Plant Science Bulletin 62 (3) 2016

Page 18

PSB 62 (3) 2016 faculty, and by the end of my tenure as Chair, we had the greatest number of botanists in the history of the unit. (In addition, we had the greatest percentage of women of any science or engineering department, and out of all 76 academic units on campus, we had the highest amount of external funding—for several years in a row.) The point here is that we should not automatically assume that our colleagues, and certainly our administrators, have a working knowledge and positive attitude about the botanical research we do and why it is important. Thus, we must constantly educate them about our botanical activities. The third important educational role that plant biologists play is directly related to our instructional role, helping students learn about plants, biology, and science. I think that botanists have a good understanding of the problems we all face in the classroom— undergraduate students don’t have a huge interest in majoring in botany when they come to college, even if they want to major in some area of biology (Marbach-Ad, 2004). In addition, people in general have “plant blindness,” which is the inability to see or notice plants in one’s own environment, leading to a lack of understanding of the importance of plants in the biosphere and in the life of humans (Wandersee and Schussler, 1999). So we botanists start with a disadvantage as we try to entice students to major in plant biology or to take one of our courses. We are also aware of many identified issues with science courses and with incoming students and the way they are taught, such as the absence of critical thinking or inquiry in courses and the few opportunities for students to engage in independent research, discuss complex topics, or experience science as a process in class. After taking our courses, students often leave their undergraduate pro-

gram with little ability in critical thinking, complex reasoning, and writing skills (Arum and Roksa, 2011). These problems in the classroom contribute to the scientific illiteracy of the general public, issues related to finding enough qualified graduate students, funding issues for science research, poor training of future science teachers, faculty frustration in teaching, and students leaving biology and botany programs for other careers. Several national science education reform projects have emerged over the years, each working independently to solve the issues of science education in different arenas. This is part of the good news in terms of science education, and I will address what these projects have in common. But first, I would like to discuss how we got to this point. The myriad problems in teaching and learning science were the impetus for people to initiate large-scale, national science education reform projects. But there has also been a slowly building revolution in terms of the concern about and participation in science education reform by faculty not initially trained, but still interested, in education. I think we have reached the tipping point in terms of interest, action, and acceptance of science education in scientific academic circles

Reaching the Tipping Point for Science Education

The tipping point, according to Malcolm Gladwell (2000), is the critical point in a situation, process, or system beyond which a significant and often unstoppable change takes place. I think we have reached this change due to a number of factors. I will now detail eight pieces of evidence that we have reached the tipping point in terms of support for and involvement in science education research and activities.

128


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.