Thermoset
Biobased Epoxy Epichlorohydrin from glycerin enables biobased epoxy resins is marketed under the brand name Epicerol®. In contrast to some other ECH producers, Solvay is not downstream integrated and does not produce epoxy resins.
T
he possible ways of producing epoxy resins are very different and complex. The most common and important class of epoxy resins is derived from epichlorohydrin (ECH) and bisphenol A (BPA), a bivalent alcohol.
“Epicerol revolutionized the way of ECH production,” Thibaud Caulier, Senior Business Development Manager at Solvay explains to bioplastics MAGAZINE. “Epicerol not only uses 100% renewable carbon and reduces the carbon footprint of ECH production,” he says. “It is environmentally friendly in many other respects.” The whole production process consumes less energy and chlorine. The chemical reactions involved are more selective than in the propylenebased process, which significantly reduces the generation of chlorinated by-products. Another distinctive feature of Epicerol is that it does not release liquid effluents in the environment.
BPA is exclusively produced from fossil feedstock. However, health and safety concerns about the use of this chemical in food contact applications have led to the development of BPA substitutes, some of which being bio-based (e.g. lignin derivatives). Epichlorohydrin has been produced from oil-based propylene for decades, but it can also be obtained from biobased glycerin, a by-product from biodiesel and oleochemicals production. Thanks to identical physicochemical properties, biobased ECH can be used as a drop in substitute for fossil ECH.
In 2013, AkzoNobel and Solvay signed a three-year agreement whereby AkzoNobel will progressively increase the use in their coatings of bio-based epoxy resins produced with Epicerol, aiming to reach by 2016 20% of their equivalent ECH demand as bio-based material.
The world market for epichlorohydrin is about 1.5 million tonnes, 87% of which being used for the production of epoxy resins (in Asia and especially China, this share exceeds 90%). The main use of epoxy resins is for the production of protective coatings (corrosion proof) for the marine, automotive and industrial markets. The second biggest application area for epoxy resins is the manufacture of electronic components such as printed circuit boards and encapsulated semiconductors. In third position is the field of composites, mainly for public transportation (aerospace, automotive,…) and wind-power generation.
In March 2014, a joint panel was organized at the World Biomarkets conference in Amsterdam, with Kukdo Chemical (epoxy supplier of AkzoNobel) and EY besides Solvay and AkzoNobel. Kukdo is committed to develop bio-based epoxy resins based on Epicerol. EY is bringing its competencies in order to implement a chain of custody that keeps track along the chain of the use of Epicerol in AkzoNobel coatings.
Belgian multinational Solvay is a major supplier of ECH and the world’s biggest producer of bio-based epichlorohydrin, made from glycerin. The diversified chemicals group entered the ECH market in the early 1960s, growing its annual ECH production capacity to 210,000 tonnes nowadays. Solvay produces propylene-based ECH at its plant in Rheinberg/ Germany and a mix of propylene and bio-based ECH in Tavaux/France. Its plant in MapTa Phut/Thailand is entirely dedicated to biobased epichlorohydrin (100,000 t/a) which
Chemistry of epichlorohydrin manufacturing (simplified)
Solvay is actively seeking to establish further supply chain partnerships in other epichlorohydrin market segments. Besides thermoset resins, Epicerol can also be used for rubber products. This shall be covered in a separate issue of bioplastics MAGAZINE. MT www.solvay.com
CI2 CI HCI
Propylene
HCIO CI
NaOH O
Allyl Chloride CI
HCI
OH HO
OH CI Dichloropropanol
Brine
Epichorohydrin
OH
Bio sourced Glycerine
H 2O
bioplastics MAGAZINE [03/14] Vol. 9
37