedownalltherelevantinformationthatwillhelpsolvethisproblem.
b Drawupanemptybalancesheetusingthesameheadingsastheexampleabove.Allow 7 rows fortransactionsbutleavealltherowsblanksothatafreshsetoftransactionscanbemade.You canassumehisinitialbalanceis $0
ForpartofoneparticularmonthWilburstartedwithnognomesofanysizeandmakesthefollowing gardengnomepurchasesandsales.
• Purchases 30 small
• Purchases 25 medium
• Sells 9 small
• Purchases 15 large
• Sells 15 medium
• Sells 6 small
• Sells 3 large
c Enterthesetransactionsintoyourbalancesheetandcalculatethebalanceaftereach transaction.
d Statethefinalbalanceaftertheabovetransactionsarecompleted.
e DecidehowmanygnomesofeachtypeareremaininginWilbur’sstockattheendofthemonth.
f Byconsideringthebalancepositionfrompart d abovedetermineonecombinationofsalesusing anygnomesintheremainingstockthatmeansthatWilburwillmakeaprofitgreaterthan $200 inthemonth.Justifyyouranswerwithappropriatecalculations.
g Summariseyourresultsanddescribeanykeyfindings.
a HowmuchprofitdoesWilburmakewhenbuyingandsellingeachsizeofgnome?
b Wilburwantstomakeamonthlyprofitascloseto $200 aspossible.Chooseacombinationof gnomesthathecanbuyandselltoachievethis.Justifyyourchoicewithworking.
c Isitpossibletoachieveabalanceequalto $200 exactly?Justifyyouranswerwithworking.
Formulate
Evaluate
Inagameoftugofwar,aropeispulledinoppositedirectionsbytwoteams.Thecentreoftherope ismarkedbyaribbonandstartsatpositionzero.Thewinningteamwillmovetheribbonagiven distanceintheirdirection.Inthisactivity,wewilluseanumberlinetorecordthepositionofthe ribbonwhereoneteamispullinginthepositivedirectionandtheotherinthenegativedirection.The winneristheteamtomovetheribbonpastaparticularpoint.
Let’splayagameoftugofwarwithtwoteamsofequalability. TeamPos triestopulltotheright onthisnumberlineand TeamNeg triestopulltotheleft.Wewillassumethateitherteamcan successfullymoveupto 3 unitsintheirdirectiononanygiven 3-secondinterval.
a Usearandomnumbergeneratortogenerateamoveupto 3 unitsleftorright:Suggestions:
• Spreadsheet:=RANDBETWEEN (−3, 3)
• CAS:RandInt (−3, 3)
b Continuetocreaterandommovesleftorrightwithyourrandomnumbergeneratorandaddyour resultsintothistable.(Yournumbersinsertedintorow 3 onwardswillbedifferentfromthesample shownhere.)
c Assumethatiftheribbonreaches −5 or 5 then TeamNeg or TeamPos wins.Continueaddingto yourtableuntilthepositionoftheribbonisateither −5 or 5.Whichteamhaswonyourtugof war?
a Studythisflowchartwhichdescribesanalgorithmforplayingthetugofwargameoutlinedin part 1 above.Describewhatyouthinkthevariables i, a and b represent.
b Completethistableshowingthevaluesof i, a and b througheachpassoftheloopusingyour randomnumbergeneratortocalculatethevalueof a eachtime.Keepgoinguntil b reaches −5 or 5 or i = 10 Pass
Wewilluseaspreadsheettosimulatetheplayingoftheabovetugofwargamebutthistimetheribbon needstobepulledthroughto −10 or +10 foroneoftheteamstowin.
a Enterthefollowingintoaspreadsheet.
b FilldownatcellsA6,B6,C6,D6 andE6 uptoandincludingrow 25.Thiswillmeanthat 20 passes havetakenplace.
c EntertheformulaincellE1.Whatdoyouthinkthisformuladoes?
d PressFunctionF9 torunanothergameoftugofwar.Repeatforatotalof 10 gamesandrecord howmanytimesTeamPoswins,TeamNegwinsorthereisaDraw.
1 Hey,doyouknowwhatawisecrackeris?
Completethesumsabovetounlockthepuzzlecode.
2 Whatexplosiveeventwasintheyear 1000 CE?
Answerthefollowingmultiplicationsanddivisionstoworkoutthepuzzlecode.Writeyouranswer onanothersheetofpaper.
3 Usingthesymbols +, , ×, ÷,makeasmanysumsasyoucanthathave −5 astheiranswer.
Negative number operations
4 − (−3) = 4 + 3
4 + (−3) = 4 − 3
Multiplication and division
Substitution
a = −2, b = 5, c = −4
Whole numbers 0, 1, 2, 3, ....
Mental strategies
• 156 + 79 = 156 + 80 − 1 = 235
• 45 + 47 = 45 + 45 + 2 = 92
• 3 × 22 = 3 × 20 + 3 × 2 = 66
• 4 × 88 = 2 × 176 = 352
• 164 ÷ 4 = 82 ÷ 2 = 41
• 297 ÷ 3 = (300 ÷ 3) − (3 ÷ 3) = 99
2c − ab = 2 × (−4) − (−2) × 5 = −8 − (−10) = 2
use brackets with negatives
Primes (two factors)
2, 3, 5, 7, 11, 13 ...
factorisation
= 23 × 3
Properties
Order of operations
• Brackets, × and ÷ then + and − 10 × (−3) + 7 = −30 + 7 = −23
Multiples of 3: 3, 6, 9, 12 ...
Multiples of 4: 4, 8, 12 ∴ LCM = 12 HCF
Squares and cubes
= 16, √16 = 4 = 27, 3√27 = 3
than two factors 4, 6, 8, 12
Powers and indices
× 9 × 9 × 9 = 94
Factors of 8: 1, 2, 4, 8
Factors of 28: 1, 2, 4, 7, 14, 28
∴ HCF = 4
Divisibility
• 2 Last digit even.
• 3 Sum of digits divisible by 3.
• 4 Number from last 2 digits divisible by 4.
• 5 Last digit 0 or 5.
• 6 Divisible by 2 and 3.
• 8 Number from last 3 digits divisible by 8 or ends in 000.
• 9 Sum of digits divisible by 9.
• 10 Last digit 0.
AversionofthischecklistthatyoucanprintoutandcompletecanbedownloadedfromyourInteractiveTextbook.
1A 1
1A 2
1A 3
Icanusementaladditionandsubtractiontechniqueseffectively e.g.Evaluatethefollowingmentally:
a 347−39 b 125 + 127
Icanusetheadditionalgorithmwithwholenumbers e.g.Useanalgorithmtofindthissum. 938 + 217
Icanusethesubtractionalgorithmwithwholenumbers e.g.Useanalgorithmtofindthisdifference. 141 −86
1B 4
1B 5
1B 6
1C 7
1C 8
1C 9
Icanusementalmultiplicationanddivisiontechniqueseffectively e.g.Findthefollowingmentally:
a 5 × 160 b 464 ÷ 4
Icanusethemultiplicationalgorithmwithwholenumbers e.g.Useanalgorithmtoevaluate 412 × 25
Icanusethedivisionalgorithmwithwholenumbers e.g.Useanalgorithmtoevaluate 938 ÷ 13.
Icanwriteproductsusingindexnotation e.g.Write 8 × 8 × 8 usingindexnotation.
Icanconvertfromindexnotationtoexpandednotation e.g.Write 54 inexpandedform.
Icanfindthesquareandcubeofwholenumbers e.g.Find:
a 62 b 23
1C 10
1D 11
1D 12
1D 13
Icanfindthesquarerootandcuberootofcertainsmallwholenumbers e.g.Find: a √81 b 3 √64
Icanclassifyanumberasprimeorcomposite(orneither) e.g.Decidewhethereachofthefollowingisprimeorcomposite:
a 29 b 63
Icanfindthelowestcommonmultiple(LCM)oftwowholenumbers e.g.FindtheLCMof: 6 and 8
Icanfindthehighestcommonfactor(HCF)oftwowholenumbers e.g.FindtheHCFof: 36 and 48
1E 14 Icanwriteanumberastheproductofprimefactorsusingafactortree e.g.Write 300 asaproductofprimefactors.
1E 15 Icanusedivisibilityteststodetermineifanumberisdivisible by 2, 3, 4, 5, 6, 8 or 9 e.g.Decidewhether 627 isdivisibleby 2, 3, 4, 5, 6, 8 or 9
1E 16 Icanfindthelowestcommonmultiple(LCM)andhighestcommonfactor (HCF)oftwowholenumbersusingprimefactorisation e.g.FindtheLCMandHCFofthefollowingusingprimefactorisation: 105 and 90
1F 17 Icanaddapositiveintegertoanegativeinteger e.g.Evaluate:
a −5 + 2 b −1 + 4
1F 18 Icansubtractapositiveintegerfromanotherinteger e.g.Evaluate:
a 3−7 b −2−3
1G 19 Icanaddnegativeintegerstoanotherinteger e.g.Evaluate:
a 10 + (−3) b −3 + (−5)
1G 20 Icansubtractnegativeintegersfromanotherinteger e.g.Evaluate:
a 4− (−2) b −11− (−6)
1H 21 Icanfindtheproductofintegers
e.g.Evaluate:
a 3 × (−7) b −4 × (−12)
1H 22 Icanfindthequotientofintegers
e.g.Evaluate: a −63 ÷ 7 b −121 ÷ (−11)
1H 23 Icanuseorderofoperationswithintegers
e.g.Evaluate −7 + 6 × (−5).
1I 24 Icanuseorderofoperationstoevaluatenumericalexpressions e.g.Evaluatethefollowing.
a 10 + 5 × 3 b −20 ÷ 22 −1
1I 25 Icanuseorderofoperationstoevaluatenumericalexpressionsinvolving groupingsymbols e.g.Evaluatethefollowing.
a (7 + 2) × 5−6 b 10 ÷ (7−2) (−1)
1 1A Useamentalstrategytoevaluatethefollowing.
324 + 173 a 592−180 b
89 + 40 c 135−68 d 55 + 57 e
f
+ 998 g
2 1A Useamentalstrategytofindthesesumsanddifferences.
3 1B Useamentalstrategyfortheseproductsandquotients.
4 1B Findtheseproductsandquotientsusingsettingout.
5 1B Findtheremainderwhen 673 isdividedbythesenumbers.
6 1C Writeusingpowers.
7 1D Evaluate.
8 1D Findallthefactorsof 60 a
Findallthemultiplesof 7 between 110 and 150 b
Findalltheprimenumbersbetween 30 and 60 c
FindtheLCMof 8 and 6 d
FindtheHCFof 24 and 30 e
9 1E Writethesenumbersinprimefactorform.Youmaywishtouseafactortree. 36 a 84 b 198 c
10 1E Usedivisibilityteststodecideifthesenumbersaredivisibleby 2, 3, 4, 5, 6, 8 or 9 84 a 155 b 124 c
11 1E Writethenumbers 20 and 38 inprimefactorformandthenusethistohelpfindthefollowing.
LCMof 20 and 38 a HCFof 20 and 38 b
12 1F Evaluate.
−6 + 9 a
5−13 c
−62−14 e
−111 + 110 g
13 1G Evaluate.
5 + (−3) a
(−6) e
14 1H Evaluate.
× 2 a
÷ (−5) e
15 1H Copyandcomplete.
+ (−6) b
−24 + 19 b
−7−24 d
−194−136 f
−328 + 426 h
÷ (−16) f
12 = a (−1)2 = b
22 = c (−2)2 = d
32 = e (−3)2 = f
16 1I Evaluateusingtheorderofoperations.
2 + 3 × (−2) a
−3 ÷ (11 + (−8)) b
−2 × 3 + 10 ÷ (−5) c
−20 ÷ 10−4 × (−7) d
17 1I Substitute a = −2, b = 3 and c = −5 andevaluatetheseexpressions. ab + c a a2 b b
ac b c a + b + c d
) d
+ (
÷ (−27) h
1 1I 400 ÷ 5 × 2 isthesameas:
400 ÷ 10 A
× 2
2 1A Thesumanddifferenceof 97 and 49 are:
146 and 58 A
246 and 48 B
136 and 58 C
146 and 48 D
147 and 58 E
3 1E 561 isexactlydivisibleby:
4 1B 89 × 5 isthesameas:
90 × 4 A
90 × 5−1 × 5 B
89 × 10 × 2 C
178 × 10 D
450 E
5 1C 2 × 2 × 2 × 2 × 5 × 5 is:
24 × 52 A
2 × 4 + 5 × 2 B
24 + 52 C 107 D 1000 E
6 1D TheLCMof 22 × 3 × 5 and 2 × 7 is: 2 A
22 × 3 × 5 × 7 B
2 × 3 × 5 × 7 C
23 × 3 × 5 × 7 D 7 E
7 1F −15 + 12−3 equals:
8 1G −6 + (−4) isthesameas: −6−4 A
4
9 1C If 182 = 324,then √324 equals: 162 A
+ 6
10 1F If a = −2, b = 3 and c = −1 then a2 + bc equals:
A
1 Amonthlybankaccountshowsdepositsaspositivenumbersandpurchasesandwithdrawals (P + W) asnegativenumbers.
Details P + W Deposits
Openingbalance – – $250
Waterbill −$138 – a
Cashwithdrawal −$320 – b Deposit – c $115
Supermarket d – −$160
Deposit – $400 e
a
c
Findthevaluesof a, b, c, d and e
Ifthewaterbillamountwas $150,whatwouldbethenewvalueforletter e?
b Whatwouldthefinaldepositneedtobeifthevaluefor e was $0?Assumetheoriginalwater billamountis $138 asinthetableabove.
2 Twoteamscompeteataclubgamesnight.TeamAhas 30 playerswhileteamBhas 42 players. Howmanyplayersarethereintotal? a
d
Writeboth 30 and 42 inprimefactorform. b FindtheLCMandHCFofthenumberofplayersrepresentingthetwoteams. c Teamsareaskedtodivideintogroupswithequalnumbersofplayers.Whatisthelargestgroup sizepossibleifteamAandteamBmusthavegroupsofthesamesize?
Essentialmathematics:Whyanglerelationshipsand propertiesofgeometricalfiguresareimportant
Geometryknowledgeisappliedinpracticaloccupationsbyexpertssuchasarchitects,engineers, surveyors,jewellers,fashiondesigners,plumbers,builders,carpenters,sheetmetalworkersand urbanplanners.
Surveyorsuseparallellinegeometryfortheplacementofparallellinesonathleticstracks,sports courts,airportrunways,andtrainandtramtracks.
Fashiondesignersstartbysketchingafashionblock-figurewhichisahumanfiguredrawnusing onlygeometricalshapes,mostlyquadrilateralsandtriangles.Geometryknowledgeisthe foundationforcreatingoriginalfashiondesigns.
Builderscheckifahousewallframeisrectangularbymeasuringitstwodiagonals.Anydifference indiagonallengthsmeansthewallframeisaparallelogram,andthehousewouldbe‘outof square’ifthiserrorwasnotfixed.
Inrobotics,engineersemploythree-dimensionalcoordinatesystemstoprogramrobotstofollow specificroutesandcompleteallocatedtasks.
2AAnglesatapoint (Consolidating)
2BParallellines (Consolidating)
2CTriangles
2DQuadrilaterals
2EPolygons
2FSolids
2GThreedimensionalcoordinate systems
Establishpropertiesofquadrilaterals usingcongruenttrianglesandangle properties,andsolverelatedproblems explainingreasoning(AC9M8SP02)
Describethepositionandlocationof objectsin3dimensionsindifferent ways,includingusinga three-dimensionalcoordinatesystem withtheuseofdynamicgeometric softwareandotherdigitaltools (AC9M8SP03)
©ACARA
Ahostofadditionalonlineresources areincludedaspartofyourInteractive Textbook,includingHOTmathscontent, videodemonstrationsofallworked examples,auto-markedquizzesand muchmore.
1 Nametheseobjects.Choosefrom: A line AB B segment AB C point A D angle ABC.
2 Chooseacorrectanglenamefrom A ÒDEF B ÒSTU C ÒABC foreachgivendiagram.
3 Nametheseanglesas A acute B right C obtuse D straight E reflex F revolution
4 Namethetrianglethatfitsthedescription.Choosefrom A scalene B isosceles C equilateral D acute E right F obtuse.Drawanexampleofeachtriangletohelp.
Oneobtuseangle a 2 equallengthsides b Allanglesacute c 3 differentsidelengths d 3 equal 60° angles e onerightangle f
5 Namethesixspecialquadrilateralswithfoursides.Choosefrom A circle B square C parallelogram D line E triangle F rectangle G rhombus H hexagon I kite J trapezium K tetrahedron
6 Findthevalueof a inthesediagrams.
7 Thisdiagramincludesapairofparallellinesandathirdline (transversal).
Whatisthevalueof a? a
Whichpronumerals (b, c, d, e, f or g) areequalto a?Listin alphabeticalorder. b
Whichpronumerals (b, c, d, e, f or g) areequalto 50?Listin alphabeticalorder. c
8 Findthevalueof x intheseshapes,usingthegivenanglesum. Anglesum = 180° x° 20°
b
° a Anglesum = 360°
Learningintentions
• Tobeabletoclassifyanglesasacute,right,obtuse,straight,re exorarevolution.
• Tobeabletonameanglesinrelationtootherangles,forinstance,namingtheangleverticallyoppositeto agivenangle.
• Tobeabletodeterminetheanglesatapointusingangleproperties.
• Tobeabletorelatecompassbearingstoangles.
Keyvocabulary: acute,right,obtuse,straight,re ex,revolution,complementary,supplementary, verticallyopposite,perpendicular,compassbearing
Fromthreesimpleobjects–point,lineandplane–wecandevelopalltheelementsofgeometry, justastheGreekmathematicianEucliddidabout 2300yearsago.
Wecanstartbylookingattheanglesformed whenlinesmeetatapoint.
Whentwolinescross,differentanglesareformed, likeinthisexample.
• Isthereanother 60° angle?Why?
• Whatisthesizeofoneoftheobtuseangles?How didyouworkthisout?
• Arethereanystraightanglesinthediagram?
• Arethereanyreflexanglesinthediagram?
• Whatisarevolutionangle?
Typesofangles
Euclidis considered bymanyas the’father ofgeometry’ havingwritten aboutitaround 300BCE.
Specialpairsofanglesatapointinclude:
Complementary angles (addupto 90°)
• Supplementary angles (addupto 180°)
• Verticallyopposite angles(equal) a° a° •
° b° a + b = 180
b° a° a + b = 90
Anglesina revolution addupto 360° .
Twolinesare perpendicular iftheyintersectatrightangles (90°)
Eightpointcompassbearing
• Bearingsareusuallymeasuredclockwisefromnorth. (360°) N (0°) (315°) NW (270°) W (225°) SW S (180°) SE (135°) E (90°) NE (45°)
Und er stand ing
1 Writethemissingword.Choosefrom: equal,supplementary,complementary and perpendicular Anglesthataddto 90° arecalled angles. a Anglesthataddto 180° arecalled angles. b Iftwolinesmeetatrightangles (90°),thentheyaresaidtobe c Verticallyoppositeanglesare . d
2 Whattypeofanglearethefollowing?
3 Completethesesentencesforthisdiagram. b° and c° are angles. a a
HintforQ1:Choose from: acute,right,obtuse, straight,reflexorrevolution
and e
are angles. b
4 Estimatethesizeoftheseangles.
ÒAOB a ÒAOC b Reflex ÒAOE c
Fluency
Example1Namingangles
Nameananglewhichis:
verticallyoppositeto ÒDOE a complementaryto ÒCOB b supplementaryto ÒEOA c
Solution
5,6,7(½),85,7,8
Explanation
a ÒAOB ÒDOE and ÒAOB areequalandsitopposite eachother.
b ÒBOA ÒCOB and ÒBOA addto 90°
c ÒDOE (or ÒAOB)
Nowyoutry
Nameananglewhichis:
verticallyoppositeto ÒPOQ a complementaryto ÒMOR b supplementaryto ÒMOQ c
5 Nameananglewhichis: verticallyoppositeto ÒDOE a complementaryto ÒCOB
Pairsofanglesona straightlineare supplementary(addto 180°).
D
HintforQ5:Verticallyopposite anglesareoppositeandequal. Complementaryanglesaddto 90° Supplementaryanglesaddto 180° b supplementaryto ÒEOA c
Example2Findinganglesatapoint
Determinethevalueofthepronumeralsinthesediagrams.
Solution
a a + 30 = 90
a = 60
b + 90 = 360
b = 270
b a + 65 = 180
a = 115
b = 65
Nowyoutry
Explanation
a° and 30° makeacomplementarypairof anglesaddingto 90°.Anglesinarevolution addto 360°
a° and 65° makeasupplementarypairof anglesaddingto 180° b° isverticallyopposite the 65° angle.
Determinethevalueofthepronumeralsinthesediagrams.
6 Statethevalueofthepronumeral(letter)inthesediagrams.
7 Determinetheunknownanglesmarkedinthesediagrams.
HintforQ7:Anglesinarightangle addto 90°.Anglesonastraight lineaddto 180°.Anglesina revolutionaddto 360°
8 Givethecompassbearing,indegrees,forthesedirections.
West(W) a East(E) b North(N) c South(S) d NW e SE f SW g NE h
Problem-solving and reasoning
HintforQ8:Checkthe Keyideas forhelp.
9,109,10–11(½),12
9 Aroundbirthdaycakeiscutintosectorsforninefriends(includingJack)atJack’sbirthdayparty.After thecakeiscutthereisnocakeremaining.WhatwillbetheangleatthecentreofthecakeforJack’s pieceif:
everyonereceivesanequalshare? a
Jackreceivestwiceasmuchaseveryoneelse?(Inparts b, c and d assumehisfriendshaveequal sharesoftherest.) b
Jackreceivesfourtimesasmuchaseveryoneelse? c
Jackreceivestentimesasmuchaseveryoneelse? d
10 Inwhichdirection(e.g.north-eastorNE)wouldyoubewalking ifyouwereheadedonthesecompassbearings?
11 Findthevalueofthepronumeralsinthesediagrams.
12 Explain,withreasons,whatiswrongwiththesediagrams.
13 Hereisaclockfacewithanhourhand(shortarrow) andminutehand(longarrow).Thetimeshown is 8:20
a Howmanydegreesdoesthehourhandturnin: 6 hours? i 12 hours? ii 1 hour? iii 3 hours? iv
b Howmanydegreesdoestheminutehandturnin: 1 hour? i 30 minutes? ii 5 minutes? iii 20 minutes? iv
14 Whatistheanglebetweenthehourhandandminute handonaclockatthesetimes?
2:30 pm a 5:45 am b
1:40 am c 10:20 pm d
2:35 am e 12:05 pm f
4:48 pm g 10:27 am h
Learningintentions
• Tounderstandthatparallellinesneverintersectandthatarrowsareusedtoindicatethisonadiagram.
• Tobeabletousepropertiesofparallellinesto ndunknownangles.
Keyvocabulary: parallellines,transversal,corresponding,alternate,cointerior
Insimplelanguage,Euclid’s 5thaxiomsaysthat parallellinesdonotintersectormeetonaflat plane.
Allsortsofshapesandsolidsbothinthe theoreticalandpracticalworldscanbeconstructed usingparallellines.Iftwolinesareparallelandare cutbyathirdlinecalledatransversal,specialpairs ofanglesarecreated.
Lessonstarter:Arethey parallel?
Herearetwodiagramsthatshowapairoflines crossedbyathirdlinecalledatransversal.Two anglesaregiven.
• Doyouthinkthateachdiagramcontainsa pairofparallellines?
• Canyoudeterminealltheotheranglesin thediagrams?
• Howmanydifferentanglesaretherein eachdiagram?
Allsortsofshapesandsolidscanbeconstructedusing parallellinesandtransversals.
Keyideas
A transversal isalinecuttingatleasttwootherlines.
Pairsofanglesformedbytransversalscanbe: corresponding (in correspondingpositions) corresponding
alternate (onopposite sidesofthetransversaland insidetheothertwolines)
cointerior (onthesame sideofthetransversaland insidetheothertwolines). cointerior
Linesare parallel iftheydonotintersect.
• Parallellinesaremarkedwiththesamenumberofarrows.
or
Iftwoparallellinesarecutbyatransversal:
• thecorrespondinganglesareequal(pairs)
• thealternateanglesareequal(2 pairs)
• thecointerioranglesaresupplementary(addupto 180°)(2 pairs)
Und er stand ing
1 Twoparallellinesarecutbyatransversal.Writethemissingword. Correspondinganglesare a Cointerioranglesare b Alternateanglesare c
2 Nametheanglethatis: correspondingto ÒABF a correspondingto ÒBCG b alternate to ÒFBC c alternate to ÒCBE d cointeriorto ÒHCB e cointeriorto ÒEBC f vertically oppositeto ÒABE g verticallyopposite to ÒHCB h
HintforQ1:Choosefrom equal or supplementary.
HintforQ2:Nameangleslike this: ÒABC or ÒDEF
Statewhetherthefollowingmarkedanglesarecorresponding,alternateorco-interior.Hence,state whethertheyareequalorsupplementary.
Solution
a Themarkedanglesarealternate. Thereforetheyareequal (a = b)
b Themarkedanglesareco-interior.Therefore theyaresupplementary (a + b = 180)
Explanation
Thetwoanglesareinsidetheparallellinesand onoppositesidesofthetransversal,sotheyare alternate.
Alternateanglesinparallellinesareequal.
Thetwoanglesareinsidetheparallellinesand onthesamesideofthetransversal,sotheyare co-interior.
Co-interioranglesinparallellinesare supplementary,addingto 180°
c Themarkedanglesarecorresponding. Thereforetheyareequal (a = b)
Thetwoanglesareincorrespondingpositions (bothtotheleftoftheintersectionpoints). Correspondinganglesinparallellinesareequal.
Statewhetherthefollowingmarkedanglesarecorresponding,alternateorco-interior.Hencestate whethertheyareequalorsupplementary.
3 Statewhetherthefollowingmarkedanglesarecorresponding,alternateorco-interior.Hence,state whethertheyareequalorsupplementary.
Findthevalueofthepronumeralsinthesediagrams.Giveareasonforeachanswer.
Solution
Explanation
a a = 71,alternateanglesinparallellines.Alternateanglesinparallellinesareequal.
b b = 118,correspondinganglesin parallellines. Correspondinganglesinparallellinesareequal.
c c = 180−115 = 65,cointerioranglesin parallellines. Cointerioranglesinparallellinesaddto 180°
Findthevalueofthepronumeralsinthesediagrams.Giveareasonforeachanswer.
4 Findthevalueofthepronumeralsinthesediagrams.Giveareasonforeachanswer.
Findthevalueofthepronumeralsinthisdiagram,statingreasons.
HintforQ4:Correspondinganglesare equalinparallellines.Alternateangles areequalinparallellines.Cointerior anglesinparallellinesare supplementary(addto 180°).
Solution
a + 72 = 180
a = 108
b + 72 = 180
b = 108
Explanation
Thepairsofanglesarecointerior,whichare supplementaryifthelinesareparallel.
Thisshowsthatoppositeanglesina parallelogramareequal.
Cointerioranglesinparallellinesaresupplementary.
Nowyoutry
Findthevalueofthepronumeralsinthisdiagram,statingreasons.
5 Findthevalueofthepronumeralsinthesediagrams,statingreasons.
HintforQ5:Cointeriorangles addto 180
6 Findthevalueofthepronumeralsinthesediagrams,statingreasons.
7 Decideifthefollowingdiagramsincludeapairofparallellines.Giveareasonforeachanswer.
8 Findthevalueof a inthesediagrams.
HintforQ8:Extendinglinescan makeiteasiertoseethistype ofdiagram.
9 Sometimesparallellinescanbeaddedtoadiagramtohelpfindanunknownangle.Forexample, ÒAOB canbefoundinthis diagrambyfirstdrawingthedashedlineandfinding ÒAOC (40°) and ÒCOB (70°) So ÒAOB = 40°+ 70°= 110°
Applyasimilartechniquetofind ÒAOB inthesediagrams.
10 Aplanforanaturalgasplantincludesmanyintersectingpipelines,someofwhichareparallel. Helpthedesignersfinishtheplansbycalculatingthesizeoftheanglesmarked a, b,etc.
Learningintentions
• Tounderstandthattrianglescanbeclassi edbytheirsidelengthsasscalene,isoscelesorequilateral.
• Tounderstandthattrianglescanbeclassi edbytheirinterioranglesasacute,rightorobtuse.
• Toknowthattheanglesumofanytriangleis 180° .
• Tobeabletousetheanglesumofatriangleto ndunknownangles.
• Tobeabletousetheexteriorangletheoremto ndunknownangles.
Keyvocabulary: scalene,isosceles,apex,base,equilateral,acute,right,obtuse,exteriorangle,anglesum
Atriangleisashapewiththreestraightsides.Thetriangleisavery rigidshapeandthisleadstoitsuseintheconstructionofhousesand bridges.Itisoneofthemostcommonlyusedshapesindesignand construction.
Youcancompletethistaskusingapencilandrulerorusingdynamic geometrysoftware.
• Drawanytriangleandmeasureeachinteriorangle.
• Addallthreeanglestofindtheanglesumofyourtriangle.
• Compareyouranglesumwiththeresultsofothers.Whatdo younotice?
Triangularshapesareoftenused tostrikingeffectinarchitecture,as shownbypartoftheNationalGallery ofCanada.
Ifdynamicgeometryisused,dragoneoftheverticestoaltertheinteriorangles.Nowchecktoseeif yourconclusionsremainthesame.
A triangle has:
• 3 sides
• 3 vertices(singular:vertex)
• 3 interiorangles.
Trianglesareclassifiedbysidelengths:
• Sideswiththesamenumberofdashesareofequallength.
Trianglesareclassifiedbyinteriorangles: acute (Allanglesacute) • right (1 rightangle) • obtuse (1 obtuseangle). •
The anglesum ofatriangleis 180°
The exteriorangle theorem: Theexteriorangleofatriangleisequal tothesumofthetwooppositeinterior angles.
exterior angle
1 Givethecommonnameofatrianglewiththeseproperties.Refertothe Keyideas inthissection forhelp.
Onerightangle a 2 equalsidelengths b Allanglesacute c Allangles 60° d
Oneobtuseangle e 3 equalsidelengths f 2 equalangles g 3 differentsidelengths h
2 Statewhetherthesetrianglesarescalene,isoscelesorequilateral.
3 Statewhetherthesetrianglesareacute,rightorobtuse.
Example6Usingtheanglesumofatriangle
Findthevalueof a inthistriangle.
Solution
a + 38 + 92 = 180
a + 130 = 180 a = 50
Findthevalueof a inthistriangle.
Explanation
Theanglesumofthethreeinterioranglesofatriangleis 180° Also 38 + 92 = 130 and 180−130 = 50
4 Usetheanglesumofatriangletohelpfindtheunknownangleinthese triangles.
HintforQ4:Foreachone useamentalstrategyor startwithanequationlike a + 36 + 48 = 180.
Findthevalueof a intheseisoscelestriangles.
Solution
a a + 35 + 35 = 180
a + 70 = 180 a = 110
b 2a + 26 = 180 2a = 154 a = 77
Findthevalueof a intheseisoscelestriangles.
Explanation
Thetwobaseanglesin anisoscelestriangleare equal.
Thetwobaseanglesinan isoscelestriangleareequal.
5 Thesetrianglesareisosceles.Findthevalueof a
HintforQ5:Thetwo baseanglesinan isoscelestriangle areequal.
Example8Usingtheexteriorangletheorem
Findthesizeoftheunknownangle.
C
Solution
a + 90 = 161
a = 161−90 = 71
Nowyoutry
Findthesizeoftheunknownangle.
6 Findthevalueof
Explanation
Usetheexteriorangletheoremforatriangle. Theexteriorangle (161°) isequaltothesumof thetwooppositeinteriorangles.
Problem-solving and reasoning
7 Decideifitispossibletodrawatrianglewiththegivendescription.Drawadiagramtosupport youranswer.
Rightandscalene a Obtuseandequilateral b Rightandisosceles c Acuteandisosceles d Acuteandequilateral e Obtuseandisosceles f
8 Atriangleisconstructedusingacircleandtwo radiuslengths.
Whattypeoftriangleis DAOB andwhy? a Nametwoanglesthatareequal. b
Find ÒABO if ÒBAO is 30° c
Find ÒAOB if ÒOAB is 36° . d
Find ÒABO if ÒAOB is 100
9 Findthevalueof a inthesediagrams.
HintforQ8a:Whatcanyousay aboutthelengths OA and OB?
Parallellinesandtriangles
10 Useyourknowledgeofparallellinesandtrianglestofindtheunknownangle a
HintforQ9a:Whatisthesizeof eachangleinanequilateral triangle?
10–11
11 Toprovethattheanglesumofatriangleis 180°,workthroughthesestepswiththegivendiagram.
HintforQ11:Thinkbacktothe parallellinerulesfrom Section2B
a Usingthepronumerals a, b or c,givethevalueoftheseanglesandstateareason.
ÒABD i ÒCBE ii
b Whatistrueaboutthe threeangles ÒABD, ÒABC and ÒCBE andwhy?
c Whatdoparts a and b abovesay aboutthepronumerals a, b and c,andwhatdoesthissayabout theanglesumofthetriangle ABC?
Learningintentions
• Tobeabletoclassifyquadrilateralsasparallelograms,rectangles,rhombuses,squares,kitesand/ortrapezia.
• Toknowthattheanglesumofanyquadrilateralis 360° .
• Tobeabletousetheanglesumofaquadrilateralto ndunknownangles.
• Tounderstandthatpropertiesofanglesinparallellinescanbeusedto ndunknownanglesintrapezia andparallelograms.
Keyvocabulary: quadrilateral,parallelogram,square,rectangle,rhombus,kite,trapezium,parallel
Shapeswithfoursidesarecalledquadrilaterals.Allquadrilateralshavethesameanglesum.Theirother propertiesdependonsuchthingsaspairsofsidesofequallength,parallelsidesandlengthsofdiagonals. Allquadrilateralscanbedividedintotwotriangles.Sincethesixanglesinsidethetwotrianglesmake upthefouranglesofthequadrilateral,theanglesumis 2 × 180°= 360° .
Quadrilaterals ofmanykinds areusedby architects.
Nameallthedifferentquadrilateralsyoucanthinkofthathavethepropertieslistedbelow.Theremay bemorethanonequadrilateralforeachpropertylisted.Draweachquadrilateraltoillustratetheshape anditsfeatures.
4 equallengthsides
2 pairsofparallelsides
pairofparallelsides
Quadrilaterals arefour-sidedshapes.
Parallelograms arequadrilateralswithtwopairsof parallel sides.
Parallelogram
Specialparallelograms Square Rectangle Rhombus
Otherspecialquadrilaterals Kite Trapezium
Theanglesumofanyquadrilateralis 360° .
Quadrilateralswithparallelsidesincludetwopairsof cointeriorangles.
Und er stand ing
1 Whatarethesixspecialtypesofquadrilaterals?
2 Writethemissingnumberorword.Choosefrom: 90° , equal, 360° or two Theanglesumofaquadrilateralis . a Thesidelengthsofarhombusare inlength. b Akitehas pairsofequalsides. c Thediagonalsofsquares,rhombusesandkitesintersectat d
3 Answertrue(T)orfalse(F)tothesestatements.Refertothediagramsinthe Keyideas oraccurately drawyourownshapes,includingthediagonals.
a Square
Allsidesareofequallength. i Diagonalsarenotequalinlength. ii Allsidesareparalleltoeachother. iii Diagonalsintersectatrightangles. iv
b Rectangle
Diagonalsmustintersectatrightangles. i Allinterioranglesare 90° ii Allsidesmustbeofequallength. iii Therearetwopairsofparallelsides. iv
c Rhombus
Allinterioranglesmustbeequal. i Allsidesareofequallength. ii Diagonalsintersectatrightangles. iii
d Parallelogram
Therearetwopairsofparallelsidesofequallength. i Diagonalsmustbeequalinlength. ii Diagonalsmustintersectatrightangles. iii
e Kite
Therearetwopairsofsidesofequallength. i Therearetwopairsofparallelsides. ii Diagonalsintersectatrightangles. iii
f Trapezium
Diagonalsareequalinlength. i Therearetwopairsofparallelsides. ii
HintforQ3:Thereddashed linesarethediagonals.
Example9Usingtheanglesumofaquadrilateral
Findthevalueofthepronumeralsinthesequadrilaterals.
Solution
a a + 100 + 90 + 115 = 360 a + 305 = 360 a = 55
b x + 265 + 30 + 25 = 360 x + 320 = 360 x = 40
Nowyoutry
Explanation
Thesumofanglesinaquadrilateralis 360° Useamentalstrategyorsolvetheequation.
Usetheanglesumofaquadrilateral.
Findthevalueofthepronumeralsinthesequadrilaterals.
4 Usethequadrilateralanglesumtofindthevalueof a inthesequadrilaterals.
HintforQ4: isa 90° angle.Theangle sumofaquadrilateralis 360
Findthevalueof a and b inthisparallelogram.
Solution
a + 77 = 180
a = 103
b = 180−103 = 77
Findthevalueof a and b inthisparallelogram.
Explanation
Twoanglesinsideparallellinesarecointerior andthereforeaddupto 180° Notethatoppositeanglesinaparallelogram areequal.
5 Findthevalueofthepronumeralsinthesequadrilaterals.
HintforQ5:Oppositeangles inaparallelogramareequal. Otherpairsofanglesare cointerior(addto 180°).
6 Namethespecialquadrilateralswhichhave: allsidesofequallength a onepairofparallellines b twopairsofequalsides c diagonalsmeetingatrightangles d diagonalsofequallength. e
7 Useyourknowledgeofgeometryfromtheprevioussectionstofindthe valuesof a
HintforQ7:Anglesinarevolution addto 360°.Anglesonastraight lineaddto 180°.Vertically oppositeanglesareequal.
8 Considerthepropertiesofspecialquadrilaterals.Decideifthefollowingaretrue(T)orfalse(F). Asquareisatypeofrectangle. a Arectangleisatypeofsquare. b Asquareisatypeofrhombus. c Arectangleisatypeofparallelogram. d Aparallelogramisatypeofsquare. e Arhombusisatypeofparallelogram. f
9 Considerthepropertiesofthegivenquadrilaterals.Givethevaluesofthe pronumerals.
HintforQ9: Akite a Arhombus b Aparallelogram c
10 Youcanconfirmthattheanglesumofaquadrilateralis 360° bytearingoffthecornersofany cut-outquadrilateral. Usearulertodrawanyquadrilateralandthencutitout. a Tearoffthefourcorners. b Arrangethefourpiecessothecorners(verticesofquadrilateral)allmeetatonepointasshown. Whatdoyounotice? c Whatdoesthistellyouabouttheanglesumofthequadrilaterals? d
1 2A Determinethevalueofthepronumeralsinthesediagrams.
2 2A Findthevalueofthepronumeralsinthesediagrams.
3 2B Whichofthefollowingdiagramshaveapairofcorrespondinganglesmarked?
4 2B Findthevalueofthepronumeralsinthesediagrams.Giveareasonforeachanswer.
5 2B Findthevalueofthepronumeralsinthesediagrams,statingreasons.
6 2C Usetheanglesumofatriangletohelpfindtheunknownangleinthesetriangles.
7 2C Findthesizeoftheunknownangles.
8 2D Findthevalueofthepronumeralsinthesequadrilaterals.
9 2D Findthevalueofthepronumeralsinthesequadrilaterals.
10 2D Decideifthefollowingaretrue(T)orfalse(F). Allsquaresarerectangles. a Allquadrilateralsarerectangles. b Allrectanglesarerhombuses. c
Learningintentions
• Toknowthenamesofdifferenttypesofpolygonswithupto 12 sides.
• Tounderstandwhataregularpolygonis.
• Tobeableto ndtheanglesumofapolygon.
• Tobeabletousetheanglesumofapolygonto ndunknownangles.
Keyvocabulary: polygon,regularpolygon,pentagon,hexagon,heptagon,octagon,nonagon,decagon, hendecagon,dodecagon
Trianglesandquadrilateralsarebothexamplesofpolygons. Theword‘polygon’comesfromtheGreekwords poly, meaning‘many’,and gonia,meaning‘angles’.Thenumber ofinterioranglesequalsthenumberofsides.Theanglesum ofeachtypeofpolygondependsonthisnumber.Inthis sectionwewillexploretherulefortheanglesumofa polygonwith n sides.
Thefollowingprocedureusesthefactthattheanglesumof atriangleis 180°.Completethetableandtrytowritethe generalruleinthefinalrow.
ThePentagonisafamousgovernmentoffice buildinginWashingtonDC,USA.
Polygons areshapeswithstraightsides.
Pentagon
Octagon
Decagon
Polygonsarenamedaccordingtotheirnumberofsides.
Theanglesum S ofapolygonwith n sidesisgivenbytherule: S = (n −2) × 180°
A regularpolygon hassidesofequallengthandequalinteriorangles.
1 Namethepolygonwiththefollowingnumberofsides.
2 Statethenumberofsidesonthesepolygons.
Hexagon a Quadrilateral b Decagon c Heptagon d Pentagon e Dodecagon f
3 Evaluate (n −2) × 180° if: n = 6 a n = 10 b n = 22 c
4 Whatisthecommonnamegiventothesepolygons?
Regularquadrilateral a Regulartriangle b
Findtheanglesumofaheptagon.
Solution
S = (n −2) × 180°
= (7−2) × 180°
= 5 × 180° = 900°
Nowyoutry
Findtheanglesumofanoctagon.
5 Findtheanglesumofthesepolygons.
Explanation
Aheptagonhas 7 sidesso n = 7.Simplify (7−2) beforemultiplyingby 180°
Pentagon (n = 5) a Octagon (n = 8) b Decagon (n = 10) c Hexagon d Nonagon e Heptagon f
Findthevalueof a inthispentagonbyusingthegivenanglesum.
Anglesum = 540°
Solution
a + 170 + 80 + 90 + 95 = 540
a + 435 = 540 a = 105
Nowyoutry
Explanation
Addalltheanglesandsetthisequaltothe anglesumof 540°.Thensimplifyandsolvefor a oruseamentalstrategy.
Findthevalueof a inthishexagonbyusingthegivenanglesum.
Anglesum = 720°
6 Findthevalueof a inthesepolygons,byusingthegivenanglesum.
HintforQ6:Writean equationusingthe givenanglesum,then findthevalueof a
7 Regularpolygonshaveequalinteriorangles.Findthesizeofaninterioranglefortheseregularpolygons withthegivenanglesum.
Decagon (1440
HintforQ7:First findtheanglesum thendividebythe numberofsides. Pentagon (540
Example13Findinginterioranglesofregularpolygons
Findthesizeofaninteriorangleinaregularoctagonbyfirstfindingtheanglesum.
Solution
S = (n −2) × 180° = (8−2) × 180° = 6 × 180°= 1080°
Interioranglesize = 1080 ÷ 8 = 135°
Nowyoutry
Explanation
Firstcalculatetheanglesumofanoctagon using n = 8 and S = (n −2) × 180°
All 8 anglesareequalinsizesodividethe anglesumby 8
Findthesizeofaninteriorangleinaregularnonagonbyfirstfindingtheanglesum.
8 Findthesizeofaninteriorangleintheseregularpolygonsbyfirstlyfindingtheanglesum.Roundthe answertoonedecimalplacewherenecessary. Regularpentagon a Regularheptagon b Regularhexagon c Regulardecagon d Regularoctagon e Regularhendecagon f
Problem-solving and reasoning
9 Findthevalueof a intheseshapesbyfirstlyfindingtheanglesum.
9,109(½),10–12
10 Findthenumberofsidesofapolygonwiththegivenanglesums. HintforQ10:Theanglesum
11 Findthenumberofsidesofaregularpolygonifeachinteriorangleis: 120° a 162° b 147.272727…° c
12 Consideraregularpolygonwithaverylargenumberofsides (n). Whatshapedoesthispolygonlooklike? a Istherealimittothesizeofapolygonanglesumordoesitincreasetoinfinityas n increases? b Whatsizedoeseachinteriorangleapproachas n increases? c
13 Findthevalueof x inthesediagrams.
Learningintentions
• Tobeabletonamesolidsusingappropriateterminology(e.g.hexagonalprism,squarepyramid).
• Tobeabletocountthenumberoffaces,verticesandedgesinasolid.
Keyvocabulary: polyhedron,prism,pyramid,cross-section,face,vertex(plural:vertices),edge,apex,cylinder, sphere,cone,cube,hexahedron,cuboid,tetrahedron
Asolidisanobjectthatoccupiesthree-dimensionalspace.Theoutsidesurfacescouldbeflatorcurved. Asolidwithallflatsurfacesiscalledapolyhedron(plural polyhedra or polyhedrons).Theword‘polyhedron’ comesfromtheGreekwords poly,meaning‘many’,and hedron,meaning‘faces’.
ThetopofthisCanaryWharfbuildinginLondon(left)isalarge,complexpolyhedron.Polyhedraalsooccurin nature,particularlyinrockormineralcrystalssuchasquartz(right).
Solidscanbenamedbytheirnumberoffaces.Herearetwoexamples.
Hexahedron(6 faces)Octahedron(8 faces)
Nameanddrawasolidwiththefollowingnumberoffaces.
• 7 faces
• 5 faces
• 10 faces
A polyhedron (plural:polyhedra)isaclosedsolidwithflatsurfaces(faces), vertices and edges
• Polyhedracanbenamedbytheirnumberoffaces.
Hexahedron (orrectangular prismorcuboid) – 6 faces – 12 edges – 8 vertices
Tetrahedron (ortriangularpyramid) face vertex edge – 4 vertices – 4 faces – 6 edges
Prisms arepolyhedrawithtwoidentical(congruent)ends.The congruentendsdefinethe cross-section oftheprismandalso itsname.Theotherfacesareparallelograms.Ifthesefacesare rectangles,asshown,thenthesolidisa rightprism
Pyramids arepolyhedrawithonefacethatisthebaseandall otherfacesmeetingatthesamevertexpointcalledthe apex Theyarenamedbytheshapeofthebase.
Somesolidshavecurvedsurfaces.Commonexamplesinclude:
Cylinder Sphere Cone
A cube isahexahedronwithsixsquarefaces.
Hexagonal prism
hexagon cross-section
apex
Square-based pyramid
square base
Anothernameforarectangularprismis cuboid.Itisalsoahexahedron.
1 Writethemissingwordornumberinthesesentences.Choosefrom: congruent, cube, six, seven, vertices, octagonal, circle, seven. Ahexahedronhas faces. a Theflatfaceatthebaseofacylinderisa b Ahexahedronwithsixsquarefacesisalsocalleda c Apolyhedronhasfaces, andedges. d Aheptahedronhas faces. e Aprismhastwo ends. f Apentagonalprismhas faces. g Thebaseofapyramidhas 8 sides.Thepyramidiscalledan pyramid. h
2 Namethreesolidsthathavecurvedsurfaces.
3 Whichofthesesolidsarepolyhedra(i.e.haveonlyflatsurfaces)?
Cube A Pyramid B Cone C Sphere D
Cylinder E Rectangularprism F Tetrahedron G Hexahedron H
Example14Countingfaces,verticesandedges
Statethenumberoffaces,verticesandedgesforthesesolids.
Octahedron(orHexagonalprism) a
Solution
a 8 faces
12 vertices
Hexahedron(orPentagonalpyramid) b
Explanation
18 edges Facesaretheflatsurfaces. Verticesarethecorners. Edgesarethelinesonthediagram.
b 6 faces
6 vertices
10 edges
Thereisonepentagonalfaceandfivetriangular faces.
Fiveverticesareonthebaseplusoneapex. Fiveedgesareonthebaseandfivemeetthe apex.
Nowyoutry
Statethenumberoffaces,verticesandedgesforthesesolids.
Decahedron(Octagonalprism) a
Pentahedron(Square-basedpyramid) b
4 Countthenumberoffaces,verticesandedges(inthatorder)on thesepolyhedra.
HintforQ4:Facesareflat surfaces,verticesarecorners, andedgesarethelinesdrawn onthediagram. a b c
Example15Classifyingsolidsusingfaces
Classifythesesolidsbyconsideringthenumberoffaces. a b c
Solution
a Hexahedron
b Heptahedron
c Pentahedron
Nowyoutry
Namethepolyhedronthathas 8 faces.
Explanation
Thesolidhas 6 faces.
Thesolidhas 7 faces.
Thesolidhas 5 faces.
5 Namethepolyhedronthathasthegivennumberoffaces.
HintforQ5:Usenamessuchas pentahedron,hexahedron.
6 Howmanyfacesdothesepolyhedrahave?
Octahedron a Hexahedron b Tetrahedron c Pentahedron d Heptahedron e Nonahedron f Decahedron g Hendecahedron h
Example16Namingprisms
Namethesesolidsasatypeofprism. a b
Solution
a Rectangularprism
b Hexagonalprism
Nowyoutry
Namethissolidasatypeofprism.
Explanation
Thecross-sectionisarectangle.
Thecross-sectionisahexagon.
7 Nametheseprisms.
Example17Namingpyramids
Namethissolidasatypeofpyramid.
Solution Explanation Pentagonalpyramid Thebaseisapentagon.
Nowyoutry
Namethissolidasatypeofpyramid.
8 Namethesepyramids.
Problem-solving and reasoning
9 Nameeachofthesesolidsintwodifferentways.
HintforQ7:Name usingtheshapeof thecross-section.
HintforQ8:Nameusingthe shapeofthebase.
HintforQ9:Asanexample:a pentagonalpyramidisalsoa hexahedron(6 faces).
10 Decideifthefollowingstatementsaretrue(T)orfalse(F).Makedrawingstohelp. Atetrahedronisapyramid. a Allsolidswithcurvedsurfacesarecylinders. b Acubeandarectangularprismarebothhexahedrons. c Ahexahedroncanbeapyramid. d Therearenosolidswith 0 vertices. e Therearenopolyhedrawith 3 surfaces. f Allpyramidswillhaveanoddnumberoffaces. g
11 Nameeachofthesesolidsinthreedifferentways. a b
12 Investigateifthefollowingstatementistrue(T)orfalse(F). Forallpyramids,thenumberoffacesisequaltothenumberofvertices.
Euler’srule
13a Copyandcompletethistable.
Numberof Numberof Numberof Solid faces (F ) vertices (V ) edges (E ) F + V Cube Squarepyramid Tetrahedron
b Comparethenumberofedges (E ) withthevalue F + V foreachpolyhedron.Whatdoyounotice?
14a Apolyhedronhas 16 facesand 12 vertices.Howmanyedgesdoesithave?
b Apolyhedronhas 18 edgesand 9 vertices.Howmanyfacesdoesithave?
c Apolyhedronhas 34 facesand 60 edges.Howmanyverticesdoesithave?
TheNationalLibraryofBelarusisarhombicuboctahedronwith 8 triangularfacesand 18 squarefaces.
Learningintentions
• Toknowthatthepositionofobjectsinthree-dimensional (3D) spacecanbedescribedusinga 3Dcoordinatesystem
• Tobeabletodescribethepositionofanobjectorapointusinga 3Dcoordinatesystem
• Tobeabletosolvesimplegeometryproblemsin 3Dspaceusingcoordinates
Keyvocabulary: Three-dimensional(3D)space,coordinatesystem
Whenwefindourwayarounda multi-storeycarparkorworkwith a 3D-printer,weneedtoconsider three-dimensionalspace.Two dimensionsarerequiredtodefine aspaceatonelevel,likezonesat groundlevelinacarpark,buta thirddimensionisrequiredtodefine spacesabovethatlevel.
Three-dimensional coordinatesystems areusedinmany differenttechnologies suchas 3Dprinting.
Weknowthatwhentryingtodescribethepositionofazoneinacarparkyoumighttrytoremember threecharacters.TwocharactersforthezoneonalevellikeD4 andanothercharacterforthelevelinthe building.
• Listtwoorthreeotherexampleswherea 3Dcoordinatesystemmightbeusedtodescribeposition.
• Chooseoneofyourchosen 3Dsystemsandresearchhowthe 3Dcoordinatesystemisusedtodescribe position.Writedownthreeorfourdotpointstosummariseyourfindings.
Thepositionofanobjectinthree-dimensional (3D) spacecanbedescribedusingacoordinatesystem usingthreecomponents.
Threeaxes: x, y,and z areusedtodefine 3Dspace.
• Theorigin O hascoordinates (0, 0, 0).
• Thethreeaxesareallatrightanglestoeachother.
Thepositionofacubicunitofspacecanbedescribed usinggridspacesasshown.
• Theredcubeisthisdiagramcouldbedescribedas (B, c, 3)
Apointinthree-dimensionalspaceisdescribedusing (x, y, z) coordinates.
• Thepoint P isthisdiagramhascoordinates (1, 2, 4)
Und er stand ing 1,2 1,2
1 Considerthissetoftwoblockssittingin 3Dspacebelow.
a Whichofthefollowingdescribesthepositionofthesquareatthebaseoftheblocks?
(A, a) A (A, c) B (B, c) C
(b, A) D (C, c) E
b Whichof thefollowingdescribesthepositionoftheblockwhichisred?
(A, a, 2) A (B, c, 3) B (B, c, 2) C
(A, c, 2) D (A, c, 1) E
c Howmanyblockswould berequiredtobuildastackwheretheblockatthetopispositionedat (B, c, 6)?
2 Considerthis 3Dcoordinatesystemwithpoint P asshown.
a Onthe x-y plane,point A hascoordinates (2, 0).Whichofthefollowingisthecoordinates ofpoint A inthe 3Dsystem?
(2, 0, 1) A (2, 0, 3) B
(2, 0, 0) C (0, 2, 0) D
(0, 0, 2) E
b Whatarethe 3Dcoordinatesofthefollowingpoints? B i C ii P iii
c Pencilthefollowingpointsontothegivensetofaxes.
Fluency
Example18Usinggridspacestodescribepositionin 3Dspace
Eachcubeinthis 3Dspacecanbedescribedusingan x(A, B, C or D) , y(a, b, c or d) and z(1, 2, 3 or 4) coordinatein thatorder.Givethecoordinatesofthecubeswiththegiven colour. red a yellow b green c
Solution
a (A, b, 4)
b (D, b, 1)
c (B, d, 2)
Explanation
Usingtheorder x,then y then z,wehavethe baseofthecolumninthesquare (A, b) andthe redcubeis atlevel 4 onthe z-axis.
Thebaseoftheyellowcubeisthesquare (D, b) anditisatlevel 1 onthe z-axis.
Thegreencubehasabasesquareat (B, d) and isatlevel 2 onthe z-axis.
Nowyoutry
Eachcubeinthis 3Dspacecanbedescribedusingan
x(A, B, C or D) , y(a, b, c or d) and z(1, 2, 3 or 4) coordinate inthatorder.Givethecoordinatesofthecubeswiththe givencolour. red a yellow b green c
3 Eachcubeinthis 3Dspacecanbedescribedusingan
x(A, B, C or D) , y(a, b, c or d) and z(1, 2, 3 or 4) coordinatein thatorder.Givethecoordinatesofthecubeswiththegiven colour. red a yellow b green c
4 Eachcubeinthis 3Dspacecanbedescribedusingan
x(A, B, C or D) , y(a, b, c or d) and z(1, 2, 3 or 4) coordinateinthat order.Givethecoordinatesofthecubeswiththegivencolour. red a
Example19Using 3Dcoordinatestodescribeapoint
Writedownthecoordinatesofthe followingpointsshownonthis 3Dgraph.
Solution
a (3, 0, 0)
b (3, 2, 0)
c (0, 2, 4)
d (3, 2, 4)
Nowyoutry
Writedownthecoordinatesofthefollowing pointsshownonthis 3Dgraph.
Explanation
Point A ispositionedat 3 onthe x-axis, 0 onthe y-axisand 0 onthe z-axis.
Point B isonthe x-y planeatpoint (3, 2) and hasa z-coordinateof 0
Point C isonthe y-z planeandsothe x-coordinateis 0
Ontherectangularprismshown,point P is alignedwiththenumber 3 onthe x-axis, 2 on the y-axisand 4 onthe z-axis.
5 Writedownthecoordinatesofthefollowingpointsshownonthis 3Dgraph.
A a B b C c P d
6 Writedownthecoordinatesofthefollowingpointsshown onthis 3Dgraph.
7 Plotthegivenpointsontothis 3Dcoordinatesystem.
A (1, 2, 4) a
B (3, 1, 2) b
C (0, 2, 3) c
D (4, 0, 1) d
E (3, 3, 0) e
F (4, 4, 3) f
HintforQ5:Coordinatesare listedintheorder(x,y,z).
8 Choosethecorrectsquareonthe 2Ddiagram (i, ii, iiioriv) thatmatchesthebaseoftheblockfrom the 3Ddiagram.
9 Imaginethecubeat (A, a, 1) thatcanonlymoveinthree directions:East (x), North (y) orUp (z).Howmanyspaces wouldthecubemoveintotalifitwasshiftedtothe positionswiththefollowingcoordinates?
(C, c, 2) a
(B, a, 3) b
(A, c, 4) c
(D, b, 2) d
(C, d, 4) e
(B, c, 1) f
10 Amulti-storeycarparkhas 5 levelsandeachlevelisdividedintodifferentzonesinthesameway.The zonesforeachlevelareshowninthisdiagram.Azonewhichisinthe 4thcolumn(East)and 2ndrow (North)andonthe 3rdlevelisgiventhecoordinates (D,b, 3). a Givethecoordinatesofazonewhichis:
i inthe 3rdcolumnEast, 2ndrowNorthandonthe 4thlevel. ii inthe 2ndcolumnEast, 3rdrowNorthandonthe 3rdlevel.
b Acarisparkedinzone (C,a, 2) andistomovetwospacestotheWest,threespacestotheNorth andupthreelevels.Whatarethecoordinatesofthezonewherethecaristobemoved?
c Acarisparkedinzone (B,d, 5) andistomoveonespacetotheEast,twospacestotheSouthand downthreelevels.Whatarethecoordinatesofthezonewherethecaristobemoved?
11 Explainwhythepositionofadrone,forexample,needsthreecoordinatesratherthanjusttwo coordinates.
12 Apoint P canbecombinedwiththeorigintoforma rectangularprismwithacertainvolume.Thisdiagram showsthepoint P producingarectangularprismwith volume 4 × 3 × 2 = 24 cubicunits.Findthevolumeofthe rectangularprismsformedbythefollowingpoints.
P (2, 3, 1) a
P (4, 2, 2) b P (5, 3, 2)
7, 2, 4)
3DDrones 13
13 AdroneisprogrammedtoonlymoveNorth/South,East/Westandup/downinasystemusingmetres asitsunits.
a Findtheminimumdistancethedronewilltravelifitmovesfromtheorigin (0, 0, 0) tothefollowing points.
(10, 5, 7) i (20, 35, 40) ii (12, 29, 18) iii
b Findtheminimumdistancethedronewilltravelifitmovesfromthepoint (8, 20, 6) tothefollowing points.
(10, 28, 12) i (2, 15, 26) ii (0, 20, 30) iii
c Findtheminimumdistancethedronewilltravelifitmovesfromthepoint (−2, 16, 21) tothe followingpoints.
(3, 7, 10) i (10, 0, −4) ii (−40, 4, −20) iii
Adesignerofjewelleryisacreativeperson whoneedsexcellenteyesight,asteadyhand andgoodfine-motorskillsfortheirday-to-day work.Theyworkwithmaterialssuchasgold, silverandgemstones,tocreatesomethingnew andinteresting.Designersneedtounderstand thechemistryoftheirmaterialsandthe geometryofdesign.Theanglesatwhich gemstonessuchasdiamondsarecutcan accountforpricevariationandcanevenbethe differencebetweenabeautiful,sparkling diamondoronedamagedbyachiporcrack.
1 Thewaythatgemstonesarecutcreatesmanydifferentdesigns.Thecutsformshapesandangles whichcontributetothebrightness,sparkleandvalueofthegemordiamond.Lookatthefollowing topviewsandlistallthegeometricalshapesthatyoucanseeineachdesign.
2 Gemstonesanddiamondsaremadefrommineralsandcrystalswhichnaturallyformmanydifferent geometricalshapes.Choosethecorrectnameforeachsolidbelowfromthefollowinglist:
Tetrahedron(4 faces),Icosahedron(20 triangularfaces),Heptahedron(7 faces),Octahedron(8 faces), Pentahedron(5 faces),Dodecahedron(12 pentagonalfaces).
3 Usegeometrysoftwaretodigitallydrawthetopviewandsideviewofadiamond-cutdesign. Youcouldresearchdiamond-cutdesignsorchooseonefromtheimagesbelow.
Athisworkshop,ShaneiscuttingoutsoftplasticninjastarstogivetopeopletoplayonhisNinjaWarrior course.
Shanemakesstarswhicharequadrilateralswithoneinterioranglegreaterthan 180° liketheoneshown. Henoticesthatsomeofthestarsaremorepopularthanothersandthisseemstodependontheangles formedateachvertex.
Shaneworksonlyinmultiplesof 10 degreesbecauseofthelimitationoftheequipmentthatheuses.
Presentareportforthefollowingtasksandensurethatyoushowclearmathematicalworkingsand explanationswhereappropriate.
a Shane’s 40–140 Ninjastarhasacute ÒADC = 40° andobtuse ÒABC = 140°
i Witha protractorandastraight-edge/ruler,drawanaccuratediagramofastarmatching thisdescription,andmarkinthe 40° and 140° angles.
ii Findreflex ÒABC
iii If ÒBAD = 60° find ÒBCD
iv If ÒBCD = 50° find ÒBAD.
b Shane alsohasa 50–150 Ninjastarwhichincludesacute ÒADC = 50° andobtuse
ÒABC = 150°.Drawan accuratediagramofthestarandmarkinalltheinternalanglesif:
i ÒBAD = 60°
ii ÒBCD = 50°
c Whatdoyou noticeaboutthe 40–140 and 50–150 stars?Explainwhytheyhavesome matchingangles.
Formulate a TheproblemistodeterminealltheanglesinarangeofpopularstarssothatShaneknows howtomanufacturethem.Writeanddrawalltherelevantinformationthatwillhelpsolvethis problem,includingtherulefortheanglesumofaquadrilateral.
Solve
Evaluate and verify
b Thepopular‘2x’starhasthepropertywhereobtuse ÒABC = 2ÒADC,asshown inthe diagrambelow.
i Findalltheinternalanglesif ÒADC = 70° and ÒBAD = 60°.Drawan accuratediagramto illustrateyourstar,showingtheangleat ÒBCD
ii Forthistypeofstar Shaneknowsnottochoose ÒADC = 40°.Explainwhy thiswouldnot produceasuitablestar.(Hint:Trytodrawone,markinginalltheangles.)
c Anotherpopulartypeisthe‘2.5x’star,whichhasthepropertythatobtuse ÒABC = 2.5ÒADC
i Findallthe internalanglesif ÒADC = 60° and ÒBAD = 50°.Drawan accuratediagramto illustrateyourstar.
ii IfShaneonlyworkswithmultiplesof 10° anduses ÒADC = 60°,determinethe number ofpossiblestarsthathecouldmake.
d Intheend,Shanedecidesthatthebeststaristhe‘isoscelesstar’,whichhastheproperty that ÒBAD =ÒBCD.Drawsomepossibleisoscelesstarsthathecouldproduce,giventhatit shouldcontainoneinterior anglegreaterthan 180° andallanglesaremultiplesof 10°
Communicate e Summariseyourresultsanddescribeanykeyfindings.
a IfShanehastheabilitytousemultiplesof 5°,describesomenew 2x, 2.5x andisoscelesstars thatarenowpossibletocreatethatwerenotpossiblebefore.
b Onetypeofisoscelesstariscalledthe‘perpendicularstar’.Ithasthesegment BC perpendicular to AD.Iftheanglesat A and C are x°,determinetheanglesat B and D intermsof x fora perpendicularstar.
Frompreviousstudies,weknowthatthetwo-dimensionalCartesianplaneallowsustoconstructand analysetwo-dimensionalshapesandgraphrelationshipsbetweentwovariables.Whenathirddimension isadded,wecanconstructandanalysethree-dimensional (3D) solids.Thisisachievedbyusinga three-dimensionalcoordinatesystem (x, y, z) whereallthreeaxesareperpendiculartoeachotherand intersectattheorigin (0, 0, 0).Such 3Dcoordinatessystemsareusedbyengineersandarchitectsto explorebuildingdesignsandbuildcitylandscapes.
The 3Dcoordinatesystemusescoordinateswiththreecomponents (x, y, z).Apoint P in 3Dspacewillthereforehavean x-coordinate,a y-coordinateanda z-coordinate.
a Forthepoint P (3, 4, 3) showninthissetof 3Daxes,answerthefollowing. Statethevalueofthe x-coordinate, y-coordinateand z-coordinate. i Whatistheheightofthepoint P abovethe x-y plane? ii
Howfaristhepoint P fromthe x-z plane? iii
Howfaristhepoint P fromthe y-z plane? iv
b Usea 3Dcoordinatesystemtoplotthesepoints. (0, 2, 4) i (2, 5, 3) ii (4, 1, 0) iii
a Finda 3Ddynamicgeometrypackage,likeGeogebra 3D,andspendafewmomentsbecoming familiarwithitsfunctions.
b Tryconstructingarectangularprismasshownbelow.Thisexampleisshowntobeacubeifyou considerthecoordinatesoftheverticesandsidelengths.
c Labelthecoordinatesoftheeightverticesandconfirmthattheyarecorrectbycheckinghowthey alignwiththescaleonthethreeaxes.
a Wewillconstructasimplecitylandscapebyaddingtwoorthreeotherrectangularprismstoyour 3Dgraph.Followthisalgorithmforeachprism.
Step 1:UsethePolygontooltoconstructafour-sidedpolygononthe x-y plane.Thisisusually achievedbyselectingthetoolthenclickingatfourpointsonthe x-y planeandalsoatthestarting pointagaintofinish.
Step 2:UsethePrismorExtrudetoprismtooltoconstructarectangularprismofacertainaltitude ofyourchoice.
Step 3:Adjustthepositionofyourprism(representingbuildings)bymovingoneoftheverticesof thepolygonbase.Alsoaddgapsbetweenprismstorepresentcitystreets.
b Listthecoordinatesoftheverticesofeachaddedbuilding(prism).
1 Thisshapeincludes 12 matchsticks.(Tosolvethesepuzzlesallmatchesremaining mustconnecttoothermatchesatbothends.)
Remove 2 matchstickstoform 2 squares. a Move 3 matchstickstoform 3 squares. b
2a Use 9 matchstickstoform 5 equilateraltriangles. b Use 6 matchstickstoform 4 equilateraltriangles.
3 WhoamI?
Iwasafemalemathematicianfamousformyworkandpublicationsongeometry. Useyouranswerstothefollowingtounlockthepuzzlecode.
4 Findtheanglebetweenthehourandminutehandsonaclockat thesetimes.
Complementary angles
Vertically opposite angles
= 40 40 ° Triangles
(Scalene, Isosceles, Equilateral, Acute, Right, Obtuse) a + 135 = 180
Angle sum = 180 ° Scalene
Supplementary angles
Revolution
Lines, shapes and solids
Parallel lines
• Corresponding angles are equal (a = b )
• Alternate angles are equal (a = c )
• Cointerior angles are supplementary (a + d = 180) c° a° b
Polygons
Regular pentagon
Quadrilaterals
(Square, Rectangle, Rhombus, Parallelogram, Kite, Trapezium)
Angle sum = 360° Quadrilateral
Parallelogram
Solids
Triangular prism
Rectangular prism (or cuboid or hexahedron) (or pentahedron) (or pentahedron)
Square pyramid
AversionofthischecklistthatyoucanprintoutandcompletecanbedownloadedfromyourInteractiveTextbook.
2A 1 Icannameanglesinrelationtootherangles
e.g.Nameananglewhichis(a)verticallyoppositeto ÒDOE,(b)complementaryto ÒCOB, and(c)supplementaryto ÒEOA
2A 2 Icanfindanglesatapointusingcomplementary,supplementaryorvertically oppositeangles
e.g.Determinethevalueofthepronumeralsinthisdiagram.
2B 3 Icanfindanglesusingparallellinesandexplainmyanswersusingcorrect terminology
e.g.Findthevalueof c inthisdiagram,givingareasonforyouranswer.
2B 4 Icanuseparallellinestofindmissinganglesinshapes
e.g.Findthevalueofthepronumeralsinthisdiagram,statingreasons.
2C 5 Icanfindunknownanglesinatriangleusingtheanglesum e.g.Findthevalueof a inthistriangle.
2C 6 Icanfindunknownanglesinisoscelestriangles e.g.Findthevalueof a inthistriangle. a° 26°
2C 7 Icanusetheexteriorangletheorem e.g.Findthevalueof a inthisdiagram.
2D 8 Icanusetheanglesumofaquadrilateraltofindunknownangles e.g.Findthevalueofthepronumeralsinthesequadrilaterals.
2D 9 Icanfindunknownanglesinquadrilateralswithparallellines e.g.Findthevalueof a and b inthisparallelogram.
2E 10 Icanfindtheanglesumofapolygon e.g.Findtheanglesumofaheptagon.
2E 11 Icanusetheanglesumofapolygontofindunknownangles e.g.Giventhatpentagonshaveananglesumof 540°,findthevalueof a inthisdiagram.
2E 12 Icanfindthesizeofeachinteriorangleinaregularpolygon e.g.Findthesizeofaninteriorangleinaregularoctagonbyfirstfindingtheanglesum.
2F 13 Icancountthefaces,verticesandedgesofasolid e.g.Statethenumberoffaces,verticesandedgesforthesolidshown.
2F 14 Icanclassifysolidsbytheirnumberoffaces e.g.Classifythissolidbyconsideringhowmanyfacesithas.
2F 15 Icannameprismsbyconsideringtheircross-section e.g.Namethissolidasatypeofprism.
2F 16 Icannamepyramidsbyconsideringtheirbase e.g.Namethissolidasatypeofpyramid.
2G 17 Icanusegridspacestodescribeapositionin3Dspace. e.g.Usingthegivencoordinatesystem,givethecoordinatesoftheredcube.
2G 18 Icandescribeapointinthree-dimensionalspaceusingan (x, y, z) coordinate system.
e.g.Whatarethecoordinatesofthepoints A, B, C and P?
1 2A Findthevalueof a inthesesimplediagrams.
2 2B Thesediagramsincludeparallellines.Findthevalueof a
3 2B Decideifthesediagramsincludeapairofparallellines.Givereasons.
4 2C Giveanameforeachtriangleandfindthevalueof a.
5 2C Thesetrianglesincludeexteriorangles.Findthevalueof a
6 2D Namethequadrilateral(s)whichhave: allsidesequalinlength a onepairofparallellines b twopairsofequallengthsides c diagonalsintersectingatrightangles d equallengthdiagonals. e
7 2D Findthevalueof a and b inthesequadrilaterals.
8 2E Findtheanglesumofthesepolygonsusing S = (n −2) × 180° Heptagon a Nonagon b Dodecagon c 9 2E Findthesizeofaninteriorangleoftheseregularpolygonsbyfirstlyfindingtheanglesum. Regularpentagon a Regulardodecagon b
2F Namethepolyhedronthathas:
6 faces a 10 faces b 11 faces c 11 2F Whattypeofprismorpyramidarethesesolids?
12 2G Usingthegivencoordinatesystem,givethecoordinateoftheredcube.
13 2G Givethecoordinatesofthefollowingpoints.
1 2A Whatisthenamegiventotwoanglesthataddupto 90°? Right A Supplementary B Revolutionary C Complementary D Verticallyopposite E
2 2A Twoanglesonastraightlineaddto:
3 2B Thevalueof a inthisdiagramisequalto:
4 2B Apairofalternateanglesinparallellines: arenotequal A areverticallyopposite B areequal C arecomplementary D aresupplementary E
5 2E Therulefortheanglesum S ofapolygonwith n sidesis:
6 2A Thecompassbearingfornorth-eastis:
7 2E Thenamegiventoaneleven-sidedpolygonis: heptagon A elevenagon B decagon C dodecagon D hendecagon E
8 2E Theanglesum(using S = (n −2) × 180°)ofahexagonis:
9 2E Thesizeofoneinteriorangleofaregularhexagonis:
10 2F Howmanyedgesdoesarectangularprismhave?
1 Thisregularpolygonhas 9 sides.
a Findtheanglesumusing S = (n −2) × 180°
b Findthesizeofitsinterioranglescorrecttothenearest degree.
c Findthesizeofitsexterioranglescorrecttothenearest degree.
d Thepolygonisusedtoformtheendsofaprism. Forthisprismfindthenumberof: faces i vertices ii edges. iii
interior angle
exterior angle
2 Amodernhouseplanisshownhere.
Listthenamesofatleastthreedifferentpolygonsthatyousee. a Findthevaluesofthepronumerals a f b
Hints:
• a isanangleinsidearectangle
• For b,firstfindtheanglenextto b insidethesmalltriangle
• c isalternateto 29° insideparallellines
• d isinsideahexagon,sofirstuse S = (n −2) × 180°
• e isoutsideaquadrilateral(anglesumis 360°)andanglesinarevolutionaddto 360°
• Try f withoutahint!
Essentialmathematics:whyskillswithfractions,decimals andpercentagesareimportant
Machinistsbuildintricatemetalpartsincludingforlocks,vehicleenginepartsandsurgical instruments.Digitalcalipersthatmeasureinmmto 2 or 3 decimalplacesareused.
Supposeacarpentryapprenticeisaskedforthedrill-bitsizeinthemiddleof 1 8 and 5 32.The equivalentfractionsare 8 64 and 10 64,givingtherequireddrill-bitsizeof 9 64
Plumbersbendcoppertubingintoanglesthatareoftenspokenofasfractionsof 360°.For example, 1 6 is 60° and 3 4 is 270° .
Computersrequireclocktimescodedasadecimal.E.g. 11h 25m 18s = 11 + 25 60 + 18 3600
= 11 + 0.416 + 0.005 = 11.4216 = 11.4217 hours.
3AEquivalentfractions (Consolidating)
3BOperationswithfractions
3COperationswithnegativefractions
3DUnderstandingdecimals (Consolidating)
3EOperationswithdecimals
3FTerminating,recurringandrounding decimals
3GConvertingfractions,decimalsand percentages
3HFindingapercentageandexpressingas apercentage
3IDecreasingandincreasingbya percentage
3JCalculatingpercentagechange
3KSolvingpercentageproblemsusingthe unitarymethod
Recogniseirrationalnumbersinapplied contexts,includingsquarerootsand p (AC9M8N01)
Recogniseterminatingandrecurringdecimals, usingdigitaltoolsasappropriate(AC9M8N03)
Usethe4operationswithintegersandwith rationalnumbers,choosingandusingefficient strategiesanddigitaltoolswhereappropriate (AC9M8N04)
Usemathematicalmodellingtosolvepractical problemsinvolvingrationalnumbersand percentages,includingfinancialcontexts; formulateproblems,choosingefficient calculationstrategiesandusingdigitaltools whereappropriate;interpretandcommunicate solutionsintermsofthesituation,reviewingthe appropriatenessofthemodel(AC9M8N05)
©ACARA
Ahostofadditionalonlineresourcesare includedaspartofyourInteractiveTextbook, includingHOTmathscontent,video demonstrationsofallworkedexamples, auto-markedquizzesandmuchmore.
1 Matchthefollowingwordstothetypesoffractions: A wholenumber B improperfraction C properfraction D mixednumeral 1 2 5 a
2 Howmanyquartersarein:
3 Completethefollowing.
4 Fillintheblanks.
5 Whatfractionisshaded? a b
6 Matchthefractionsontheleft-handsidetotheirdecimalformontheright.
7 Find:
8 Writeas i simplefractions ii decimals.
9 Find 10% of:
10 Find:
11 Copyandcompletethefollowingtable.
Learningintentions
• Tounderstandwhatequivalentfractionsare.
• Tounderstandthatfractionshaveanumericalvalue,andtwodistinctfractionscanhavethesamenumericalvalue, like 3 5 and 6 10
• Tobeabletosimplifyfractions.
Keyvocabulary: fraction,numerator,denominator,equivalent,simplify,simplestform
Fractionsaremadewhenwholenumbersarebrokenintoparts. Thisdiagramshowsthepartsofafraction.
4 7 numerator: parts taken from the whole denominator: number of equal parts the whole is broken into Think‘u’for‘upthetop’and‘d’for‘downthebottom.
4 parts selected The whole is divided into 7 parts. 4 7 Denominator Numerator
Thereare 7 equalpartsinthewholeand 4 ofthemareshaded.
Equivalentfractionsarefractionsthatrepresentequalportionsofawhole amountandsoareequalinvalue.Theskillofgeneratingequivalentfractionsis neededwheneveryouaddorsubtractfractionswithdifferentdenominators.
Ruralpropertiesare brokenupintopaddocks. Thepaddocksarea fractionalproportionof thepropertyasawhole. Farmerscanusethis designtodiversifytheir crops.
Fractionsareveryimportantwheneverwemeasureorcompare.Chefsusethemwhenbaking. Buildersusethemwhenmixingconcrete.Amusiciancanevenusefractionswhencomposingmusic.
Itisimportanttoknowandunderstandkeytermsassociatedwiththe studyoffractions.
Asaclassgiveadefinitionorexampleofeachofthefollowingkeyterms.
Numerator
• Improperfraction
• Lowestcommonmultiple(LCM)
• Denominator
• Equivalentfraction
• Multiple
• Lowestcommondenominator
• Mixednumeral • Factor
• Properfraction
Hintforlessonstarter:
•
• Highestcommonfactor(HCF)
Hintforlessonstarter: 7 3 numerator denominator Thisisanimproperfraction. Doyouknowwhy?
Equivalentfractions areequalinvalue.Theymarkthesameplaceonanumberline.
e.g., 3 5 and 6 10 areequivalentfractions.
Equivalentfractionsaremadebymultiplyingordividingthe numerator and denominator bythe samenumber.
e.g.
Afractioncanbe cancelleddown (simplified)ifthetop(numerator) and bottom(denominator) haveacommonfactor,otherthanone.
e.g. 12 18 = 2 × 6 3 × 6 = 2 3
HintforKeyideas: 6 isthe HCFof 12 and 18. 6 6 ‘cancels’ to 1 because 6 ÷ 6 = 1
The simplestform ofafractioniswhenthenumeratoranddenominatorhavenocommonfactors otherthanone.
• Twofractionsareequivalentiftheyhavethesamesimplestform.
Und er stand ing
1 Fillinthemissingnumberstocompletethefollowingstringsofequivalentfractions.
HintforQ1:Rememberalways × or ÷ thetopandthebottom bythesamenumber!
2 Whichofthesetwofractionsisequivalentto 2 3: 10 15 or 3 4?
3 Whichofthefollowingfractionscanbecancelleddown(simplified)?
4 Arethefollowingstatementstrue(T)orfalse(F)?
1 2 and 1 4 areequivalentfractions. a 3 6 and 1 2 areequivalentfractions. b Thefraction 8 9 iswritteninitssimplestform. c
14 21 canbesimplifiedto 2 3 d 11 99 and 1 9 and 2 18 areallequivalentfractions. e 4 5 canbesimplifiedto 2 5 f
Example1Generatingequivalentfractions
Rewritethefollowingfractionswithadenominatorof 40
8
20
Dividebothnumeratoranddenominatorby 3.
Nowyoutry
Rewritethefollowingfractionswithadenominatorof 32
5 Writethemissingnumberinthesefractionswithadenominatorof 24
HintforQ5:Multiply ordividetopand bottombythesame number.
6 Writethemissingnumberinthesefractionswithadenominatorof 30.
7 Findthemissingvaluetomakeequivalentfractions.
Writethefollowingfractionsinsimplestform.
Nowyoutry
Writethefollowingfractionsinsimplestform.
8 Writethefollowingfractionsinsimplestform.
Explanation
TheHCFof 8 and 20 is 4
Boththenumeratorandthedenominatorare dividedbytheHCFof 4
TheHCFof 25 and 15 is 5
Boththenumeratorandthedenominatorare dividedbytheHCFof 5
HintforQ8:Divide bytheHCFofthe numeratorand denominator.
9 Manycalculatorsgivethesimplifiedfractionafteryoupress‘=’.Useacalculatortosimplify thesefractions.
10 Eachdiagrambelowshowsafractionofthewhole.Writeeachshadedfractioninmorethanoneway.
11
Thomasate 1 4 ofa 250 gramblockofchocolate.Maryate 3 6 ofher 250 gramblock.Whoatethe mostchocolate?
Apizzaiscutintoeightequalpieces.Sianate 2 slicesofpizza,Callumhad 4 slices.Whatfraction ofthepizzaisleft?
12 Writedownfourfractionsthatwhensimplifiedequal 1 5
13 BozzotheClown,shownbelow,isholdingfiveballoonswithfractionsonthem.Whichballoonisthe oddoneout?
Trickyshading 14
14 Inthesediagramsassumethatthesidesaredividedevenly.Findthefractionthatisshaded. a b
Learningintentions
• Tobeabletoaddandsubtractfractionsby rst ndingthelowestcommonmultiple(LCM)ofthedenominators.
• Tobeabletomultiplyanddividefractions.
• Tobeabletoperformthefouroperationsonmixednumerals,convertingtoimproperfractionsasrequired.
Keyvocabulary: lowestcommonmultiple(LCM),lowestcommondenominator(LCD),reciprocal,numerator, denominator,mixednumeral,improperfraction
Thissectionreviewsthedifferenttechniquesinvolvedinadding,subtracting,multiplyingand dividingfractions.
Properfractions,improperfractionsandmixednumeralswillbeconsideredforeachofthefour mathematicaloperations.
Inpairs,drawandshadethisgridtohelpworkoutthefollowingfractionquestions.
Whatrulesdoyouknowforadding,subtracting,multiplyinganddividingfractions?
Addingandsubtractingfractions
• Toaddorsubtractfractions,converttothesame denominator. Whenthedenominatorsarethesame,justaddorsubtractthe numerators
e.g.
• The lowestcommonmultiple(LCM) ofthedenominatorsisusedifthedenominatorsare different.Thisiscalledthe lowestcommondenominator(LCD).
Multiplyingfractions
• Converttoimproperfractions(ifneeded)
• Multiplythenumeratorstogether
• Multiplythedenominatorstogether
• Simplifyyouranswer
Dividingfractions
• Todividebyafraction,remembertoflipthefractionafter thedivisionsignupsidedown,thenmultiply.
e.g. 1 2 ÷ 1 4 = 1 2 × 4 1 = 2
Toflipafraction a b upsidedowntobecome b a iscalledtakingits reciprocal.
Und er stand ing
Thereare 2 quarters inonehalf.
1a Whichtwooperationsrequirethedenominatorstobethesamebeforeproceeding?
b Whichtwooperationsdonotrequirethedenominatorstobethesamebeforeproceeding?
2 Statethelowestcommondenominatorforthefollowingpairsoffractions. 1 5 + 3 4 a
3 Rewritethefollowingequationsandfillintheemptyboxes.
4 Statethereciprocalofthefollowingfractions.
HintforQ4:Reciprocalmeans toturnupsidedown.Convert mixednumeralstoimproper fractionsfirst!
Example3Addingandsubtractingfractions
Evaluate.
Explanation a 3 5 + 4 5 = 7 5 = 1 2 5
Thedenominatorsarethesamesosimplyadd thenumerators.
Three fifths plusfour fifths equalsseven fifths Thefinalanswercanbewrittenasamixednumeral.
Continuedonnextpage
Nowyoutry
Evaluate.
5 Evaluate.
Lowestcommonmultipleof 3 and 4 is 12 WriteequivalentfractionswithaLCDof 12.
3
Thedenominatorsarenowthesame,sosubtractthe numerators.
HintforQ5:Converttoacommon denominatorifrequired.
Evaluate. 3
Explanation
Convertmixednumeralstoimproperfractions. Thelowestcommonmultipleof 8 and 4 is 8 WriteequivalentfractionswithLCD. Addnumeratorstogether,denominator remainsthesame.Converttheanswerbackto amixednumeralifrequired.
Convertmixednumeralstoimproperfractions. Thelowestcommonmultipleof 2 and 6 is 6 WriteequivalentfractionswithLCD. Subtractnumeratorsandsimplifytheanswer.
Nowyoutry
Evaluate.
6 Evaluate.Writefinalanswersasmixednumerals. 3 1 7 + 1 3 7
HintforQ6:Youcanaddthe wholesfirstifyouprefer.
Example5Multiplyingfractions
Evaluate.
Solution Explanation
Multiplythenumeratorstogether. Multiplythedenominatorstogether. Theanswerisinsimplestform.
Useimproperfractions, 1 3 4 = 7
Cancelanynumeratorwithanydenominator. Multiplythenumerators 2 × 7 = 14 Multiplythedenominators 5 × 1 = 5
Nowyoutry Evaluate.
7 Evaluate.
HintforQ7:Looktocancelfirst ifpossible.
8 Evaluate.
Evaluate.
Solution
a 2 5 ÷ 3 7 = 2 5 × 7 3 = 14 15
Nowyoutry
Evaluate.
9 Evaluatethefollowing.
Explanation
Change ÷ signtoa × signandflipthedivisor. Multiplybythereciprocal. Proceedasformultiplication. Multiplynumeratorstogetherandmultiply denominatorstogether.
Convertmixednumeralstoimproperfractions. Change ÷ signtoa × signandflipthedivisor. Multiplybythereciprocal.Thereciprocalof 4 3 is 3 4 Multiplyandsimplify.
10 Evaluatethefollowing.
HintforQ10:Convertto improperfractionsfirst.
Problem-solving and reasoning 11 11,12
11 Thereare 30 studentsinMissMac’smathsclass.Findouthowmanystudentsthereareineachofthe followinggroups.
1 3 oftheclasshadbrownhair. a 1 2 oftheclasscametoschoolbybus. b
5 6 oftheclassspokeEnglishathome. c 1 10 oftheclasslikedmaths. d
12 MaxandTanyaarepaintingalargewalltogether,whichissplitequallyintotwohalves.Maxpaintsthe lefthalfofthewallatthesametimeasTanyapaintstherighthalf.Maxhaspainted 3 7 ofhishalfand Tanyahaspainted 2 5 ofherhalf.
a
Whatfractionoftheoverallwallhasmaxpainted?Calculate 3 7 × 1 2 tofindthis.
WhatfractionoftheoverallwallhasTanyapainted?
13 Useacalculatortofindtheanswerstothefollowing.
Learningintentions
• Tounderstandthatthetechniquesforadding,subtracting,multiplyinganddividingpositivefractionsalsoapplyto negativefractions
• Tounderstandthattherulesforpositiveandnegativeintegersalsoapplytofractions
• Tobeabletoadd,subtract,multiplyanddividenegativefractionsandmixednumerals
Keyvocabulary: negative,LCM,LCD,reciprocal,numerator,denominator,mixednumeral,improperfraction
TheEnglishmathematiciannamedJohnWallis (1616–1703) inventedanumberlinethatdisplayed numbersextendinginboththepositiveandnegativedirections.
So,justaswecanhavenegativeintegers,wecanalsohavenegativefractions.Infact,eachpositive fractionhasanopposite(negative)fraction.Twoexamplesarehighlightedonthenumberlinebelow:
Youaregivenastartingpointandasetofinstructionstofollow.Youmustdeterminewherethefinishing pointis.Thefirstsetofinstructionsreviewstheadditionandsubtractionofintegers.Theothertwosets involvetheadditionandsubtractionofpositiveandnegativefractions.
• Startingpointis 1.Add 3,subtract 5,add −2,subtract −4,subtract 3
Finishingpoint =
• Startingpointis 0.Subtract 3 5,add 1 5,add 4 5,subtract 2 5,subtract 3 5.
Finishingpoint =
• Startingpointis
Finishingpoint =
Thetechniquesfor +, , ×, ÷ positivefractionsalsoapplytonegativefractions.
Thearithmeticrulesweobservedforintegers(Chapter1)alsoapplytofractions. Subtractingalargerpositivefractionfromasmallerpositivefractionwillresultinanegativefraction.
Forexample:
Addinganegativefractionisequivalenttosubtractingitsopposite.
Forexample:
Subtractinganegativefractionisequivalenttoaddingitsopposite.
Forexample: 1 2 1 3 = 1 2 + + 1 3 = 1 2 + 1 3
Theproductorquotientoftwofractionsofthesamesign(positiveornegative)isapositivefraction.
•
•
Theproductorquotientoftwofractionsoftheoppositesign(positiveandnegative)isanegative fraction.
Und er stand ing
1 Usinganumberlinefrom −4 to 4,indicatethepositionsofthefollowingnegativeandpositivefractions.
2 Statethemissingfractionstocompletethesesentences.
Adding 1 4 isequivalenttosubtracting a
Adding 1 3 isequivalenttosubtracting . b
Subtracting 3 5 isequivalenttoadding c
Subtracting 2 7 isequivalenttoadding d
3 Statewhethertheanswerforthefollowingexpressionswillbepositiveornegative.Donotevaluate theexpressions. 3 5 × 1 3 a
Chasbeenrecorded.Scientistscalculatethedifferenceas:
Fluency
Example7Addingandsubtractingnegativefractions
Simplify:
Explanation
Adding 5 7 isequivalenttosubtracting 5 7
Subtracting 4 3 isequivalenttoadding 4 3
Adding 1 4 isequivalenttosubtracting 1 4
TheLCMof 5 and 4 is 20
WriteequivalentfractionswithLCDof 20
Subtractthenumerators.
Subtracting −3 2 3 isequivalenttoadding 3 2 3
Convertmixednumeraltoimproperfraction. Denominatorsarethesame,thereforeadd numerators −7 + 11 = 4
Nowyoutry
Simplify:
5 Simplify:
6 Simplify:
HintforQ6:First findacommon denominator.
Example8Multiplyingwithnegativefractions
Simplify:
Explanation
Thetwofractionsareofoppositesignsothe answerisanegative.
Thetwofractionsareofthesamesign,sothe answerisapositive.
Cancelwherepossible,thenmultiply numeratorsandmultiplydenominators.
Nowyoutry
Simplify:
7 Simplify:
Example9Dividingwithnegativefractions
Explanation
Thereciprocalof 3 4 is 4 3
Thetwofractionsareofthesamesignsothe answerisapositive.
Theanswershouldbeinsimplestform.
Thereciprocalof 3 is 1 3
Thetwonumbersareofoppositesign,sothe answerisanegative.
Nowyoutry
8 Simplify:
HintforQ8:Flipthe secondfractionto finditsreciprocal.
Problem-solving and reasoning
9 Toolapoolhasanaveragemaximumtemperature of 13 1 2 °Candanaverageminimumtemperature of −3 1 4 °C.Averagetemperaturerangeis calculatedbysubtractingtheaverageminimum temperaturefromtheaveragemaximum temperature.Whatistheaveragetemperature rangeforToolapool?
10 Arrangethesefractionsinincreasingorder. 3 4 , 1 2 , 5 3 , 3 4 , −1 1 2 , 1 16 , 1 5 , 3 1 10
11 Xaioaimstoget,onaverage, 8 hoursofsleepperweeknight.OnMondaynighthesleptfor 6 1 3 hours, onTuesdaynight 7 1 2 hours,onWednesdaynight 5 3 4 hoursandonThursdaynight 8 1 4 hours.
StatethedifferencebetweentheamountofsleepXaioachievedeachnightandhisgoalof 8 hours. Giveanegativeansweriftheamountofsleepislessthan 8 hours. a Afterfournights,howmuchisXaioaheadorbehindintermsofhissleepgoal? b IfXaioistoexactlymeethisweeklygoal,howmuchsleepmusthegetonFridaynight? c
12 Maria’smotherwantstomake 8 curtainsthateachrequire 2 1 5 metresofmaterialinastandardwidth, butsheonlyhas 16 1 4 metres.SheasksMariatobuymorematerial.Howmuchmorematerialmust Mariabuy?
13 Placeaninequalitysign(< or >)betweenthefollowingfractionpairstomakeatruestatement.(Note: Youcanuseanumberlinetodecidewhichvalueisgreater.)
Interestingfractionproducts
14 Itispossibletomultiplytwonegativefractionsandobtainapositiveinteger.Forexample, 4 5 × 5 2 = 2.Foreachofthefollowing,giveanexampleorexplainwhyitisimpossible.
Apositiveandanegativefractionmultiplyingtoanegativeinteger a
Apositiveandanegativefractionaddingtoapositiveinteger b
Apositiveandanegativefractionaddingtoanegativeinteger c Threenegativefractionsmultiplyingtoapositiveinteger d
14,15
15 Donotevaluatethefollowingexpressions,juststatewhethertheanswerwillbepositiveornegative. 2 7 × 1 7 × 3 11
Learningintentions
• Tounderstandplacevalueinadecimal.
• Tobeabletocomparetwoormoredecimalstodecidewhichislargest.
• Tobeabletoconvertdecimalstofractions.
• Tobeabletoconvertfractionstodecimals,incaseswherethedenominator’sonlyprimefactorsare 2 and/or 5
Keyvocabulary: decimal,decimalpoint,placevalue,fraction
Decimalsalsorepresent‘partsofawhole’.Theyrepresentfractionswithdenominatorsof 10, 100, 1000 Thedecimalpointisusedtoseparatethewholenumberandthefractionpart.
3 17 100 = 3.17
Inthissection,wereviewsomedecimalconceptsfromYear 7
Inpairs,listatleastfiveplaceswheredecimalsareusedandgiveaspecificexampleforeachone.
Value increasing by 10 times for each place movement
decreasing by 10 times for each place movement
Comparingandorderingdecimals.
Tocomparetwodecimalnumberswithdigitsinthesameplace-valuecolumns,comparethe left-mostdigitsfirst.Continuecomparingdigitsasyoumovefromlefttorightuntilyoufind twodigitsthataredifferent.
e.g.Compare 362.581 and 362.549
362.581
362.549 1 8 4 thestdigit thatisdifferent: > So 362.581362.549 >
Convertingdecimalsto fractions
• Countthenumberofdecimalplacesused.
• Thisisthenumberofzeroesthatyoumustplaceinthedenominator.
• Simplifythefractionifrequired.
e.g. 0.64 = 64 100 = 16 25
• Ifthedenominatorisapowerof 10,simplychangethefractiondirectlytoadecimalfromyour knowledgeofitsplacevalue.
e.g. 239 1000 = 0.239
• Ifthedenominatorisnotapowerof 10,trytofindanequivalentfractionforwhichthe denominatorisapowerof 10 andthenconverttoadecimal.
e.g.
• Iftheabovetwomethodsarenotsuitable,dividethebottom(denominator)intothetop (numerator).
e.g. 8
1 Whichofthefollowingisthemixednumeralequivalentof 8.17?
2 Whichofthefollowingisthemixednumeralequivalentof 5.75?
3 Whichdecimalnumberisequalto 4 + 1 10 + 5 100?
4 Whichdecimalnumberisequalto 20 + 3 10 + 7 1000?
Example10Comparingdecimals
Whichislarger?
57.89342 or 57.89631
Solution
Explanation
57.89631 islarger. Writeunderneatheachother. 57.89 342 57.89 631 ↑ 1stdigitdifferentfromlefttoright 6 > 3 3 1000 < 6 1000
Nowyoutry
Whichislarger? 2.14073 or 2.14039
5 Writedownthelargerdecimalineachpair.
36.48537.123 a
21.95321.864 b
0.03720.0375 c
4.217534.21809 d
65.411264.8774 e 9.52813529.5281347 f
6 Decideifeachofthefollowingstatementsistrue(T)orfalse(F). 3
HintforQ5:Comparedigitsfrom lefttoright.
Convertthefollowingdecimalstofractionsintheirsimplestform.
Solution
a 725 1000 = 29 40
b 5 12 100 = 5 3 25
Nowyoutry
Explanation
Threedecimalplaces,thereforethreezeroesindenominator. 0.725 = 725 thousandths.
Twodecimalplaces,thereforetwozeroesindenominator. 0.12 = 12 hundredths.
Convertthefollowingdecimalstofractionsintheirsimplestform. 0.58 a 12.65 b
7 Convertthefollowingdecimalstofractionsintheirsimplestform. 0.31
HintforQ7:Don’tforgetto simplify.
Example12Convertingfractionstodecimals
Convertthefollowingfractionstodecimals.
Explanation
a 239 100 = 2 39 100 = 2.39
Convertimproperfractiontoamixednumeral. Denominatorisapowerof 10 b 9 25 = 36 100 = 0.36
Nowyoutry
Convertthefollowingfractionstodecimals.
8 Convertthefollowingfractionstodecimals.
9 Convertthefollowingfractionstodecimals. 3
HintforQ9:Converttoa
10 Convertthefollowingmixednumeralstodecimalsandthenplacethemin descendingorder.
HintforQ10: 3 descending is going down from largest to smallest 2 1 2 2 5 , 2 1 4 , 2 9 50 , 2 3 10
11 ThedistancesfromNam’slockertohissixdifferentclassroomsarelistedbelow:
•
LockertoroomB5 (0.186 km)
LockertoroomA1 (0.119 km) •
LockertoroomP9 (0.254 km) •
Lockertogym (0.316 km)
LockertoroomC07 (0.198 km)
LockertoBWTheatre (0.257 km)
ListNam’ssixclassroomsinorder,fromtheclosestclassroomtotheonefurthestawayfromhislocker.
12 ThePrimeMinister’sapprovalratingis 0.35,whiletheOppositionLeader’sapprovalratingis 3 5 Whichleaderisaheadinthepopularitypollsandbyhowmuch?
13 Jeromewishestodigahole 1.5 metres deep.
Michaelhasdugahole 1 3 4 metresdeep. Whoseholewillbethedeepest?
a Howmanycentimetresdifferenceis thereinthedepthofeachhole?
14 Writedowna decimal thatliesbetweenthepairsoffractions. 1 2 and 9 10 a 3 4 and 1 b 1 4 and 3 4
HintforQ14:Anumberlinemayhelp
15 Completethefollowingmagicsquaresusingamixtureoffractionsanddecimals.
HintforQ15:Eachrow, columnanddiagonaladd tothesamenumberin eachmagicsquare.It’s theMAGICnumber!
Learningintentions
• Tobeabletoaddandsubtractdecimals.
• Tobeabletomultiplydecimals.
• Tounderstandthatmultiplyinganddividingbypowersof 10 involvesmovingthedigitsleftorrightofthe decimalpoint.
• Tobeabletodividedecimals.
Keyvocabulary: decimalpoint,powerof 10,divisor,dividend,quotient
Thissectionreviewsthedifferenttechniquesinvolvedin adding,subtracting,multiplyinganddividingdecimals.
Therearesevendifferentsentencebeginningsand sevendifferentsentenceendingsbelow.Yourtaskisto matcheachsentencebeginningwithitscorrectending. Whenyouhavedonethis,writedownthesevencorrect sentences.
Precisionelectronicmeasuringinstrumentsgivea decimalread-out.
Sentencebeginnings
Sentenceendings
Whenaddingorsubtractingdecimals thedecimalpointmovestwoplacestotheright.
Whenmultiplyingdecimals thedecimalpointinthequotientgoesdirectlyabove thedecimalpointinthedividend.
Whenmultiplyingdecimalsby 100 makesureyoulineupthedecimalpoints.
Whendividingdecimalsbydecimals thenumberofdecimalplacesinthequestionmust equalthenumberofdecimalplacesintheanswer.
Whenmultiplyingdecimals thedecimalpointmovestwoplacestotheleft.
Whendividingby 100 startbyignoringthedecimalpoints.
Whendividingdecimalsbyawholenumber westartbychangingthequestionsothatthedivisor isawholenumber.
Addingandsubtractingdecimals
• Ensuredigitsarecorrectlyalignedinsimilarplace-valuecolumns.
• Ensurethedecimalpointsarelinedupdirectlyunderoneanother. 37.56 + 5.23137.560 + 5.231 ✔ 37.56
Multiplyinganddividingdecimalsby powersof10
• Whenmultiplying,thedecimalpointmovestothe right thesamenumberofplacesasthere arezeroesinthemultiplier.
e.g. 13.753 × 100 = 1375.3 13.753
Multiply by 10 twice.
• Whendividing,thedecimalpointmovestothe left thesamenumberofplacesasthereare zeroesinthe divisor
e.g. 586.92 ÷ 10 = 58.692 586.92 Divide by 10 once.
Multiplyingdecimals
• Initiallyignorethedecimalpointsandmultiplythewholes.
• Placethedecimalpointintotheanswerusingtherule: ‘Thenumberofdecimalplacesintheanswermustequalthetotalnumberofdecimalplacesin thequestion.’
e.g. 5.738.6 × 573 86 49278 × 5.73 8.6 49.278 ×= (3 decimal places in question, 3 decimal places in answer)
Dividingdecimals
Thedecimalpointinthe quotient goesdirectlyabovethedecimalpointinthe dividend
e.g. 56.34 ÷ 3 )
Quotient(answer)
Weavoiddividingdecimalsbyotherdecimals.Insteadwechangethedivisorintoawholenumber. Whateverchangewemaketothedivisorwemustalsomaketothedividend,soitisequivalentto multiplyingby 1 andthevalueofthequestionisnotchanged.
1 Whichofthefollowingisthecorrectset-upforthefollowingadditionproblem?
2 Thecorrectanswertotheproblem 2.731 ÷ 1000 is:
3 If 56 × 37 = 2072,thecorrectanswertotheproblem 5.6 × 3.7 is:
Hintfor3EUnderstanding:The Keyideas sectionanswersall thesequestions.
4 Whichofthefollowingdivisionswouldprovidethesameanswerasthedivisionquestion
÷
?
Example13Addingandsubtractingdecimals
Calculate. 23.07 + 9.8 a 9.7−2.86 b
Solution
a 23.07 + 9.80 32.87
b 89.16710 −2.86 6.84
Nowyoutry
Explanation
Lineupthedecimalpoints.Fillinanyzeroes thenaddvertically.
Aligndecimalpointsdirectlyunderoneanother andfillinmissingdecimalplaceswithzeroes. Carryoutsubtractionfollowingthesame procedureasforsubtractionofwhole numbers.
Calculate. 1.05 + 12.96 a 3.2−1.74 b
5 Calculatethefollowing.
6 Calculatethefollowing.
HintforQ5:Aligndigits inmatchingplace-value columns. 5.6 +
Example14Multiplyinganddividingbypowersof 10
Calculate.
a 9.753 ÷ 100 = 0.09753
b 27.58 × 10000 = 275800
Explanation
Dividingby 100 (2 zeroes),thereforethe decimalpointmustmovetwoplacestothe left.Additionalzeroesareinsertedasnecessary. 09.753
Multiplyingby 10000 (4 zeroes),therefore thedecimalpointmustmovefourplacesto theright.Additionalzeroesareinsertedas necessary. 27.5800
Nowyoutry
Calculate.
7 Calculate.
Example15Multiplyingdecimals
Calculate 25.7 × 0.3.
12257 × 3 771 25.7 × 0.3 = 7.71
Nowyoutry
Calculate 4.5 × 1.6
8 Calculate.
HintforQ7:Move leftorrightbythe numberofzeroes.
Performmultiplicationignoringthedecimal point. (257 × 3 = 771) Therearetwodecimalplacesinthequestion,so twodecimalplacesintheanswer.
HintforQ8:Firstignorethe decimalpoint.
Example16Dividingdecimals
Calculate.
Carryoutdivision,rememberingthatthe decimalpointintheanswerisplaceddirectly abovethedecimalpointinthedividend.
Insteadofdividingby 0.03,multiplyboththe divisorandthedividendby 100,togetawhole number, 3
(Move each decimalpointtwoplacesto theright.)Carryoutthedivisionquestion 6413.7 ÷ 3
Nowyoutry Calculate.
9 Calculate.
10 Completethesedivisionsbyfillinginthemissingnumbers.
11 TheheightsofMrsBuchanan’sfivegrandchildrenare 1.34 m, 1.92 m, 0.7 m, 1.5 m,and 1.66 m. Ifthegrandchildrenlaiddowninarow,headtotoe,howlongwouldtherowbe?
12 Lookcloselyatthetableofcanteenpricesbelow.
Canteenprices
Findthecostofeachperson’slunch. a
Vaughn Charlotte Reece 1 pie 1 sandwich 1 pie 1 sauce 1 chocolate 2 colas 1 apple 1 juice 1 sandwich 2 milks 1 pktchips
Whohadthemostchangefrom $20? b
13 Analternativemethodformultiplyingdecimalsistoconvertthemtofractionsandthenmultiplythem. Forexample, 0.3 × 1.2 =
= 36
,whichcanbeconvertedinto 0.36.Usethismethod tomultiplythefollowingdecimals.
0.3 × 0.7 a
0.1 × 3.07 b
0.2 × 0.05 c
14 Answereachofthe 12 questionsbelowtounlockthecodeandfindouthowSamalanswers Sally’squestion.
Hey Samal, do you know why they teach us decimals?
Learningintentions
• Tounderstandthedifferentnotationsforrecurringdecimals(involvingdotsanddashes)
• Tobeabletoconvertafractiontoaterminatingdecimalusingdivision.
• Tobeabletoconvertafractiontoarecurringdecimalusingdivision.
• Tobeabletorounddecimalstoagivennumberofdecimalplacesby rst ndingthecriticaldigit.
Keyvocabulary: terminatingdecimal,recurringdecimal(orrepeatingdecimal),rounding Notallfractionsconverttothesametypeofdecimal.
Forexample:
1 2 = 1 ÷ 2 = 0.5 (onlyhasonedecimalplace) 1 3 = 1 ÷ 3 = 0.33333… (keepsgoingandgoing) 1 7 = 1 ÷ 7 = 0.142857142857… (thepatternrepeats)
Decimalsthatstop(orterminate)areknownasterminatingdecimals,whereasdecimalsthatcontinue onforeverwithsomeformofpatternareknownasrepeatingorrecurringdecimals.
Lessonstarter:Decimalpatterns
Useacalculatortoperformthesedivisions.Canyouseeapattern?
Withoutyourcalculator,writedown 5 9 and 6 9 asdecimals.Whatdowecallthesetypesofdecimals?
A terminatingdecimal hasafixednumberofdecimalplaces(i.e.itterminates).
e.g. ) 5 8 5 8 0.62585.000 0.625 524 =÷= Terminating decimal (3 decimal places only)
A recurringdecimal (orrepeatingdecimal)keepsgoingandthedecimalplacesrepeat.
e.g. ) 1 3 1 30.33331.0000 0. 333... 111 1 =÷= Recurring decimal
Aconventionistousedotsplacedabovethedigitstoshowthestartandfinishofarepeatingcycle ofdigits.
e.g. 0.55555…= 0.5 and 0.3412412412…= 0.3412
Anotherconventionistouseahorizontallineplacedabovethedigitstoshowtherepeatingcycle ofdigits.
e.g. 0.55555…= 0.5 and 0.3412412412…= 0.3412
Decimalscanbewrittenwithfewerdecimalplacesbyrounding. Toroundwemustlookatthedigitimmediatelyafterthenumberofplaceswewant.(It’sthe critical digit!)
These values are closer to 7.4 and round to 7.4.
These values are closer to 7.5 and round to 7.5.
1 Statewhetherthefollowingareterminatingdecimals(T)orrecurringdecimals(R).
2 Foreachlinegiven,whichcircleddecimalisthedecimalinthetriangleclosestto?
3 Expressthefollowingrecurringdecimalsusingtheconventionofdotsorabartoindicatethestartand finishoftherepeatingcycle.
HintforQ3:Write 0.7555 as 0.75 0.33333 a 6.21212121… b 8.5764444… c 2.135635635 d 11.2857328573… e 0.003523523 f
4 Writedownthe‘critical’digit(thedigitimmediatelyaftertheroundingdigit)foreachofthefollowing. 3.5724 (roundingto 3 decimalplaces) a 15.89154 (roundingto 1 decimalplace) b 0.004571 (roundingto 4 decimalplaces) c 5432.726 (roundingto 2 decimalplaces) d
Example17Writingterminatingdecimals
Convertthefollowingfractionstodecimals.
Write
Dividethebottom(denominator)intothetop(numerator).
Nowyoutry
Convertthefollowingfractionstodecimals.
5 Convertthefollowingfractionstodecimals.
HintforQ5:Theseareall terminatingdecimals.
Example18Writingrecurringdecimals
Expressthefollowingfractionsasrecurringdecimals.
Thispatterncontinues,itisarepeatingdecimal.
Thispatterncontinues.
Nowyoutry
Expressthefollowingfractionsasrecurringdecimals.
6 Expressthefollowingfractionsasrecurringdecimals.
1 3 a 5 9 b 5 6 c 7 9 d 3 7 e 1
Round 14.258 to 1 decimalplace. a Round 0.671 to 2 decimalplaces. b
HintforQ6:Rememberto usetherepeatingnotation. 0.444…= 0.4.
a 14.3 14.2 58 roundedto 1 decimalplace—lookatnextdigit (5).Criticaldigitis 5.Roundup 14.258 ¥ 14.3
b 0.67 0.67 1 roundedto 2 decimalplaces—lookatthenext digit (1).Criticaldigitis 1.Rounddown 0.671 ¥ 0.67
Nowyoutry
Round 24.9349 to 2 decimalplaces. a Round 0.048561 to 3 decimalplaces. b
7 Roundeachofthefollowingdecimalsto 1 decimalplace.
8 Writeeachofthefollowingdecimalscorrectto 2 decimalplaces (thenearesthundredth).
HintforQ7:Thefirstdecimal placeisalsocalledthetenths column.
9a Choosethecorrectanswertoeachofthefollowing. Is 7.9 closerto 7 or 8? i Is 7.99 closerto 7.9 or 8.0? ii Is 4.96 closerto 4.9 or 5.0? iii
b Roundthefollowingto 1 decimalplace.
10 Findouthowyourcalculatorrounds.Useittoroundeachofthefollowingdecimalstothenumberof decimalplacesgiveninthebrackets.
11 SimoneandGreeraretwoverygoodjuniorsprinters.Simoneran 100 min 12.83 seconds,whileGreer ranitin 12.77 seconds. Whocamefirst,andbyhowmuch? a Roundeachtimetoonedecimalplace.Canyoustilldecidewhocamefirst? b
12 Petrolissoldat 147.9 centsperlitre.Find,correcttothenearestcent,thecostof:
1 litre a
5 litres b
12 litres c 39.7 litres d
Neitherterminatingorrecurring 13
13 Therearesomenumberswhenwrittenasadecimalneitherterminatenorrecur.Onesuchsetofnumbers arecalledsurds,whichincludea √ sign,e.g. √2 Write √2 correctto 7 decimalplacesusingacalculator. a Findsomeothersurdsandwritethemcorrectto 3 decimalplaces. b Othernon-surdnumberswhichdonotterminateorrecurincludepiandphi.Researchthesenumbers andwriteabriefreportaboutwhytheyareimportant.
c
1 3A Writethefollowingfractionsinsimplestform.
2 3B Evaluate.
3 3B Evaluate.
4 3C Evaluate.
5 3C Evaluate.
6 3D Convertthefollowingdecimalstofractionsintheirsimplestform.
7 3D Convertthefollowingfractionstodecimals.
8 3E Calculate.
9 3E Calculate.
10 3F Convertthefollowingfractionstodecimals,expressingyouranswersasrecurring decimalsifnecessary.
11 3F Roundeachofthefollowingdecimalstotwodecimalplaces.
Learningintentions
• Tounderstandthatapercentage(%)isanumberoutof 100.
• Tobeabletoconvertpercentagestofractionsanddecimals.
• Tobeabletoconvertfractionsanddecimalstopercentages.
Keyvocabulary: percentage,percent,fraction,decimal
A percentage isaparticularfractionwherethedenominatorisalways 100
Percent isLatinfor‘outof 100’.
7%= 7 percent = 7 outof 100 = 7 100 = 0.07
Peopleusepercentageseverydayinbanking,salesandschooltests.
Lessonstarter:Estimatingpercentages
• Listthedrinksinorderfromthemosttotheleastamountleftintheglass.
• Estimatethepercentageofdrinkremainingineachoftheglassesshownabove.
• Discussyourestimateswithapartner.
Keyideas
A percent sign (%) means‘outofonehundred’.
23%= 23 100
Percentages canbeconvertedto fractions and decimals
35%½ 35 100 = 7 20 (fraction)
35%½ 35 ÷ 100 = 0.35 (decimal)
Fractionsanddecimalscanbeconvertedtopercentages.
1 4 or 0.25 asapercentage ½ 1 4 × 100 = 25 and 0.25 × 100 = 25
so 1 4 = 0.25 = 25%
Commonpercentagesandtheirequivalentfractionsareshowninthetablebelow. Itishelpfultoknowthese.
Und er stand ing
1 Thefractionequivalentof 27% is:
2 Thedecimalequivalentof 37% is:
3 Thepercentageequivalentof 47 100 is:
4 Copyandcompletethetableordiscussasagroup.
Example20Convertingpercentagestofractionsanddecimals
Write 72% as: asimplefraction a adecimal b
Solution
a 72%= 72 100 = 18 × 4 25 × 4 = 18 25
b 72%= 72 ÷ 100 = 0.72
Nowyoutry
Explanation
Change % signtoadenominatorof 100
Cancelthehighestcommonfactorof 4 tosimplify.
Tochangea % toadecimal,divideby 100
Write 65% as: asimplefraction a adecimal b
5 Writethesepercentagesassimplefractions.
39%
HintforQ5:Writeeachnumber outof 100 a 11% b 17% c 99
6 Writethesepercentagesasdecimals.
HintforQ6:Movethedecimal pointtwoplacestotheleft.
Example21Convertingfractionsanddecimalstopercentages
Writethefollowingaspercentages.
Explanation a 4 5 × 100 = 80 So 4 5 = 80%
Multiplythefractionby 100 Simplify 300 ÷ 8 = 37 remainder 4
Multiplyby 100 toexpressasapercentage b 3 8 × 100 = 300 8 = 37 1 2 So 3 8 = 37 1 2 %
c 0.81 × 100 = 81
So 0.81 = 81%
Nowyoutry Writethefollowingaspercentages.
7 Writethesefractionsaspercentages.
Multiplythedecimalby 100 0.8181% =
HintforQ7:Multiplyby 100 andsimplify.
8 Writethesedecimalsaspercentages.
Problem-solving and reasoning
9a If 1 5 = 20%,whatdoes 3 5 equalasapercentage?
b If 1 8 = 12.5%,whatdoes 7 8 equalasapercentage?
c If 1 3 = 33 1 3 %,whatdoes 2 3 equalasapercentage?
HintforQ9:Whatcanwe multiplyeachfractionby?
10 Completethefollowingconversiontablesinvolvingcommonfractions,decimalsandpercentages.
11 TheSharkshockeyteamhaswon 13 outof 17 gamesfortheseasontodate.Theteamstillhasthree gamestoplay.WhatisthesmallestandthelargestpercentageofgamestheSharkscouldwinfor theseason? Moneyandpercentages
12 Copyandcompletethistable.Canyouseeaconnection?
Learningintentions
• Tobeabletoexpressonequantityasapercentageofanother.
• Tobeabletoconvertunitsinordertoexpressonequantityasapercentageofanother.
• Tobeableto ndacertainpercentageofaquantity.
Keyvocabulary: percentage,fraction,units
Percentagesareusefulwhencomparingdiscounts,interestratesandevenmarksinatest.
Forexample,Huen’sreportcardcouldbewrittenasmarksoutofeachtotalorinpercentages.
Inthissectionwelookatexpressinganumberasapercentageofanothernumberaswellasfindinga percentageofanamount.
Shopsoftendisplaydiscountedpricesasapercentageoftheoriginalprice. Calculatingthenewpricehelpsdetermineifthediscountoffersasignificant saving.
Answerthefollowingquestions.
• Whatpercentageofyourdayhaspassed?
• Whatpercentageofthecurrentmonthhaspassed?
• Whatpercentageofthecurrentseasonhaspassed?
• Whatpercentageofyourschoolyearhaspassed?
• Whatpercentageofyourschooleducationhaspassed?
• Ifyoulivetoanaverageage,whatpercentageofyourlifehaspassed?
• Whenyouturned 5,whatpercentageofyourlifewasoneyear?
• Whenyouare 40,whatpercentageofyourlifewilloneyearbe?
Toexpressonequantityasa percentage ofanother:
1 Writethequantitiesasa fraction.(The‘whole’amountisalwaysthedenominator.)
2 Multiplythisfractionby 100 e.g.Expressatestscoreof 14 outof 20 asapercentage. 14
Tofindacertainpercentageofaquantity:
1 Expresstherequiredpercentageasafraction.(Youcanalsousedecimals.)
2 Changethe‘of’toamultiplicationsign.
3 Expressthenumberasafraction.
4 Followtherulesformultiplicationoffractions.
e.g.Find 20% of 80
1 Thecorrectworkinglinetoexpress 42 asapercentageof 65 is:
2 Thecorrectworkinglinetofind 42% of 65 is:
HintforQ2:Thenumber withthepercentsignis writtenwiththe 100 inthe denominator.
3 Whatisthepercentagefor: ascoreof 20 outof 40? a ascoreof 0 outof 10? b ascoreof 50 outof 50? c
4 Copyandcompletethefollowingsentences.
Finding 1% ofaquantityisthesameasdividingthequantityby a
Finding 10% ofaquantityisthesameasdividingthequantityby b
Finding 20% ofaquantityisthesameasdividingthequantityby c
Finding 50% ofaquantityisthesameasdividingthequantityby d
Finding 25% ofaquantityisthesameasdividingthequantityby . e
Example22Expressingonequantityasapercentageofanother
Express 34 outof 40 asapercentage.
Solution
34 40 × 100 1 = 17 ✚✚ 20 1 × ✟✟ 100 5 1 = 17 1 × 5 1 = 85 So 34 40 = 85%
Nowyoutry
Express 13 outof 20 asapercentage.
5 Expresseachofthefollowingasapercentage.
outof
Explanation
Writeasafraction,withthefirstquantityas thenumeratorandsecondquantityasthe denominator.Multiplyby 100 Cancelandsimplify.
HintforQ5:Multiplyby 100 20 outof 25 a 13 outof 20 b
Example23Convertingunitsbeforeexpressingasapercentage
Express 60 centsasapercentageof $5
× 100 1 = 60 5 = 12
60 500 = 12%
So 60 centsis 12% of $5
Nowyoutry
Express 700 gasapercentageof 4 kg.
6 Express:
40casapercentageof $8 a
b
50casapercentageof $2
3 mmasapercentageof 6 cm. c
400 masapercentageof 1.6 km. d
200 gasapercentageof 5 kg. e
200 masapercentageof 8 km. f
Explanation
Unitsneedtobethesame.
Convert $5 to 500 cents. Writequantitiesasafractionandmultiply by 100.Cancelandsimplify.
7 Expresseachquantityasapercentageofthetotal. 28 lapsofa 50 lapracecompleted. a Saved $450 towardsa $600 guitar. b 172 fansinatraincarriageof 200 people. c Level 7 completedofa 28 levelvideogame. d 36 studentsabsentoutof 90 total. e 21 kmmarkofa 42 kmmarathon. f
Find 25% of 48
Solution
25% of 48 = 25 100 × 48 1 = 1 4 × 48 1 = 12
Nowyoutry
Find 7% of 50
8 Find:
of
Explanation
Writethepercentageasafractionover 100 ‘Of’meansmultiply. Cancelandsimplify.
Problem-solving and reasoning
9 Find:
10% of $750
5% of 2 km b
30% of 150 kg c
20% of 90 minutes d
10% of 5 litres e
25% ofonehour f
HintforQ9:Youmayliketochange theunitsinthequestiontomake iteasiertoworkwith. 3% of 1 km = 3% of 1000 metres.
HintforQ9:Rememberto puttheunitsinyour answer. 10% of $50 = 10 100 × $50 1 = $5 a
50% of $6.50 g 2% of $8 h
7% of 1 2 kg i
10 Copyandcompletethetableofsportingchoices.
11 Calculatorsmakeworkingwithpercentageseasier.Usea calculatortoanswerthesequestions.
Find 8% of $8.40 a
Find 13% of 2 km. b
Find 7 1 4 % of $500 c
Find 24% of 1 hour. d
Find 31.5% of $45960 e
f
g
h
4% ofaclassof 25 studentsareawaywiththeflu. Howmanystudentsareatschool?
49.5% ofbabiesbornatthelocalhospitalaregirls.Of the 200 borninthemonth,howmanywereboys?
Seanpays 42% ofhis $86400 incomeintax.How muchisleftafterhepayshistax?
12 Find:
33 1 3 % of 15 litresoforangejuice.
a 66 2 3 % of 3000 marbles.
c
b 12 1 2 % ofa $64 pairofjeans.
d
37.5% of 120 donuts.
HintforQ12: 33 1 3 %= 1 3
13 Mostbanksrequirea 10% depositbeforelendingyouanymoney.AshleeandMatthave 7% of the $450000 theirhomecosts.
HowmuchdoAshleeandMatthaveastheirdeposit? a Howmuchdothebanksneedthemtohave? b Howmuchmoredotheyneedtosave? c Iftheygetagovernmentgrantof $14000,willtheyhavethe 10% needed? d
Learningintentions
• Tobeableto ndthenewvalueifanamountisincreasedordecreasedbyapercentage.
• Tounderstandthatpercentagemark-upsanddiscountscorrespondtoincreasinganddecreasingaprice byapercentage.
• TounderstandthatGSTrepresentsa 10% mark-up.
Keyvocabulary: reduction,discount,mark-up,pro t,loss,sellingprice,costprice
Percentagesareusedeveryday,oftenwhendealingwithmoney.Intheworldoffinance,calculationsand percentageincreasesanddecreasesarecommonplace.
Theoriginalamountofsomethingcanbethoughtofas 100%
Lessonstarter:Whatdoesitmean?
Inpairs,answerthefollowing:
• Whatdoesitmeantobuyapairofshoes‘onsale’?
• Whatdoesitmeanifthesaleis‘20% off’?
• Whatdoesitmeanto‘paythemarkedprice’?
• Whatdoesitmeantobuyanitemonsale?
• Is $10 offbetterthan 10% off?Discuss.
• Whenwouldyoupaymorethantheoriginalprice?
• Whatcurrentsalesarebeingadvertisedintoday’spaper?
Toincreasebyagivenpercentage:
• findthepercentageoftheamount
• addthisamounttotheoriginal.
Todecreasebyagivenpercentage:
• findthepercentageoftheamount
• subtractthisamountfromtheoriginal.
Keywords:
• Decrease:reduction,discount,sale,percentageoff,loss
• Increase:mark-up,profit
• Sellingprice = costprice + profit or costprice loss
Piechartsusepercentagesof 360° to divideupacircle.
• GST:GoodsandServicesTax(InAustraliathisisa 10% mark-up.)
1 Decideifeachoftheseshowsanincreaseoradecrease. Mark’s $1650 returnairfaretoLosAngeleswasreducedby 10% a Sonyamade 15% profitwhenshesoldherhouse. b Theshopdiscountedallofitscomputersby 10% c Thomasreceivedapayriseof 5% onhiswageof $570 perweek. d Ataxof 15% isaddedtothecostofeverythingintheUnitedKingdom. e
2 Addorsubtractthesepercentages.
3 Calculatethenewpricewhen:
anitemmarkedat $15 isdiscountedby $3 a anitemmarkedat $25.99 ismarkedupby $8 b anitemmarkedat $17 isreducedby $2.50 c anitemmarkedat $180 isincreasedby $45 d
Findthenewvaluewhen $160 isincreasedby 40% Solution
40% of 160 = 40 100 × 160 1 = $64
Newprice = $160 + $64 = $224
Nowyoutry
Findthenewvaluewhen $85 isincreasedby 30%
4 Findthenewvaluewhen:
Calculate 40% of $160 Cancelandsimplify.
Newprice = originalprice + increase
$400 isincreasedby 10% a $240 isincreasedby 10% b
$250 isincreasedby 10% c $700 isincreasedby 20% d
$500 isincreasedby 1% e $800 isincreasedby 25% f
$84 isincreasedby 25%. g $90 isincreasedby 50%. h
Findthenewvaluewhen $63 isdecreasedby 20%
20% of $63 = 20 100 × 63 1 = $12.60
Newprice = $63−$12.60 = $50.40
Nowyoutry
HintforQ4:Addtheincreaseto theoriginalamount.
Calculate 20% of $63 Cancelandsimplify.
Newprice = originalprice decrease
Findthenewvaluewhen $120 isdecreasedby 15%
5 Findthenewvaluewhen:
$400 isdecreasedby 10% a
$250 isdecreasedby 10% c
$200 isdecreasedby 15% e
$1000 isdecreasedby 50% g
6a Find 8% of $2500
b Increase $2500 by 8%
c Decrease $2500 by 8%
$240 isdecreasedby 10% b
$90 isdecreasedby 20% d
$840 isdecreasedby 25% f
$60 isdecreasedby 15% h
Findthecostofan $860 televisionthathasbeendiscountedby 25%
Solution
Discount = 25% of $860 = 25 100 × 860 1 = $215
Sellingprice = $860−$215 = $645
Nowyoutry
Explanation
Calculate 25% discount. Cancelandsimplify.
Sellingprice = costprice discount
Findthecostofa $450 tablethathasbeendiscountedby 40%.
7 Findthecostofthefollowing.
A $600 televisionthathasbeendiscountedby 20% a
A $150 lipstickthathasbeenreducedby 15% b
A $52 jumperthathasdepreciatedby 25%. c
8 Calculatethesellingpricesofthefollowingitemsiftheyaretobereducedby 25%
$16 thongs a $32 sunhat b
$50 sunglasses c $85 bathers d $130 boogieboard e
$6.60 surfboardwax f
Findthecostofamicrowaveoventhatwasoriginally $250 thenmarkedupby 12%
Solution
Mark-up = 12% of $250 = 12 100 × 250 1 = $30
Sellingprice = $250 + $30 = $280
Nowyoutry
Explanation
Calculate 12% of $250 Cancelandsimplify.
Sellingprice = costprice + mark-up
Findthecostofatoasterthatwasoriginally $64 thenmarkedupby 15%.
9 Findthecostofthefollowing.
An $80 framedPinkposterthathasbeenmarkedupby 30% a
A $14 mealthathasbeenincreasedby 10% b
A $420 stereothathasbeenmarkedupby 50% c
10 Calculatethesellingpricesofthefollowingitemsiftheyneedtohave 10% GSTaddedtothem.
$35 T-shirt a $75 backpack b
$42 massage c $83 fishingrod d
$52.50 toaster e $149.99 cricketbat f
HintforQ10:Remember 10% GSTadds/increasestheprice ofanitem.
11 Answerthefollowingproblemsinvolvingpercentages.
Anne’sannualsalarywas $86000.Hernewsalaryis 5% more.WhatisAnne’snewsalary?
a Thestategovernmentincreasesthecostofa $9.60 traintripby 5%.Whatisthenewfare?
b
d
Acarworth $47000 droppedinvalueby 20% duringtheyear.Whatisthecarnowworth?
c The 10% GSTneedstobeaddedtothecostofameal.Whatdoesa $74 mealcostoncethe GSTisaddedin?
Taxof 40% reducesSaul’swageof $1600.WhatamountdoesSaulreceive?
e Sallymakesa 24% profitonherhouse.Shepaid $500000.Whatdidshesellitfor? f
12 Twoshopsadvertisethesamebike.Bothhavearecommendedretail priceof $1800.Shoponeoffersa 10% discount.Shoptwooffers $200 offallbikes.
a Howmuchdiscountdoesshoponeofferonthisbike?
b Howmuchdoyoupayforthebikeateachshop?
c Whichshopwouldyourecommendandwhy?
d Ifthesamedealappliestoeachofthefollowing bikes,wouldyoustillbuyitfromthesameshop? $2000 bike i
HintforQ12:Findthe priceofeachbikeatshop oneandtwobefore answeringpart d. Areyousurprised byyouranswers?
13 Theword depreciation isusedwhenthevalueofanitem,suchasacar,boatorasetofgolfclubs, reducesinvalueeachyear.
a Rick’ssetofgolfclubsworth $2000 depreciatesatarateof $250 ayear. Copyandcompletethetableshowinghowthevalueoftheclubschangesovertime.
i Drawupasetofaxes(likethoseshownbelow)andgraphthevaluesshowninthetable. 12 Year Value ($) 500 0 2000 3 45678 1000 1500 ii
2000 1750
Whatshapeisyourgraph? iii
Afterhowmanyyearsisthevalueoftheclubszero? iv
b Rick’swifehasasetofgolfclubs,alsovaluedat $2000,whichdepreciateat 12 1 2 % eachyear.
i Willherclubseverbeworthless? ii
Endofyear 0 1 2 3 4
Value ($) 2000 1750 1531.25
HintforQ13:Useacalculator tohelpyoufindthevaluesin thistable! Completeasimilartableshowinghowthevalueofherclubschanges.
Learningintentions
• Tounderstandthatpro tandlossrepresentthedifferencebetweenthesellingpriceandcostpriceofanitem.
• Tobeabletocalculatethepercentagechange(increaseordecrease)whenpricesareincreasedordecreased.
Keyvocabulary: percentagechange,percentagepro t,percentageloss,pro t,loss,sellingprice,costprice
Whensellingsomething,everyonelikestomakeaprofit.Thisiswhenyousellitformorethanyou paidforit.
Unfortunately,peopleoftendotheoppositeandmakealoss.
Thepercentagechangedependsonwhattheitemisoriginallyworth.Forexample:
Carboughtfor $1000
Carsoldfor $200
Carboughtfor $16000
Carsoldfor $15200
Discusshowyoucouldcheckifthecorrectpriceforthejeanshadbeenpaid.
Profit = sellingprice costprice
Loss = costprice sellingprice
Calculatingapercentagechangeinvolvesthetechniqueofexpressingonequantityasapercentage ofanother(see Section3G).
• Percentagechange = change originalvalue × 100
• Percentageprofit = profit originalvalue × 100
• Percentageloss = loss originalvalue × 100
1 Decidewhethereachofthefollowingrepresentsaprofitoraloss.
2 Calculatetheprofitmadeineachofthefollowingsituations.
= $14,Saleprice = $21
= $75,Saleprice = $103
= $25.50,Saleprice = $28.95
Costprice = $499,Saleprice = $935
3 Calculatethelossmadeineachofthefollowingsituations.
Costprice = $22,Saleprice = $9 a
Costprice = $92,Saleprice = $47 b
Costprice = $71.10,Saleprice = $45.20 c Costprice = $1121,Saleprice = $874
4 Whichofthefollowingisthecorrectformulaforworkingout percentagechange? %change = change originalvalue A %change = originalvalue change × 100
% change = change × 100%
%change = change originalvalue × 100
Example29Calculatingpercentagechange:profit
Calculatethepercentageprofitwhen $25 becomes $32
Solution
Profit = $7
%Profit = 7 25 × 100 1 % = 28%
Nowyoutry
Explanation
Thisispercentage profit becauseitwassoldfor morethantheoriginal $25
Profit = $32−$25
Percentageprofit = profit originalvalue × 100%
Calculatethepercentageprofitwhenasecond-handtoypurchasedfor $36 issoldfor $45
5 Findthepercentageprofitwhen:
$20 becomes $36
$40 becomes $50 c
$12 becomes $20 e
$10 becomes $13 b
$25 becomes $30 d
$8 becomes $11 f
original × 100 1 a
$10 becomes $15 g
$6 becomes $12 h
Calculatethepercentagelosswhen $60 becomes $48
Solution
Loss = $12
%Loss = 12 60 × 100 1 = 20%
Nowyoutry
Explanation
Thisispercentage loss becauseitwassoldfor lessthantheoriginal $60
Loss = $60−$48
Percentageloss = loss originalvalue × 100
Calculatethepercentagelosswhena $140 chairissoldfor $84
6 Findthepercentagelosswhen:
$40 becomes $30 a
$6 becomes $3 c
$12 becomes $8 e
$25 becomes $20 g
$25 becomes $21 b
$8 becomes $2 d
$10 becomes $9 f
$20 becomes $18 h
Rossbuysatickettoaconcertfor $125,butislaterunabletogo.Hesellsittohisfriendfor $75 CalculatethepercentagelossRossmade.
Solution
Explanation
Loss = $125−$75 = $50 Loss = Costprice Sellingprice
% Loss = 50 125 × 100 1 = 40%
Rossmadea 40% lossontheconcertticket.
Percentageloss = loss costprice × 100
After 5 yearsanoilpainting’svalueincreasesfrom $2000 to $4500.Calculatethepercentageincrease initsvalueduringthistime.
7 Copyandcompletethetablesbelow.
(
8 Findthepercentagechange(increaseordecrease)when: 15 kgbecomes 18 kg. a 18 kgbecomes 15 kg. b 4 kgbecomes 24 kg. c 12 kgbecomes 30 kg. d
9 Findthepercentagechangeinpopulationwhen: atownof 4000 becomesatownof 5000 a acityof 750000 becomesacityof 900000 b acountryof 5000000 becomesacountryof 12000000 c
10 Garibuysatickettoaconcertfor $90,butisunabletogo.Hesellsittohisfriendfor $72.Calculatethe percentagelossGarimade.
11 Xavierpurchasedmaterialsfor $48 andmadeadogkennel. Helatersoldthedogkennelfor $84
CalculatetheprofitXaviermade. a CalculatethepercentageprofitXaviermade. b
12 Gemmapurchaseda $400 foal,whichshelatersold for $720
CalculatetheprofitGemmamade. a
CalculatethepercentageprofitGemmamade. b
13 Lee-Senpurchaseda $5000 car,whichshelatersold for $2800
CalculatethelossLee-Senmade. a
CalculatethepercentagelossLee-Senmade. b WhatshouldLee-Sensellthecarfortomakea 10% profit?
14 TheAustralianBureauofStatisticstracksthepopulationgrowthofthecountryandofeachindividual stateandterritory.
a
Copyandcompletethetablebelow,roundingthe % changetoonedecimalplace.
HintforQ14:Usea calculatortohelpyou withthisquestion. Place March2016
b
ResearchthecurrentgrowthrateofAustraliaandoneothercountryofyourchoice.
Learningintentions
• Tounderstandthattheunitarymethodinvolves ndingthevalueof‘oneunit’asanintermediatestep.
• Tobeabletousetheunitarymethodto ndaquantitywhenonlyapercentageisknown.
• Tobeabletousetheunitarymethodto ndanewpercentagewhenadifferentpercentageisknown.
• Tobeabletoapplytheunitarymethodto ndtheoriginalpricewhenapricehasbeenincreasedordecreasedby apercentage.
Keyvocabulary: unitarymethod,percentage,discount,saleprice,originalprice
Youprobablydidproblemslikethisinprimaryschool:‘Iffiveapplescost $6,whatisthecostof 7 apples?’
Withquestionslikethis,wefindthecostofoneapplefirst.
Thisishelpfulinpercentagesaswell.Onceweknowwhat 1% is worth,wecanfindanypercentageamount.Thisiscalledthe unitary method ? If 5 applescost $6 thenoneapple costs $1.20
Lessonstarter:Usingtheunitarymethod
• Fourticketstoaconcertcost $100.Whatdoesoneticketcost?Howmuchwillthreeticketscost?
• Tenworkerscandig 40 holesinanhour.Howmanycanoneworkerdiginanhour?Howmanyholes cansevenworkersdiginanhour?
• Sixpizzascost $54.Whatdoesonepizzacost?Howmuchwouldtenpizzascost?
• Ifeightpairsofsockscost $64,howmuchwould 11 pairsofsockscost?
• Fivepassionfruitcost $2.00.Howmuchwillninepassionfruitcost?
• Ifaworkertravels 55 kmin 5 tripsfromhometotheworksite,howfarwilltheytravelin 7 trips?
The unitarymethod involvesfindingthevalueof‘oneunit’andthenusingthisinformation toanswerthequestion.
Whendealingwith percentages,finding‘oneunit’meansfindingonepercent (1%)
Oncethevalueof 1% ofanamountisknown,itcanbemultipliedtofindthevalueofany desiredpercentage.
1a Whatdoyoudividebytogofrom 8% to 1%?
b Whatdoyoudividebytogofrom 25% to 1%?
c Whatdoyoumultiplybytogofrom 1% to 100%?
d Whatdoyoumultiplybytogofrom 1% to 50%?
2 If 1% ofanamountis $3,whatis: 2% oftheamount? a 10%
3 If 1% ofanamountis $8,whatis:
10% oftheamount? a 100% oftheamount? b
4 Copyandcomplete:
If 4% ofanamount = $16 then 1% ofanamount = and 100% ofanamount =
Fluency
Example32Usingtheunitarymethodtofindthefullamount
If 8% ofanamountofmoneyis $48,whatisthefullamountofmoney?
Solution
8% of amount is $48 1% of amount is $6 100% of amount is $600 ÷ 8 × 100 ÷ 8 × 100
Fullamountofmoneyis $600
Nowyoutry
Explanation
Remembertofind 1% first.
Divideby 8 tofindthevalueof 1% (48 ÷ 8 = 6)
Multiplyby 100 tofindthevalueof 100% (6 × 100 = 600)
If 15% ofanamountis $45,whatisthefullamount?
5 Calculatethefullamountofmoneyforeachofthefollowing.
3% ofanamountofmoneyis $27
5% ofanamountofmoneyis $40 b
HintforQ5:Firstfindthevalue of 1%. a
12% ofanamountofmoneyis $132 c
60% ofanamountofmoneyis $300 d
8% ofanamountofmoneyis $44 e
6% ofanamountofmoneyis $15 f
Example33Usingtheunitarymethodtofindanewpercentage
If 11% ofthefoodbillis $77,howmuchis 25% ofthefoodbill?
Solution
11% of food bill is $77
1% of food bill is $7
25% of food bill is $175 ÷ 11 × 25 ÷ 11 × 25
Explanation
Find 1% first. Divideby 11 tofindthevalueof 1% (77 ÷ 11 = 7). Multiplyby 25 tofindthevalueof 25% (7 × 25 = 175)
Nowyoutry If 20% ofasalarybonusis $6000,howmuchis 75% worth?
6 If 4% ofthetotalbillis $12,howmuchis 30% ofthebill?
7 Calculate:
20% ofthebill,if 6% ofthetotalbillis $36 a
80% ofthebill,if 15% ofthetotalbillis $45. b
3% ofthebill,if 40% ofthetotalbillis $200 c
7% ofthebill,if 25% ofthetotalbillis $75 d
HintforQ6andQ7:Firstfindthe valueof 1% ofthebill.
Example34Usingtheunitarymethodtofindtheoriginalprice
Apairofshoeshasbeendiscountedby 20%.Ifthesalepricewas $160,whatwastheoriginalprice oftheshoes?
Solution
Onlypaying 80% oforiginalprice:
Â80% oforiginalpriceis $160
Â1% oforiginalpriceis $2
Â100% oforiginalpriceis $200
Explanation
Theoriginalpriceoftheshoeswas $200. 20% discount,sopaying (100−20)%
Wepay 80% afterthe 20% discount.
Divideby 80 tofindthevalueof 1% (160 ÷ 80 = 2)
Multiplyby 100 tofindthevalueof 100% (2 × 100 = 200).
Anewbedwasdiscountedby 30%.Ifthesalepricewas $294,whatwastheoriginalprice ofthebed?
8 Anecklaceinajewellerystorehasbeendiscountedby 20% Ifthesalepriceis $240,whatwastheoriginalpriceofthenecklace?
9 Findtheoriginalpriceofthefollowingitems.
Apairofjeansdiscountedby 40% hasasalepriceof $30 (youpay 60%) a
b
c
d
e
Ahockeystickdiscountedby 30% hasasalepriceof $105 (youpay 70%)
Asecond-handcomputerdiscountedby 85% hasasale priceof $90 (youpay 15%)
Asecond-handtextbookdiscountedby 80% hasasale priceof $6
Astandardrosebushdiscountedby 15% hasasaleprice of $8.50
Amotorbikediscountedby 25% hasasalepriceof $1500 f
10 OncetheGSTof 10% isaddedtoabill,thepriceis 110%.Ifthepriceof amealatacafe,includingtheGST,is $55,howmuchGSTispaid?
11 Apairofjeans,including 10% GST,comesto $88.WhatisthecostwithouttheGST?
12 If 22% ofanamountis $8540,whichofthefollowingwouldgivethevalueof 1% oftheamount?
× 100 A
÷ 100 B
13 Herearethreereal-lifereceipts(withthenamesofshopschanged).GSTrateis 10% Answerthequestionsbelowbasedoneachone.
HowmuchwasspentatSuperbarn?
a Howmanykilogramsoftomatoeswerebought?
b WhichitemincludedtheGST,andhowdoyoutellbylookingatthereceipt?
c WhatisthecostoftheitemiftheGSTisnotincluded? d
GymeaFruitMarket
Whatwasthecostofbananasperkilogram? a Onwhatdatewasthepurchasemade? b WhatdoesROUNDmean? c Whatwasthetotalpaidfortheitems? d Howmuchtaxwasincludedinthebill? e Whatpercentageofthebillwasthetax? f
Xmart
Howmanytoyswerepurchased? a Whatwasthecostofthemostexpensiveitem? b WhichofthetoysattractedGST? c HowmuchGSTwaspaidintotal? d WhatpercentageofthetotalbillwastheGST? e
Owningandrunningyourownbusiness requireshardworkandlonghours.Theskills youneedarevaried,frombeingwellorganised andhavinggoodcommunicationskillstobeing abletomanagestaffandstock.Perseveranceis alsoarequirement,asmanybusinessesfail withintheirfirstthreeyears.
Skillwithnumbersisimportantforthe day-to-dayrunningofafruitandvegetable shoptoensureaprofit.Stockneedstobe orderedandkeptfresh.Enoughstockneedsto besoldtocoverwages,storerental,delivery costsand,ifpossible,alsosomeprofit.Prices mustbeadjustedforseasonalfluctuationsas wellasunexpectedcosts.
1 Imaginethatyouarestartingupafruitandvegetableshopinthetownorsuburbwhereyoulive. Listsomevegetablesandfruitsthatcouldbesuppliedfromyourlocalmarketsorfarms. a Whatcostswouldyourbusinesshave,otherthanbuyingproduce?
c
b Whatdoyouthinkwouldbethemainchallengestosuccessfullyrunningyourshop?
2 Whenorderingorbuyingproducefrommarkets,pricesperkgorperitemareusuallystated. Calculatetheunitpriceorcostperkilogramforeachofthefollowing.
15 kgbagofpotatoescosts $14.55 a 25 kgboxofapplescosts $34.50 b Boxoflettucecontaining 20 headsoflettucecosts $18
d
c 8 kgbagofcarrotscosts $6.40
e
20 kgboxofnavelorangescosts $25.40
3 Freshproduceisgenerallyboughtatawholesalepricefromsuppliersandsoldatahigherretail pricetocovercostsandprovideaprofittothestoreowner.Findtheretailprice/kgoftheitems below,giventheretailpriceis 250% ofthewholesaleprice.Roundtothenearestcent.
Freshasparaguswholesalepriceis $1.42 perkg a Beanswholesalepriceis $2.18 perkg b Broccoliwholesalingat $2.39 perkg c Apples 2.5 kgbagwholesalingat $1.83 d Celerywholesalingat 85 cperkg e
4 Findthecostofanindividualpieceoffruitusingtheinformationinthistable.Roundtothe nearestcent.
5 Findthecostofthefollowingorder foracustomer.
6 Comparethecostof 100 gofapplesforeachoption A and B andstatewhichisthebetterbuy. AtrayofPinkLadyappleswithaweightof 600 gramsfor $2.94,or A 0.75 kgofloosePinkLadyapplesfor $3.30 B
7 ArestaurantinDaintree,northQueensland,orderedthefollowingexoticfruitsfromanearbytropical fruitshop.Calculatethetotalcostofthisorderincludinga $45 packinganddeliveryfee.
3.8 kg PurpleMangosteens $10.99/kg Dragonfruitareverynutritious.
8 Manypeopleworkoverseasandwishtocomparelivingcosts. SetupthefollowingExcelspreadsheettoconvertAmerican producepricesperlb(pound)toAustraliandollars(AUD)perkg. WeusethelettersUSDforAmericancurrency.
a Usetheseconversionfactors: HintforQ8:
• IncellB2 enter 2.2 asthereare 2.2 lbperkg.
• IncellC2 enter 0.75 (i.e. 1 AUD = 0.75 USD)orusethe currentexchangerate.
• IncellD2 entertheformula = 1/C2.Thisgivesthenumber ofAUDforUSD.
• Tofillformulasdownacolumn, dragdownthe‘fillhandle’.
b IncolumnC,multiplythepricesinUSD/lbby 2.2 togiveUSD/kg.Use $ signstoanchorthe B2 cellvalueasintheHint.
c IncolumnD,convertUSDtoAUD.MultiplybycellD2 (i.e.thenumberofAUDfor 1 USD).
d SelectanyfiveoftheaboveitemsandcomparetheconvertedAustralianprices/kgtocurrent Australianonlinesupermarketprices/kg.Whatobservationcanyoumake?Givesomepossible reasonsforthedifferenceinprices.
TheSamsumphonecompanyisconsideringmakinganewupsizedphonescreen comparedtooneofitssmallermodels.Thesmallermodelhasdimensions 6.3 cmby 11.3 cm.
Marketresearchhasindicatedthatatotalincreaseinscreenareaof 30% shouldbeenough tomeetthedemandinthemarket.Toincreasethescreensize,however,thelengthand thewidthneedtoincreasebythesamepercentage,sothelengthandwidthareinthe sameproportion.
Presentareportforthefollowingtasksandensurethatyoushowclearmathematical workings,explanationsanddiagramswhereappropriate.
a DeterminetheareaoftheoriginalSamsumphonescreenwithalengthof 11.3 cmandawidth of 6.3 cm.
b Findthelengthandthewidthofanupsizedphoneifthedimensions(lengthandwidth)are increasedby 10%
c Findtheareaofanupsizedphonescreenifthedimensionsareincreasedby 10%
d Whatisthechangeinareabetweenthenewandoldscreenswhenthedimensionsareincreased by 10%?
e Findthepercentagechangeintheareaoftheup-sizedphoneifthedimensionsareincreased by 10%
Rememberthat: Percentagechange = change originalvalue × 100%
Formulate a Theproblemistodeterminethepercentageincreasewhichshouldbeappliedtothelength andwidthtoachievea 30% increaseinareaofthephonescreen. Writedownalltherelevantinformationthatwillhelpsolvethisproblem.
b MakeanaccuratedrawingoftheoriginalSamsumphonescreenwithdimensions 6.3 cmby 11.3 cm.Onyourdiagramincludeanillustrationofhowthedimensionsmightbeincreased.
c Makethefollowingcalculationstofindtheplanned,up-sizedscreenarea: findtheoriginalscreenarea i find 30% ofthisarea ii increasetheoriginalscreenareabythischangetogivethenew,up-sizedscreenarea. iii
d CalculatethedimensionsandscreenareaofanupsizedphoneiftheoriginalSamsumscreen’s dimensionsareincreasedbythefollowingpercentages.Roundyouranswerstothreedecimal places.
5% i 15% ii 25% iii
e Determinewhichoftheabovepercentagedimensionincreasesleadstoanincreaseof more than 30% intotalarea.Justifyyouranswerbycalculatingpercentageincreasesinscreenarea foreachsetofnewdimensionsthatyoucalculatedinpart d above.
f Examineyourresultsfromparts d and e andusetrialanderrortodeterminetherequired percentageincreaseinphonedimensionstoachievea 30% increaseinarea.Answercorrect toonedecimalplace.Rememberthatthelengthandthewidthneedtoincreasebythesame percentage.
g Summariseyourresultsinatableliketheonebelowanddescribeanykeyfindings.
OnesalesexecutiveatSamsumsaysthattoincreasetheareaby 30% youshouldincreasethe dimensionsby 30%.Demonstratethatthesalesexecutiveiswrong.
Evaluate and verify
Communicate
Asat 2023,Australia’stotalpopulationisabout 25.5 million,itstotalgovernmentexpenditureisabout $600 billionandthetotaltaxationrevenueisabout $550 billion.AbouthalfofAustralia’sgovernment revenuecomesfrompersonalincometaxwithmostpeoplepayingtaxbasedonthefollowingtax table.
Forthisactivity,assumethefollowingfactsaboutAustralia.
• Thecurrentpopulationis 25.5 million,including 20 millionadults.
• Thetotalgovernmentexpenditureis $600 billion.
• Theaveragepersonalincometaxis $12500 peradult.
• Thetotalrevenuefromothertaxes(notincometax)is $300 billion.
a WhatisthetotalrevenuetotheAustraliangovernmentfrompersonalincometaxpaidbyadult Australians?
b Bycombiningthetotalpersonalincometaxandothertaxes,doesAustraliaearnenoughrevenue topayforitstotalexpenditure?Givereasons.
c Usethetaxtableabovetocalculatethetotaltaxpayableonthefollowingtaxableincomes. (WewillignoretheMedicarelevyfornow.)
$30000 i
$100000 ii
$150000 iii
ThefollowingspreadsheetisasimplebalancesheetfortheAustralianeconomyusingtheinformation frompart 1
a Enteralltheinformationintoaspreadsheetandanswerthefollowing. ThetotalrevenuefrompersonalincometaxiscalculatedinC9.Fromwhichcelldoesthe formulareceivetheaveragetaxpaidbyeachadult?
i Thepopulationincreaseyearbyyeariscurrentlysetat 0.5%.Explainhowtheformulaincell B10 usesthisinformationtocalculatethecorrecttotalfigureaftertheincrease.
ii ExplainhowtheformulasincellsD10 andE10 work. iii
b FilldownatcellsA10,B10,C9,D10,E10 andF9 toyear 2033.Whatdoyounoticeabouttheoverall financialbalanceoverthistime?
c ChangetheaverageamountofincometaxpaidbyAustralianadultsincellD1 to $13000.Does thisimproveAustralia’sbalancesheet?
d Let’snowassumethattheaverageAustraliantaxableincomeis $75000 Usethetaxtableonthepreviouspagetocalculatetheaveragetaxpaidusingthistaxable income. i
Useyourresultfrompart di inyourspreadsheettoupdatecellD1.Doesthisimprove Australia’sbalancesheet?
a Wewillsystematicallyapplythisalgorithmtoexplorewhataveragetaxableincomeisneededto provideAustraliawithenoughtaxrevenue.Startwith I = 50000.
• Step 1:CalculatethetaxpaidbyanAustralianearning$I.
• Step 2:EnterthistaxamountintocellD1 ofyourspreadsheet.
• Step 3:RecordAustralia’sbalanceatyear2033.
• Step 4:Increase I by 5000
• Step 5:ReturntoStep 1.
b Tothenearest $5000,whataveragetaxableincomeprovidesAustraliawithapositivebalanceat year2033?
c ChangetherateofAustralia’spopulationgrowthincellB4.Explorehowthischangeaffectsthe financialbalanceatyear 2033 comparedtotheoriginal 0.5% rate.
2 Jillhasfivecoinsinherpocket:a $2 coin, $1 coin, 50 centpiece, 20 centpiece,andone 10 cent coin.IfJillchoosesjusttwocoinsfromherpocketwithoutlookingatthem,ornoticingtheirsizeor shape,howmanydifferentamountscouldshearriveat?
3 Writeonehalfintendifferentways.
4 Completethesemagicsquares.Allrows,columnsandthetwodiagonalsaddupto thesametotal.
5 Atangramconsistsofsevengeometricshapes(tans)asshownon theright.Thetangrampuzzleispreciselyconstructedusingvertices, midpointsandstraightedges.
a Writeeachoftheseparatetanpiecesasapercentage, afractionandadecimalamountoftheentirepuzzle.
b Checkyourseventansadduptoatotalof 100%
c Startingwithasquare,makeanewversionofa‘modern’ tangrampuzzle.Youmusthaveatleastsixpiecesinyourpuzzle. Anexampleofamodernpuzzleisshownbelow.
d Writeeachoftheseparatepiecesofyournewpuzzleas apercentage,afractionandadecimalamountofthewholepuzzle.
e Separatepiecesoftangramscanbearrangedtomakemorethan 300 creativeshapesanddesigns,someofwhichareshown. Youmayliketoresearchtangramsandattempttomake someoftheimages.
A fraction is part of a whole. numerator (parts from the whole) denominator (parts in the whole)
Equivalent fractions What is a fraction?
• represent the same amount, they are the same decimal.
Simplify fractions by dividing the numerator and denominator by their highest common factor..
Simplifying fractions =
Adding or subtracting fractions
Mixed and improper fractions × 1 4 3 2
To add or subtract fractions you should use the lowest common denominator.
To take the reciprocal of a proper or improper fraction is to turn it upside Reciprocal
• cre ate equivalent fractions by multiplying or dividing the top (numerator) and bottom (denominator) by the same number.
Multiplying fractions
• use proper or improper fractions 3 × 1 2 × 4
• multiply the numerators • multiply the denominators • cancel a ny numerator with any denominator
8 • simplify
Dividing fractions • change the ÷ to × (its reciprocal) and multiply.
Fractions to decimals
(1) Change denominator to 10, 100 or 1000. or (2) Divide the denominator into the numerator.
Types of decimals
Decimals can terminate (stop).
Decimals can repeat/recur.
0.5, 0.75, 0.125 0.3333... = 0.3
= 0.61
The decimal point moves the same number of places as the
6.413 ×
= 641.3 Multiplying by tens
Dividing by tens 71.3 ÷
Dividing decimals
Multiply both numbers by 10, 100, 1000 etc. This is dividing by a whole number.
Multiplying decimals
The number of decimal places in the question is the same as in the answer. 0.04 × 0.3 = 0.012
Percentages and decimals 0.45 = 45%
Adding and subtracting
When adding and subtracting with decimals make sure the decimal points line up.
Rounding decimals
If the digit after the place you want is 0, 1, 2, 3 or 4, round down; if the digit is 5, 6, 7, 8 or 9, round up.
Percentage change
Percentage change =×
Percentages out of 100
Find
Percentages and fractions
AversionofthischecklistthatyoucanprintoutandcompletecanbedownloadedfromyourInteractiveTextbook.
3A 1 Icangenerateequivalentfractions
e.g.Rewrite 3 6 asanequivalentfractionwithadenominatorof 40
3A 2 Icanconvertafractiontosimplestform
e.g.Writethefraction 8 20 initssimplestform.
3B 3 Icanaddandsubtractfractions,includingmixednumerals
e.g.Simplify:
3B 4 Icanmultiplyfractions,includingmixednumerals
e.g.Simplify: a 2 5 × 3 7 b 8 5 × 1 3 4
3B 5 Icandividefractions,includingmixednumerals
e.g.Simplify:
3C 6 Icanaddandsubtractnegativefractions.
e.g.Simplify:
3C 7 Icanmultiplyanddividenegativefractions.
e.g.Simplify: 6 5 × 3 4 and −1 1 3 ÷ 3
3D 8 Icancomparedecimals
e.g.Comparethefollowingdecimalsandplacethecorrectinequalitysignbetweenthem: 57.8934257.89631
3D 9 Icanconvertdecimalstofractions
e.g.Convert 5.12 toafractioninitssimplestform.
3D 10 Icanconvertsimplefractionstodecimals
e.g.Convert 9 25 toadecimal.
3D 11 Icanaddandsubtractdecimals
e.g.Calculate: a 9.7−2.86 b 2.4 + 4.24
3E 12 Icanmultiplyanddividedecimalsbypowersof10
e.g.Calculate: a 9.753 ÷ 100 b 27.58 × 10000
3E 13 Icanmultiplydecimals
e.g.Calculate 25.7 × 0.3
3E 14 Icandividedecimals
e.g.Calculate 64.137 ÷ 0.03
3F 15 Icanconvertfractionstoterminatingdecimals
e.g.Write 7 8 asaterminatingdecimal.
3F 16 Icanconvertfractionstorecurringdecimals
e.g.Write 3 5 7 asarecurringdecimal.
3F 17 Icanroundterminatingdecimals
e.g.Round 14.258 to 1 decimalplace.
3F 18 Icanconvertpercentagestofractionsandtodecimals
e.g.Write 72% asasimplefractionandasadecimal.
3G 19 Icanconvertfractionsanddecimalstopercentages
e.g.Convertthefollowingtopercentages:
a 4 5 b 0.81
3H 20 Icanexpressonequantityasapercentageofanother,convertingunits ifrequired
e.g.Express:
a 34 outof 40 asapercentage b 60 centsasapercentageof $5
3H 21 Icanfindacertainpercentageofaquantity
e.g.Find 25% of 48.
3I 22 Icanfindtheresultwhenavalueisincreasedbyapercentage e.g.Findthenewvaluewhen $160 isincreasedby 40%
3I 23 Icanfindtheresultwhenavalueisdecreasedbyapercentage
e.g.Findthenewvaluewhen $63 isdecreasedby 20%.
3I 24 Icancalculatethecostofanitemafteradiscount
e.g.Findthecostofan $860 televisionthathasbeendiscountedby 25%
3I 25 Icancalculatethecostofanitemafteramark-up
e.g.Findthecostofa $250 microwaveoventhathasbeenmarkedupby 12%
3J 26 Icancalculatethepercentageprofitwhenpricesareincreased e.g.Calculatethepercentageprofitwhen $25 becomes $32
3J 27 Icancalculatethepercentagelosswhenpricesaredecreased e.g.Calculatethepercentagelosswhen $60 becomes $48
3K 28 Icanusetheunitarymethodtofindthefullamount e.g.If 8% ofanamountis $48,whatisthefullamountofmoney?
3K 29 Icanusetheunitarymethodtofindanewpercentage e.g.If 11% ofthefoodbillwas $77,howmuchis 25% ofthefoodbill?
3K 30 Icanusetheunitarymethodtofindtheoriginalprice e.g.Apairofshoeshasbeendiscountedby 20%.Ifthesalepricewas $120,whatwastheoriginal priceoftheshoes?
1 3A Copyandcomplete.
2 3A Simplify.
3 3B Evaluate.
4 3B Find:
5 3B Find:
6 3B Find:
7 3B Calculatethesedivisions.
8 3C Evaluateeachofthefollowing.
9 3D Convertthesefractionstodecimals.
10 3D Writethesedecimalsassimplefractions.
11 3E Evaluate.
3H Expresseachofthefollowingasapercentage. $35 outof $40 a 6 outof 24 b
$1.50 outof $2 c 16 cmoutof 4 m d
1 3D 0.36 expressedasafractionis:
2 3B 1 8 + 5 8 isequalto:
3 3E When 21.63 ismultipliedby 13.006,thenumberofdecimalplacesintheansweris:
4 3A 2 1 3 isthesameas:
5 3B Thereciprocalof 3 4 is:
6 3D Whichdecimalhasthelargestvalue?
7 3E 9.46 × 1000 is:
8 3H 75% of 84 isthesameas:
4 × 3 A
9 3K If 1% ofthetotalequals 8,then 5% ofthetotalequals:
10 3I $790 increasedby 10% gives:
1a A $320 statuehastheGST (10%) addedtotheprice.Whatisthefinalprice?
b Thepriceofa $670 stoveincludesGST.Whatisthepricenon-inclusiveofGST?Roundtothe nearestcent.
c InanothercountrytheGSTis 13.5%.Ifacoatispricedat $145.28 andthispriceincludesGST, whatisthepriceexcludingGST?
2 ThefollowingtableshowsthevalueofA$1 (oneAustraliandollar)inforeigncurrency. GenevieveisplanninganextendedholidaytoAsia.SheplansonvisitingIndia,Singapore,Phuket andHongKong.
a ShehasdecidedtochangesomeAustraliandollarstoeachoftheabovecurrenciesbeforeshe fliesout.HowmuchofeachcurrencywillshereceiveifshechangesA$500 toeachcurrency?
b Ifshespent 70% ofherThaibahtonhotels,howmuchThaibahtdoesshehavelefttospend?
c AftervisitingHongKong,Genevievehas $42 HKDleft.Whatdoesthisconvertbacktoin Australiandollars?