2007-01

Page 15

Automotive

Applications of natural fibre composites include inner door linings (1.2 - 1.8 kg of natural fibres front and 0.8 - 1.5 kg in rear doors), trunk liners (up to 2 kg of natural fibres), rear shelves, roofliners, instrument panels, all kind of covers as well as injection moulded applications such as ventilation grilles.

Pioneers in “automotive bioplastics” It was as early as in the first decade of the 20th century when Henry Ford started experimenting with the use of agricultural products for automotive applications. In 1915 a first production application was a coil housing for the Model-T Ford, made from a wheat gluten resin reinforced with asbestos fibres. Later Ford intensified his research on the use of a so-called soy meal. As fillers at up to 50 to 60 percent, cellulose fibres from hemp, wood flour or pulp from pine, cotton, flax, ramie, and even wheat, were used in combination with the soy meal. Soy meal plastics were used for a steadily increasing number of automobile parts, such as glove-box doors, gear-shift knobs, horn buttons, accelerator pedals, distributor heads, interior trim, steering wheels, instrument panels, and eventually a prototype exterior rear-deck lid (www. hempplastic.com).

Henry Ford tests his car made from plant-based materials- including hemp „The axe bounced, and there was no dent...“ photo from „A Modern Introduction To Hemp“ by Paul Benhaim available www.hemp.co.uk

Polyurethane Even today, Ford Motor Company is investigating the use of soy for natural-based automotive applications. Ford researchers have formulated the chemistry to replace a staggering 40% of the standard petroleum-based polyol (one of the basic components of polyurethane) with a soy-derived material. While many in the auto industry are experimenting with a 5% soy-based polyol, “at 40%, we have the ability to make a significant impact on the environment, while reducing our dependency on imported petroleum”, says Dr. Matthew Zaluzec, manager of Ford‘s Materials Research & Advanced Engineering Department.

PLA and kenaf Another pioneer of modern bioplastics for automotive applications is Toyota Motor Corporation. The Toyota RAUM, a domestic model introduced in 2003 is equipped with a cover for the spare tyre made of Toyota Eco-Plastic. This PLA material is based on sugar beet and, for the spare wheel cover, combined with kenaf fibres. At their own PLA pilot plant, the “Hirose Plant” with an annual output of 1,000 tonnes, Toyota have researched and tried various raw materials including sweet potatoes grown in Indonesia.

photos: Toyota

The output of the plant is mainly for Toyota‘s internal use and external non-automotive applications such as on-desk cell-phone chargers, tennis racket strings or inner cases for cosmetics products, all of these being sold only in Japan. Toyota also produced floor mats making use of PLA in order to demonstrate this application to customers. This project has since been terminated, according to Hiroshi Higuchi, General Manager of Toyota‘s Bio-Plastic Project Department, Biotechnology & Afforestation Division.

bioplastics MAGAZINE [01/07] Vol. 2

15


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.